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onset in a model of adolescent cannabis abuse
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Abstract

Cannabis abuse during adolescence confers an increased risk for
developing later in life cognitive deficits reminiscent of those
observed in schizophrenia, suggesting common pathological mech-
anisms that remain poorly characterized. In line with previous
findings that revealed a role of 5-HT6 receptor-operated mTOR
activation in cognitive deficits of rodent developmental models of
schizophrenia, we show that chronic administration of Δ9-tetrahy-
drocannabinol (THC) to mice during adolescence induces a long-
lasting activation of mTOR in prefrontal cortex (PFC), alterations of
excitatory/inhibitory balance, intrinsic properties of layer V pyra-
midal neurons, and long-term depression, as well as cognitive defi-
cits in adulthood. All are prevented by administrating a 5-HT6
receptor antagonist or rapamycin, during adolescence. In contrast,
they are still present 2 weeks after the same treatments delivered
at the adult stage. Collectively, these findings suggest a role of 5-
HT6 receptor-operated mTOR signaling in abnormalities of cortical
network wiring elicited by THC at a critical period of PFC matura-
tion and highlight the potential of 5-HT6 receptor antagonists as
early therapy to prevent cognitive symptom onset in adolescent
cannabis abusers.
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Introduction

Cannabis is the most commonly used recreational drug worldwide,

and the last 30 years have been marked by a dramatic increase in

cannabis consumption at an increasingly early age by young people

in most developed countries (Hall & Babor, 2000). Epidemiological

studies suggest that cannabis abuse during adolescence confers an

increased risk for developing later in life psychotic symptoms and

neurocognitive alterations reminiscent of those observed in

schizophrenia (D’Souza et al, 2009; Evins et al, 2012). Moreover,

neuroimaging studies in adolescent cannabis users revealed struc-

tural abnormalities and altered neural activity in the prefrontal

cortex (PFC) during resting state and several types of cognitive

paradigms, suggesting a critical role of this brain region in the core

cognitive symptoms associated with cannabis abuse during adoles-

cence (Schweinsburg et al, 2008; Batalla et al, 2013). Likewise,

chronic administration of D9-tetrahydrocannabinol (THC), the main

psychoactive constituent of cannabis, to adolescent rats, induces

behavioral alterations and cognitive deficits in adulthood that

reflect, at least in part, PFC dysfunction (Schneider & Koch, 2003;

O’Shea et al, 2006; Malone et al, 2010; Renard et al, 2013, 2017;

Rubino & Parolaro, 2013, 2016; Zamberletti et al, 2014).

The PFC undergoes highly orchestrated maturation processes

during adolescence. These include sprouting and pruning of

synapses, refinement of circuit connectivity and of various neuro-

transmitter systems, such as glutamatergic, GABAergic, dopaminer-

gic, and endocannabinoid systems (Spear, 2000; Rubino & Parolaro,

2016). It is conceivable that any interference with these matura-

tional events such as chronic cannabis consumption during adoles-

cence would lead to irreversible alterations of PFC connectivity and

functionality that represent a risk factor for neuropsychiatric disor-

ders in adulthood (Arseneault et al, 2004; Stefanis et al, 2004;

Renard et al, 2014). Consistent with this hypothesis and underscor-

ing the vulnerability of the adolescent brain to cannabis exposure,

chronic administration of THC to adult rats (at similar doses to

those injected in adolescent animals) does not reproduce the long-

lasting cognitive deficits observed in THC-injected adolescent

animals (Spear, 2000; Rubino & Parolaro, 2013).

Among the targets currently under investigation to alleviate

cognitive deficits associated with various neuropsychiatric
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disorders, including schizophrenia, the serotonin 5-HT6 receptor still

raises particular interest in view of its high expression level in brain

regions involved in mnemonic functions and the pro-cognitive

effects of 5-HT6 receptor blockade in a broad range of cognitive

paradigms in rodents (Codony et al, 2011; Yun & Rhim, 2011). In an

effort to identify signaling mechanisms underlying cognition control

by the 5-HT6 receptor, we previously demonstrated that receptor-

operated activation of mechanistic Target Of Rapamycin (mTOR) in

PFC underlies cognitive deficits in two rat developmental models of

schizophrenia, namely neonatal phencyclidine administration and

rearing in social isolation after weaning (Meffre et al, 2012). These

results are consistent with the role of non-physiological mTOR acti-

vation in cognitive impairment observed in genetic forms of autism

spectrum disorders (ASD) and Down’s syndrome (Ehninger et al,

2008; Ehninger & Silva, 2011; Troca-Marin et al, 2012). Likewise, a

previous study has shown that acute THC administration to adult

mice induces an activation of mTOR that underlies the associated

amnesic-like effects (Puighermanal et al, 2009).

In addition to its well-described role in cognition, the 5-HT6

receptor has recently emerged as a key regulator of neurodevelop-

mental processes such as neuronal migration (Dayer et al, 2015),

neurite growth (Duhr et al, 2014), and dendritic protrusion (Rah-

man et al, 2017). Though the role of mTOR, under the control of

5-HT6 receptor, in these neurodevelopmental mechanisms remains

to be established, a large body of evidence indicates that the proper

structural and functional development of brain circuitry depends on

the fine tuning of mTOR signaling that has also a key influence upon

synaptic transmission and synaptic plasticity in the mature brain

(Swiech et al, 2008; Kim et al, 2009; Bockaert & Marin, 2015).

In light of these findings, we hypothesized that chronic cannabis

abuse during adolescence might induce a persistent non-physiolo-

gical activation of mTOR in adolescent brain that might lead to

abnormalities in PFC maturation and cognitive impairment at the

adult stage. The implication of 5-HT6 receptors in these deficits and

the underlying alterations of synaptic transmission remain to be

established, an issue we have explored in the present study, using

mice injected daily with THC between post-natal days (PNDs) 30

and 45 as a model of cannabis abuse during adolescence. We show

that this treatment induces a sustained activation of mTOR signaling

in PFC, an alteration of both GABAergic and glutamatergic synaptic

transmissions and impairment of LTD in the PFC at layer I/V

synapses and deficits in novel object recognition, sociability, and

social discrimination in adulthood, which are all prevented by early

administration (during adolescence) of the 5-HT6 receptor antago-

nist SB258585 or the mTOR inhibitor rapamycin. Additional experi-

ments were undertaken to characterize THC-induced modifications

of intrinsic properties of layer V pyramidal neurons and whether

they can be prevented by blocking 5-HT6 receptor-operated mTOR

signaling during adolescence.

Results

5-HT6 receptors mediate delayed mTOR activation elicited
by THC administration to adolescent mice

We used a preclinical model of cannabis abuse in adolescent mice,

consisting of daily administration of THC (5 mg/kg, i.p.) between

PNDs 30 and 45 (Fig 1A). This treatment induced in adulthood a

marked increase in the phosphorylation level of mTOR at Ser2448

and of its substrate 70 kDa ribosomal protein S6 kinase (p70S6K) at

Thr389 in the PFC (Fig 1B) but not in the hippocampus

(Appendix Fig S1), compared to control mice injected with saline

solution (vehicle), indicative of a sustained activation of mTOR

signaling in PFC. As expected, THC administration did not promote

mTOR activation in cannabinoid type 1 (CB1) receptor-deficient

▸Figure 1. Administration of THC during adolescence to mice induces mTOR activation in the PFC and cognitive deficits in adulthood that depend on
5-HT6 receptors.

A Schema of the experimental paradigm used for drug administration. Mice were injected daily with THC (5 mg/kg) or vehicle (Veh) during adolescence, from PNDs 30
to 45. SB258585 (SB, 2.5 mg/kg) or rapamycin (Rapa, 1.5 mg/kg) was administered concomitantly with THC or vehicle. Biochemical and behavioral experiments were
performed from PND 60.

B Top: representative Western blots assessing mTOR phosphorylation at S2448 and p70S6K phosphorylation at T389 as indexes of mTOR activity in PFC of adult WT mice
are illustrated. Bottom: data represent the ratios of immunoreactive signals of the anti-phospho-mTOR (S2448) or anti-phospho-p70S6K (T389) antibodies to the
immunoreactive signal of the anti-b-actin antibody and are expressed in % of values in vehicle-injected WT mice. They are the means � SEM of results obtained in
five mice per group. *P < 0.05; **P < 0.01, one-way ANOVA followed by Newman–Keuls test.

C Top: schemas illustrating the behavioral tasks performed in WT mice. Bottom: the plots represent the discrimination index for the novel object recognition task
(vehicle: N = 11, THC: N = 11, THC + SB: N = 11, THC + Rapa: N = 12), the sociability index (vehicle: N = 11, THC: N = 11, THC + SB: N = 11, THC + Rapa: N = 12),
and the discrimination index for the social discrimination task (N = 8 for each group), measured in each condition. *P < 0.05, **P < 0.01, one-way ANOVA followed
by Bonferroni test (bars and error bars correspond to the mean � SEM, the dotted line to a discrimination index (exploration of novel object � exploration of
familiar object/total object exploration) equal to zero).

D Top: representative Western blots assessing mTOR phosphorylation at S2448 and p70S6K phosphorylation at T389 in the PFC of adult 5-HT6
�/� mice are illustrated.

Bottom: data represent the ratios of immunoreactive signals of the anti-phospho-mTOR (S2448) or anti-phospho-p70S6K (T389) antibodies to the immunoreactive
signal of the anti-b-actin antibody and are expressed in % of values in vehicle-injected 5-HT6

�/� mice. They are the means � SEM of results obtained in four mice
per group. n.s. P > 0.05, one-way ANOVA followed by Newman–Keuls test.

E Top: schemas illustrating the behavioral tasks in 5-HT6
�/� mice. Bottom: the plots represent the discrimination index for the novel object recognition test

(discrimination index: 0.30 � 0.05, N = 10, and 0.31 � 0.03, N = 11, for THC + vehicle and vehicle + vehicle conditions, respectively, P > 0.05), the 3-chamber social
preference test (sociability index: 0.49 � 0.04, N = 10, and 0.48 � 0.07, N = 11, for THC + vehicle and vehicle + vehicle conditions, respectively, P > 0.05) and the
social discrimination test (discrimination index: 0.15 � 0.06, N = 8, and 0.21 � 0.06, N = 8, for THC + vehicle and vehicle + vehicle conditions, respectively,
P > 0.05), measured in each condition. One-way ANOVA followed by Bonferroni test (bars and error bars correspond to the mean � SEM, the dotted line corresponds
to a discrimination index equal to zero).

Source data are available online for this figure.
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mice (CB1
�/� mice, Fig EV1A), confirming that THC mediates its

effects through CB1 receptors. The persistent elevation of phospho-

rylated mTOR and p70S6K elicited by THC administration during

adolescence was prevented by the concomitant injection (between

PNDs 30 and 45) of either SB258585 (2.5 mg/kg), a 5-HT6 receptor

antagonist (Hirst et al, 2000), or rapamycin (1.5 mg/kg), a pharma-

cological mTOR inhibitor (Fig 1B). Administration of SB258585 or

rapamycin during adolescence did not significantly affect the basal

phosphorylation state of mTOR and p70S6K in the PFC of vehicle-

injected mice (Appendix Fig S2A). Further supporting the role of 5-

HT6 receptors in the THC-mediated effects, administration of THC

during adolescence did not induce mTOR activation in the PFC of 5-

HT6 receptor-deficient mice (5-HT6
�/� mice, Fig 1D).

5HT6 receptors are known to exhibit a high level of constitutive

activity both in vitro and in vivo (Kohen et al, 2001; Purohit et al,

2003; Duhr et al, 2014; Deraredj Nadim et al, 2016) that is inhibited

by SB258585 (Duhr et al, 2014), which thus behaves as an inverse

agonist. Administration of the recently characterized 5HT6 recep-

tor neutral antagonist CPPQ ((S)-1-[(3-chlorophenyl)sulfonyl]-4-

(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinolone, 2.5 mg/kg)

(Deraredj Nadim et al, 2016; Grychowska et al, 2019) to mice injected

with THC during adolescence prevented the persistent elevation of

mTOR and p70S6K phosphorylation observed in adulthood

(Fig EV1B), suggesting that mTOR activation is due to the activation

of 5-HT6 receptors by endogenously released 5-HT rather than

agonist-independent activity.

Immunostaining of CB1 and 5-HT6 receptors showed distinct

neuronal localizations of both receptors in the mouse PFC.

Consistent with previous findings, CB1 receptors are mainly local-

ized presynaptically on GABAergic neurons (as shown by their

co-localization with the presynaptic protein Bassoon, Fig 2A, and

the GABAergic marker GAD65, Fig 2B; Eggan & Lewis, 2007;

Cathel et al, 2014) while negligible receptor amounts were

detected on 5-HT terminals (Fig 2D). A fraction of CB1 receptors

was also found at the postsynapse (co-localization with PSD-95,

Fig 2C), corroborating previous findings (Maroso et al, 2016).

Conversely, 5-HT6 receptors are mostly localized at the postsy-

napse (Fig 2E–G). Furthermore, no co-localization of CB1 and

5HT6 receptors was found within PFC neurons (Fig 2H). Collec-

tively, these anatomical observations suggest that the long-lasting

activation of mTOR signaling in the PFC of THC-injected mice

does not result from a crosstalk between CB1 and 5-HT6 receptor-

operated signaling but rather from a cross-correlative action on

the neuronal cortical network.

Early blockade of 5-HT6 receptor-operated mTOR signaling
prevents cognitive deficits induced by THC administration
during adolescence

As previously observed in the rat (O’Shea et al, 2006), mice exposed

to THC during adolescence showed later in life deficits in behavioral

tasks assessing cognitive functions that depend on PFC among other

regions: the novel object recognition test (discrimination index:

0.19 � 0.07, N = 12, and 0.51 � 0.05, N = 11, for THC + vehicle

and for vehicle + vehicle conditions, respectively, P < 0.001, Fig 1C,

left panel), the 3-chamber social preference test (sociability index:

0.71 � 0.03, N = 11, and 0.52 � 0.03, N = 11, for THC + vehicle

and for vehicle + vehicle conditions, respectively, P < 0.001, Fig 1C,

right panel) and the social discrimination test (discrimination index:

�0.04 � 0.09, N = 8, and 0.32 � 0.06, N = 8, for THC + vehicle

and for vehicle + vehicle conditions, respectively, P < 0.01, Fig 1C,

bottom panel). In contrast, administration of THC to mice during

adolescence did not alter locomotion nor induced an anxiety pheno-

type in adulthood (Fig EV2).

Given the deleterious influence of non-physiological mTOR

activation upon cognition in various neuropsychiatric conditions

(Hoeffer & Klann, 2010; Bockaert & Marin, 2015) and its role in

cognitive deficits induced by cannabis intake, we next explored

whether blocking 5-HT6 receptor-elicited mTOR elevation in

adolescent mice exposed to THC prevents the associated cogni-

tive impairments in adulthood. THC-injected mice treated with

SB258585 or rapamycin during adolescence showed a similar

performance as vehicle-injected animals in the novel object

recognition task (discrimination index: 0.45 � 0.07, N = 12, and

0.46 � 0.04, N = 11, for THC + SB and THC + Rapa conditions,

respectively, P > 0.05 vs. vehicle/vehicle mice, Fig 1C, left

panel), the social preference test (social index: 0.67 � 0.02,

N = 12, and 0.70 � 0.03, N = 11, for THC + SB and for

THC + Rapa conditions, respectively, P > 0.05 vs. vehicle mice,

Fig 1C, right panel) and the social discrimination test (discrimi-

nation index: 0.28 � 0.06, N = 8, and 0.25 � 0.07, N = 8, for

THC + SB and for THC + Rapa conditions, respectively, P > 0.05

vs. vehicle mice, Fig 1C, bottom panel). SB258585 or rapamycin

administration to vehicle-treated mice did not alter their perfor-

mance in each of these tests (Appendix Fig S2B). Likewise, THC

administration to 5-HT6
�/�mice during adolescence did not alter

their performance in these three behavioral tasks (Fig 1E).

Collectively, these results demonstrate that the chronic intake of

THC during adolescence induces a 5-HT6 receptor-dependent

▸Figure 2. Localization of 5-HT6 and CB1 receptors in the prefrontal cortex.

A–E The PFC was stained with CB1 receptor (A1–D1, green) or 5HT6 receptor (E1–H1, green), Bassoon (A2 and E2, red), GAD65 (B2 and F2, red), PSD-95 (C2 and G2, red), or
SERT (D2 and H2, red) antibodies. Merge images are also depicted (A3–H3). CB1 receptors were mainly co-localized with the presynaptic marker Bassoon (white
arrows, A3), mostly within GABAergic boutons (white arrows, B3) and to a lesser extend with PSD-95 (white arrows, C3) and SERT (D3), while 5-HT6 receptors were
mainly co-localized with PSD-95 (white arrows, G3). No co-localization of CB1 and 5-HT6 receptors was detected (white arrows indicate the 5-HT6 staining, H3).
Scale bar: 10 lm. The scatter plot represents the co-localization analysis for CB1 and 5-HT6 receptor immunostainings. Graph on the top. Mander’s split coefficient
was used to identify the fraction of CB1 receptors that co-localizes with Bassoon (Mander’s coefficient: 0.66 � 0.02, n = 4), GAD65 (Mander’s coefficient:
0.56 � 0.01, n = 4), PSD95 (Mander’s coefficient: 0.15 � 0.01, n = 4), or SERT (Mander’s coefficient: 0.082 � 0.004, n = 4). Graph on the bottom. Mander’s split
coefficient was used to identify the fraction of 5-HT6 receptors that co-localizes with Bassoon (Mander’s coefficient: 0.09 � 0.01, n = 4), GAD65 (Mander’s
coefficient: 0.059 � 0.004, n = 4), PSD95 (Mander’s coefficient: 0.58 � 0.01, n = 4), or CB1 receptors (Mander’s coefficient: 0.0020 � 0.0004, n = 4). Bars and error
bars correspond to the mean � SEM.

Source data are available online for this figure.
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long-lasting activation of mTOR signaling in the PFC that causes

cognitive deficits in adulthood.

Effects of THC administration and of blocking the 5-HT6/mTOR
pathway in adulthood

To explore whether blocking 5-HT6 receptor-mediated mTOR acti-

vation during adulthood could also have a delayed beneficial

influence upon cognition, mice injected with THC during adoles-

cence were treated with SB258585 (2.5 mg/kg) or rapamycin

(1.5 mg/kg) during 2 weeks at the adult stage (daily injections

from PND 60 to 75). Biochemical analysis and behavioral studies

were performed 2 weeks after the last injection of the 5-HT6

receptor antagonist or rapamycin (PND 90, Fig 3A). A significant

increase in phosphorylated mTOR and p70S6K was observed at

PND 90 in THC-injected mice, compared with vehicle-injected

mice, and this mTOR overactivation was not affected by

SB258585 or rapamycin administration at the adult stage (Fig 3B).

Moreover, performances were similar in the THC-injected mice

treated or not with SB258585 or rapamycin in adulthood in the

novel object recognition task (Fig 3C). These results demonstrate

that blocking the 5-HT6/mTOR signaling pathway at the adult

stage in mice injected with THC during adolescence does not

abolish the long-lasting activation of mTOR and, consequently,

does not induce persistent cognitive improvements.

We also administered THC from PNDs 60 to 75 (Fig EV3A) to

determine whether its long-term deleterious effects upon mTOR

signaling and cognition are really restricted to the juvenile period.

Analysis of mTOR signaling 15 days after the last THC injection

(PND 90) did not present any change in the phosphorylation state of

mTOR and p70S6K in THC-treated mice (Fig EV3B). Correspond-

ingly, THC administration at the adult stage did not induce a persis-

tent deficit in novelty discrimination in the novel object recognition

test in the same time frame (Fig EV3C).

Alterations of GABAergic and glutamatergic synaptic
transmissions in THC-injected mice during adolescence are
prevented by early blockade of 5-HT6-elicited mTOR activation

To determine whether chronic THC consumption during adoles-

cence affects prefrontal synaptic transmission in adulthood, we

analyzed the excitatory and inhibitory synaptic transmissions in

acute slices of medial PFC. We performed whole-cell patch-clamp

recordings of layer V pyramidal neurons, which integrate excitatory

inputs from cortical and sub-cortical areas and measured the ampli-

tude and the frequency of both GABA receptor-mediated miniature

inhibitory postsynaptic currents (mIPSCs) and AMPA receptor-

mediated miniature excitatory postsynaptic currents (mEPSCs).

THC-injected mice showed a robust decrease in mIPSC frequency,

whereas their amplitude was not affected (Fig 4B), suggesting a

defect in GABA release. Furthermore, in experimental conditions

where the inhibitory transmission was initially blocked, mEPSC

frequency was significantly increased with no change in their

amplitude (Fig 4C). THC-induced alterations of GABAergic and

glutamatergic transmissions were abolished by SB258585 or rapa-

mycin administration during adolescence (Fig 4B and C). In mice

injected with vehicle during adolescence, neither SB258585 nor

rapamycin administration significantly affected mIPSC or mEPSC

A

B

C

Figure 3. THC-induced long-lasting mTOR activation and cognitive
deficits are not inhibited by the administration of SB258585 or rapamycin
in adulthood.

A Schema of the experimental paradigm used for drug administration. Mice
were injected daily with THC (5 mg/kg) or vehicle (Veh) during adolescence,
from PNDs 30 to 45. Vehicle and THC-injected mice were treated daily with
either vehicle or SB258585 (SB, 2.5 mg/kg) or rapamycin (Rapa, 1.5 mg/kg)
from PNDs 60 to 75. Biochemical and behavioral experiments were
performed from PND 90.

B Top: representative Western blots assessing mTOR activity in PFC are
illustrated. Bottom: data represent the ratios of immunoreactive signals of
the anti-phospho-mTOR (S2448) or anti-phospho-p70S6K (T389) antibodies to
the immunoreactive signal of the anti-b-actin antibody and are expressed
in % of values in vehicle-injected mice. They are the means � SEM of
results obtained in six mice per group. *P < 0.05; **P < 0.01, one-way
ANOVA followed by Newman–Keuls test.

C The plots represent the discrimination index measured in each condition.
***P < 0.001, one-way ANOVA followed by Bonferroni test. The
discrimination index for the novel object recognition task is 0.34 � 0.06
(N = 14) and �0.08 � 0.07 (N = 20), for mice injected with vehicle and
THC, respectively, P < 0.001 and �0.09 � 0.08 (N = 21) and 0.00 � 0.06
(N = 18), for mice treated with THC + SB and THC + Rapa, respectively,
P > 0.05 vs. THC-injected mice (error bars correspond to the mean � SEM,
the dotted line to a discrimination index equal to zero).

Source data are available online for this figure.
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frequency and amplitude (Appendix Fig S3). These results suggest

that cannabis abuse during adolescence induces a sustained alter-

ation of GABAergic and glutamatergic synaptic transmissions in

PFC. This leads to a disruption in the excitatory/inhibitory (E/I)

balance that can be prevented by blocking 5-HT6 receptor-operated

mTOR signaling.

THC administration during adolescence induces changes in the
intrinsic properties of layer V PFC pyramidal neurons through
modulation of HCN1 channels

Spike timing results from dynamic interactions between synaptic

activity and intrinsic neuronal excitability. We assessed whether

persistent activation of mTOR elicited by THC administration during

adolescence might affect the intrinsic electrophysiological properties

and the firing rate of layer V pyramidal neurons by monitoring four

different parameters: the resting membrane potential (RMP), the

action potential (AP) threshold, the rheobase (i.e., minimal current

required to induce neuronal firing), and the firing rate (i.e., number

of APs for a 150 pA injected current during 250 ms). THC adminis-

tration during adolescence significantly increased the resting

membrane potential (Fig 5A) and lowered the AP threshold (Fig 5B)

and the rheobase (Fig 5C), without affecting the firing rate, in adult-

hood (Fig 5D). Moreover, the concomitant administration of

SB258585 or rapamycin prevented these changes (Fig 5A–C) but

had no effect on the intrinsic neuronal properties of layer V PFC

pyramidal neurons from vehicle-injected mice (Appendix Fig S4).

Mimicking the effects of SB258585, concomitant administration of

the neutral 5-HT6 receptor antagonist, CPPQ, to THC-injected mice

during adolescence also prevented the observed alterations of the

resting membrane potential, the rheobase, and the AP threshold

(Fig EV4A–C) of PFC pyramidal neurons, without affecting their fir-

ing rate (Fig EV4D). Collectively, these results indicate that THC

intake during adolescence induces long-lasting changes in the intrin-

sic neuronal properties of prefrontal layer V pyramidal neurons that

are prevented by the early blockade of the 5-HT6/mTOR pathway.

Hyperpolarization-activated cyclic nucleotide-gated channel 1

(HCN1) is the predominant isoform of HCN channels, a family of

voltage-gated ion channels responsible for the hyperpolarization-

activated current (Ih) that modulates spike firing and synaptic poten-

tial integration (He et al, 2014; Shah, 2014) by influencing the rest-

ing membrane potential of pyramidal neurons. Notably, HCN1

channels enable intrinsic persistent firing of prefrontal layer V pyra-

midal neurons and are necessary for PFC-dependent behavioral

tasks such as executive function during working memory episodes

(Thuault et al, 2013). Furthermore, HCN1 channels have been

involved in CB1 receptor-induced deficits in LTP in hippocampal

pyramidal neurons located in the superficial portion of the CA1

pyramidal cell layer and in spatial memory formation (Maroso et al,

2016). We thus examined whether THC administration during

adolescence likewise modifies the activity of HCN1 channels in PFC

neurons and measured the voltage sag as an index of postsynaptic Ih
in layer V pyramidal neurons, using whole-cell patch-clamp record-

ings in a current-clamp configuration. Following injection of incre-

mental negative currents (50-pA increment from �400 to 0 pA), the

sag amplitude was increased in layer V pyramidal neurons from

THC-injected mice, compared with vehicle-injected mice (Fig 5E).

Furthermore, administration of SB258585 or rapamycin during

adolescence restored a normal sag potential amplitude in THC-

injected mice (Fig 5E).

To confirm that HCN1 channels contribute to modifications of

the intrinsic neuronal properties, we bath applied onto the PFC

A

B

C

Figure 4. THC-induced alterations of prefrontal inhibitory and
excitatory synaptic transmissions are prevented by administration of
SB258585 or rapamycin during adolescence.

A Schema of the experimental paradigm used for drug administration. Mice
were injected daily with THC (5 mg/kg) or vehicle (Veh) during adolescence,
from PNDs 30 to 45. SB258585 (SB, 2.5 mg/kg) or rapamycin (Rapa, 1.5 mg/kg)
was administered concomitantly with THC or vehicle. Electrophysiological
recordings were performed from PND 60.

B Left: representative traces of GABA mIPSCs recorded in layer V pyramidal
neurons are illustrated. Right: the histograms represent means � SEM of
GABA mIPSC frequency and amplitude measured during the last minute of
recording. The mIPSC frequency is: 3.2 � 0.4 Hz and 1.3 � 0.2 Hz for
vehicle (n = 9 from N = 4) and THC (n = 7 from N = 4) conditions,
respectively, P < 0.001 and 2.5 � 0.2 and 4.1 � 0.4 Hz for THC + SB
(n = 8 from N = 4) and THC + Rapa (n = 8 from N = 4) conditions,
respectively, P < 0.01 and P < 0.001 vs. THC-injected mice.

C Left: representative traces of AMPA mEPSCs recorded in layer V pyramidal
neurons are illustrated. Right: the histograms represent means � SEM of
AMPA mEPSC frequency and amplitude measured during the last minute of
recording, n = neurons from 3 to 5 mice per group. The mEPSC frequency is
4.7 � 0.4 Hz for vehicle (n = 9 from N = 7) and 6.8 � 0.4 Hz for THC
(n = 9 from N = 5) conditions, respectively, P < 0.01and 5.3 � 0.5 and
4.6 � 0.3 Hz for THC + SB (n = 10 from N = 6) and THC + Rapa (n = 9
from N = 5) conditions, respectively, P < 0.05 and P < 0.01 vs. THC-injected
mice. In B and C, *P < 0.05; **P < 0.01; ***P < 0.001, one-way ANOVA
followed by Newman–Keuls test.
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Figure 5. Administration of THC during adolescence changes intrinsic properties of layer V pyramidal neurons.

A–D Mice were injected daily with THC (5 mg/kg) or vehicle (Veh) during adolescence, from PND 30 to 45. SB258585 (SB, 2.5 mg/kg) or rapamycin (Rapa, 1.5 mg/kg) was
administered concomitantly with THC (n = 20 from N = 5) or vehicle (n = 18 from N = 6). Electrophysiological recordings were performed from PND 60. (A) The
resting membrane potential (RMP) was determined immediately after whole-cell formation: �71.8 � 1.2 and �60.1 � 1.5 mV for vehicle and THC conditions,
respectively, P < 0.001. (B) Action potentials were evoked by a ramp current injection with a 10-pA step for 2 ms, and only the first action potential (AP) was used
to estimate the AP threshold: �34.1 � 0.7 and �39.7 � 0.8 mV for vehicle- and THC-injected mice, respectively, P < 0.001. (C) The rheobase represents the
minimal current required to induce neuronal firing, and it was lowered in THC condition: 670 � 43 and 376 � 43 pA for vehicle and THC conditions, respectively,
P < 0.001. (D) The firing rate induced by a 150-pA current injection during 250 ms is expressed as the number of APs. In (A–D), the plots represent means � SEM
of RMPs, AP thresholds, rheobases and firing rates, respectively. ***P < 0.001, **P < 0.01, one-way ANOVA followed by Bonferroni test. Concomitant administration
of SB258585 or rapamycin prevented all the observed changes (RMP: �70.1 � 1.4 and �72.1 � 1.0 mV for THC + SB258585 (n = 16 from N = 5) and
THC + Rapamycin (n = 18 from N = 5) conditions, respectively, P < 0.001 vs. THC-injected mice; AP threshold: �33.0 � 1.7 and �34.8 � 1.0 mV for
THC + SB258585 and THC + Rapamycin conditions, respectively, P < 0.001 vs. THC-injected mice; Rheobase: 624 � 51 and 686 � 33 pA for THC + SB258585
and THC + Rapamycin conditions, respectively, P < 0.001 vs. THC mice.

E Top: Voltage sag in response to hyperpolarizing current injection (50-pA increments, from �400 to 0 pA) in PFC pyramidal neurons from mice injected with vehicle
(Veh, n = 10 from N = 5), THC (n = 11 from N = 5), THC + SB258585 (THC/SB, n = 7 from N = 4), or THC + Rapa (THC/Rapa, n = 7 from N = 4) during adolescence.
***P < 0.001, one-way ANOVA followed by Bonferroni test, vs. THC-injected mice. Errors bars correspond to the mean � SEM. Voltage sag is indicated by
arrowheads.

F–I Effect of ZD7288 (ZD, 10 lM, n = 10 from N = 3), DDOA (15 lM, n = 9 from N = 4), or ODQ (10 lM, n = 12 from N = 4) on intrinsic properties of PFC pyramidal
neurons. THC and vehicle conditions are similar to those on (A–D). (F) resting potential membrane: THC + ZD: �74.14 � 1.70 mV, P < 0.001 vs. THC condition,
THC + DDOA: �70.47 � 1.19 mV, P < 0.001 vs. THC condition, THC + ODQ: �63.10 � 0.81 mV, P < 0.001 vs. THC condition, (G) AP threshold: THC + ZD:
�33.59 � 2.96 mV, P < 0.01 vs. THC condition, THC + DDOA: �34.28 � 0.98 mV, P < 0.001 vs. THC condition, THC + ODQ: �36.84 � 0.79 mV, P < 0.001 vs. THC
condition (H) rheobase: THC + ZD: 806 � 63 pA, P < 0.001 vs. THC condition, THC + DDOA: 607 � 43 pA, P < 0.001 vs. THC condition, THC + ODQ: 422 � 34 pA,
P < 0.001 vs. THC condition, and (I) firing rate. Note that vehicle- and THC-injected mice are the same as those used in experiments illustrated in (A–D).
***P < 0.001, **P < 0.01, *P < 0.05, n.s. P > 0.05 one-way ANOVA followed by Bonferroni test.
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slices an organic HCN1 antagonist ZD7288 at a concentration of

10 lM that minimizes non-specific effects on synaptic transmission

(Chevaleyre & Castillo, 2002). Application of ZD7288 restored the

resting membrane potential, the AP threshold and the rheobase of

layer V pyramidal neurons from THC-injected mice to values close

to those observed in vehicle-treated animals (Fig 5F–I), reminiscent

of the effects induced by administration of SB258585 or rapamycin

during adolescence, whereas it did not modify the intrinsic proper-

ties nor the firing pattern of neurons from vehicle-treated mice

(Appendix Fig S5). As previously shown (Thuault et al, 2013), the

pharmacological inhibition of HCN1 did not significantly alter the

firing rate in layer V pyramidal neurons from vehicle-injected

animals (Fig 4I and Appendix Fig S5).

HCN1 are gated by both cAMP and cGMP (He et al, 2014). Any

increase in cAMP or cGMP would thus cause a depolarizing shift

in the activation curve for Ih. Consistent with this hypothesis, a

recent study has shown that CB1 receptors modulate HCN1 activity

and increase postsynaptic Ih through a cGMP-dependent pathway

(Maroso et al, 2016). In order to determine whether the alteration

of HCN1 activity is mediated by an increase in intracellular cGMP,

we perfused 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ,

10 lM), a selective inhibitor of guanylate cyclase (the enzyme

responsible for cGMP production) (Boulton et al, 1995) into the

recording pipette. Postsynaptic application of ODQ did not modify

the intrinsic neuronal properties of neurons from THC-injected

mice (Fig 5F–I). In contrast, perfusion of the selective adenylate

cyclase inhibitor 20,30-dideoxyadenosine (DDOA, 15 lM; Pelkey

et al, 2008) restored the resting membrane potential (Fig 5F), the

AP threshold (Fig 5G) and the rheobase (Fig 5H) of layer V pyra-

midal neurons from THC-injected mice to values similar to those

observed in vehicle-treated animals. Application of DDOA or ODQ

did not modify the intrinsic properties nor the firing pattern of

neurons from vehicle-injected mice (Appendix Fig S5). Collec-

tively, these results suggest a role for cAMP in the HCN1-mediated

alterations of neuronal intrinsic properties of PFC pyramidal

neurons.

LTD impairment induced by adolescent THC exposure is
prevented by early blockade of 5-HT6 receptors

Previous studies have shown that exposure of rats to THC during

adolescence disrupts endocannabinoid-dependent long-term depres-

sion (LTD) in the PFC at adulthood (Rubino et al, 2015). Corrobo-

rating these findings, we found that electrically induced LTD at PFC

layer I/V synapses was impaired in mice treated with THC during

adolescence (Fig 6A and B). As expected, the concomitant adminis-

tration of SB258586 during adolescence restored normal LTD at

these synapses (Fig 6A and B), indicating that long-term modifi-

cations of synaptic plasticity induced by adolescent exposure to

THC depend on 5-HT6 receptor activation during this critical period

of PFC maturation.

Discussion

Previous studies have shown that an acute administration of THC in

adult mice induces a transient mTOR activation in the hippocampus

that leads to an alteration in protein translation in this brain area

and amnesic-like effects in memory tasks depending of hippocampal

function (Puighermanal et al, 2009, 2013). In contrast, in the

present study, we showed that chronic exposure to THC during

adolescence induces a sustained activation of mTOR signaling in the

PFC but not in the hippocampus, reminiscent of previous observa-

tions in two neurodevelopmental models of schizophrenia, rats

treated with phencyclidine at the neonatal stage or reared in social

isolation after the weaning (Meffre et al, 2012). These findings are

consistent with the hypothesis that common signaling mechanisms

might contribute to cognitive symptoms in patients with schizophre-

nia and cannabis abusers during adolescence. They also suggest that

THC intake might differentially influence mTOR activity depending

on its mode of administration and the age of delivery: whereas an

acute administration at the adult stage induces a transient elevation

of mTOR signaling in the hippocampus (Puighermanal et al, 2009,

A B

Figure 6. THC-induced impairment of LTD at PFC layer I/V synapses is prevented by the administration of SB258585 during adolescence.

A In left, normalized peak amplitudes of isolated AMPA EPSCs recorded at �60 mV, before, and after pairing protocol, are illustrated. Representative traces of AMPA
EPSCs before (1) or after (2) the pairing protocol are also illustrated (right panel) for each experimental condition: vehicle-injected mice (white circles, n = 3 from
N = 3), THC-injected mice (green circles, n = 3 from N = 3), and THC-injected mice treated with SB258585 during adolescence (black circles, n = 3 from N = 3). Bars
and errors bars correspond to mean � SEM.

B The histogram represents the means � SEM of AMPA EPSCs in % of baseline, measured during the last 5 min of baseline or the last 5 min of recording, for each
experimental condition: vehicle-injected mice (white bar, n = 3 from N = 3), THC-injected mice (green bar, n = 3 from N = 3), and THC-injected mice treated with
SB258585 during adolescence (black bar, n = 3 from N = 3), n.s. P > 0.05, *P < 0.05, one-way ANOVA followed by Tukey’s test.
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2013), chronic intake during adolescence leads to a long-lasting

mTOR activation in the PFC that persists in adulthood. The mecha-

nisms underlying THC-elicited mTOR activation following acute

administration at the adult stage or chronic intake during adoles-

cence also differ. Activation of mTOR induced by THC in adult mice

is mainly mediated by CB1 receptors located in GABAergic termi-

nals, leading to an inhibition of GABAergic tone in the hippocam-

pus. This in turn enhances pyramidal glutamatergic inputs and

promotes NMDA receptor-dependent mTOR activation in pyramidal

neurons (Puighermanal et al, 2009, 2013). Though such a mecha-

nism might likewise contribute to the initial phase of prefrontal

mTOR activation in mice exposed chronically to THC during adoles-

cence, the activation of mTOR during the entire adolescent period

clearly depends on 5-HT6 receptor activation (Fig 7). Indeed, it was

not observed in 5-HT6
�/� mice and was prevented by the adminis-

tration of a 5-HT6 receptor neutral antagonist during the adoles-

cence period, but not by the 5-HT6 receptor blockade at the adult

stage. The latter observation indicates it might result from a non-

physiological 5-HT6 receptor activation by endogenously released 5-

HT rather than constitutive activity, which might be caused by CB1

receptor-mediated decrease in GABA release and the disinhibition of

5-HT terminals (Fig 7) in the PFC.

The mechanism underlying the persistent activation of mTOR in

adulthood remains more uncertain. It is conceivable that adolescent

exposure to THC and the resulting non-physiological mTOR

activation interfere with the maturation of the GABAergic system

that undergoes refinement in the PFC until the end of adolescence

(Kilb, 2012; Zamberletti et al, 2014). This might lead to a sustained

increase in PFC serotonergic tone (Teissier et al, 2017) and, conse-

quently, a persistent 5-HT6 receptor activation by endogenously

released 5-HT.

A recent RNA-seq study in rats treated with THC during adoles-

cence showed a decreased expression of Raptor mRNA 2 weeks

after the THC treatment, while the level of mTOR mRNA was not

affected (Miller et al, 2019). This suggests that the enhanced mTOR

activity in THC-treated animals does not result from an increased

expression of proteins of the mTOR complex 1 (mTORC1), but

rather from an increase in mTOR catalytic activity, consistent with

the observed increase in Ser2448 phosphorylation state.

The sustained increase mTOR signaling in PFC of THC-treated

mice plays a key role in the emergence of cognitive deficits in adult-

hood. Indeed, the cognitive deficits induced by THC intake during

adolescence were abolished by the concomitant administration of

either 5-HT6 receptor antagonists or rapamycin and were absent in

the 5-HT6
�/� mice. Notably, the same treatments (followed by the

same washout period) administered in adulthood did not induce a

prolonged rescue of these deficits. Furthermore, THC administration

in adulthood did not induce such a prolonged activation of mTOR

signaling and associated cognitive deficits. Collectively, these obser-

vations confirm that the adolescence is a period of vulnerability to

Figure 7. Model illustrating the possible mechanism induced in the prefrontal cortex by chronic consumption of THC during adolescence that leads to
long-lasting cognitive impairment.

Left panel: physiological condition. Right panel: chronic consumption of THC during adolescence induces an overactivation of prefrontal CB1 receptors that are mainly
located on GABAergic terminals. As previously established in adult mice that received an acute THC treatment (Puighermanal et al, 2009), this might lead to a decrease in
GABA release and, subsequently, to an increase in the glutamatergic tone. Likewise, adolescent THC consumption might also increase serotoninergic tone leading to a
sustained activation of 5-HT6 receptor located on pyramidal neurons which is prerequisite for the long-lasting stimulation mTOR signaling pathway. This in turn leads to an
alteration in intrinsic neuronal properties and cognitive deficits in adulthood. The non-physiological activation of mTOR and resulting imbalance in the excitatory/inhibitory
equilibrium during adolescence might also interfere with maturational events occurring in the adolescent PFC leading to a persistent rearrangement of cortical networks
affecting the serotonergic system itself and, ultimately, to a persistent mTOR activation. For the clarity of the figure, CB1 receptors were only represented on GABAergic
terminals. The presence of GABA-A receptors onto glutamatergic and serotoninergic terminals were previously suggested in Alle and Geiger (2007); Ruiz et al (2010);
Yamamoto et al (2011); and Cerrito et al (1998), respectively.
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extrinsic risk factors such as drug abuse that irreversibly affect brain

signaling processes crucial for cognitive functions (Higuera-Matas

et al, 2015; Renard et al, 2016; Saravia et al, 2019).

The sustained activation of mTOR signaling, under the control of

5-HT6 receptors, elicited in PFC by adolescent THC exposure might

induce cognitive deficits in adulthood through different mecha-

nisms. First, mTOR plays a critical role in various neurodevelop-

mental processes, including neuronal progenitor proliferation,

neuronal migration, growth of dendrites and axons, and synaptoge-

nesis (Bockaert & Marin, 2015). Corroborating these observations, a

large body of evidence indicates a deleterious influence of aberrant

mTOR signaling upon cognition in rodent models of neurodevelop-

mental disorders (Ehninger et al, 2008; Sharma et al, 2010; Ricciardi

et al, 2011; Meffre et al, 2012; Troca-Marin et al, 2012; Huber et al,

2015), indicating that the deregulation of mTOR signaling in specific

brain areas at critical developmental periods can compromise cogni-

tion later in life. Second, mTOR activation level finely controls

dendritic spine pruning and shaping of synaptic connections at later

stages of brain maturation but contrasting effects of mTOR overacti-

vation upon spine density and morphology have been reported in

autism models (Tavazoie et al, 2005; Tang et al, 2014). THC expo-

sure during adolescence results in premature pruning of spines and

protracted atrophy of distal apical trees associated with alteration of

synaptic markers that might lead to a reduction in the complexity of

pyramidal neurons and a reduced capacity for plasticity in neural

circuits central for normal adult behavior (Rubino et al, 2015; Miller

et al, 2019). The role of mTOR in structural abnormalities induced

by adolescent exposure to THC remains to be established. Finally, a

recent study revealed that exposure of adolescent rats to THC affects

selective histone modifications that impact the expression of genes

associated with synaptic plasticity. Again, changes in histone modi-

fications are more widespread and pronounced after adolescent

exposure than after adult exposure, suggesting specific adolescent

vulnerability (Miller et al, 2019; Prini et al, 2018). As mTOR activity

controls the phosphorylation state of proteins involved in histone

post-translational modifications and chromatin remodeling (Citro

et al, 2015; Zhang et al, 2017), the sustained mTOR activation in

PFC of mice exposed to THC during adolescence might also contri-

bute to some epigenetic mechanisms underlying the development of

cognitive deficits (Prini et al, 2018).

Irrespective of the structural changes and the molecular mecha-

nisms elicited by the sustained non-physiological mTOR activation

induced by chronic THC consumption during adolescence, we

showed that it induces a disruption in the excitatory–inhibitory

balance in PFC. This alteration in the E/I balance, which is a

landmark of neurodevelopmental disorders (Dani et al, 2005;

Bateup et al, 2013; Berryer et al, 2016) such as schizophrenia or

autism (Benes et al, 1991; Vogels & Abbott, 2009; Marin, 2012),

persisted until adulthood and resulted from a decrease in

GABAergic transmission and an increase in glutamatergic trans-

mission. It might also result from the 5-HT6 receptor-dependent

overactivation of mTOR, as the blockade of this pathway during

adolescence restored a normal E/I balance in adulthood in THC-

injected mice.

In an effort to identify the molecular mechanisms underlying the

disruption of the E/I balance following adolescent exposure to THC,

we showed that this treatment induces an increase in HCN1 activity

that leads to changes in intrinsic properties of PFC layer V

pyramidal neurons characterized by a more depolarized resting

membrane potential and a lower firing threshold. Previous RNA-seq

studies demonstrated a decrease in HCN1 mRNA level 2 weeks after

the chronic administration of THC to adolescent rats, suggesting that

the observed increase in HCN1 activity does not result from an

increase in HCN1 channel expression (Miller et al, 2019) but is

rather reminiscent of previous findings indicating that CB1 receptor

activation induces deficits in hippocampal LTP and spatial memory

formation through HCN channels (Maroso et al, 2016). The signal-

ing cascade underlying CB1 receptor-mediated activation of Ih in the

hippocampus involves a c-Jun-N-terminal-kinase (JNK) that in turn

increases cGMP formation through the activation of nitric oxide

synthase (Maroso et al, 2016). In contrast, HCN1-dependent alter-

ations of intrinsic properties of PFC pyramidal neurons elicited by

administration of THC during adolescence were independent of

cGMP, but rather involved a cAMP-dependent mechanism that

might itself result from the sustained activation of adenylyl cyclase

mediated by prefrontal 5-HT6 receptors. Previous studies have also

suggested that HCN1 channels regulate synaptic plasticity by

dendritic integration of synaptic inputs to pyramidal neurons and

thus play a role in learning and memory (Magee, 1999; Nolan et al,

2004). Indeed, alteration in HCN1 activity might also explain the

impairment of electrically induced LTD observed at PFC layer I/V

synapses in mice injected with THC during adolescence.

It is well accepted that HCN1 are important during neuronal

development and network wiring (Bender & Baram, 2008). Develop-

ing neurons have to modulate both their intrinsic properties as well

as their firing to constantly adapt to their changing environment.

Factors that interfere with this process and alter HCN1 activity may

have long-lasting deleterious effects that lead to network dysfunc-

tion underlying cognitive impairment observed in several brain

pathologies (Chen et al, 2001; Brewster et al, 2002). For instance,

an alteration in HCN1 activity has been found in mouse models of

Rett syndrome (Mecp2�/y mice) (Balakrishnan & Mironov, 2018)

and Fragile X syndrome (Fmr1�/y mice) (Brager et al, 2012) as well

as in epilepsy (Dube et al, 2006).

In conclusion, the present study shows that a sustained, non-

physiological mTOR activation under the control of 5-HT6 receptors

plays a key role in the alteration of intrinsic neuronal properties, E/I

balance and synaptic plasticity in layer V pyramidal neurons of the

PFC of adult mice exposed to cannabis during adolescence. It also

shows that blocking 5-HT6 receptor-elicited mTOR activation during

this critical period of PFC maturation definitively prevents emer-

gence of cognitive deficits in mice exposed to cannabis during

adolescence, whereas its blockade in adulthood does not induce

such a long-term pro-cognitive effect. It suggests that 5-HT6 receptor

antagonists, which recently failed in Phase III clinical trials as symp-

tomatic treatment of cognitive symptoms in Alzheimer’s disease

(Atri et al, 2018; Khoury et al, 2018), might be repositioned as

“disease-modifying” treatment to prevent emergence of cognitive

deficits in adolescent cannabis abusers. Such a strategy based on

early administration of 5-HT6 receptor antagonists is certainly more

relevant than mTOR blockade by pharmacological inhibitors, as it

will specifically prevent the non-physiological activation of

prefrontal mTOR without affecting physiological cerebral mTOR

activity, which plays a key role in numerous physiological processes

such as synaptic plasticity (Bockaert & Marin, 2015; Younts et al,

2016; Switon et al, 2017; Ryskalin et al, 2018). Accordingly, 5-HT6
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receptor antagonism will not reproduce the severe side effects

induced by mTOR inhibitors such as rapamycin, which limit their

clinical development for the treatment of psychiatric diseases. Given

the deleterious influence of aberrant mTOR activation in several

genetic forms of autism spectrum disorders (Ehninger et al, 2008;

Ehninger & Silva, 2011; Huber et al, 2015; Sato, 2016; Ryskalin

et al, 2018), administration of 5-HT6 receptor antagonists as soon as

adolescence might profitably be evaluated in autism. Finally, the

recent progress in the identification of patients with high risk of

transition to schizophrenia (Millan et al, 2016) suggests that such a

strategy might also be extended to the more numerous population

of patients with schizophrenia.

Materials and Methods

Animals

Wild-type male and female C57BL/6JRj mice were purchased from

Janvier Laboratories. 5-HT6
�/� mice have a C57BL/6JRj back-

ground. Mice from both sexes were indifferently used in behavioral,

electrophysiological, and biochemical experiments. Mice were

received at PND 26 and housed under standardized conditions with

a 12-h light/dark cycle, stable temperature (22 � 1°C), controlled

humidity (55 � 10%), and free access to food and water. CB1�/�

mice and their littermates (background C57BL/6JRj) were housed in

a specific area under standardized conditions as described above.

Animal husbandry and experimental procedures were performed in

compliance with the animal use and care guidelines of the Univer-

sity of Montpellier, the French Agriculture Ministry, and the Euro-

pean Council Directive (86/609/EEC). All the experiments were

conducted from PND 60 or from PND 90 depending on the experi-

mental conditions.

Drugs and treatments

D-9-tetrahydrocannabinol (THC) was purchased from THC Pharm.

Picrotoxin (Sigma P1675), 6-Cyano-7-nitroquinoxaline-2,3-dione

disodium salt hydrate (CNQX; Sigma C239), and N-ethyl-1,6-

dihydro-1,2-dimethyl-6-(methylimino)-N-phenyl-4-pyrimidinamine

hydrochloride (ZD7288; Sigma Z3777) were obtained from Sigma-

Aldrich. 4-Iodo-N-[4-methoxy-3-(4-methylpiperazin-1-yl)-phenyl]

benzene-sulfonamide (SB258585; Tocris #1961), tetrodotoxin

(Tocris #1078) and D,L-2-Amino-5-phosphonopentanoic acid

(D,L-AP5; Tocris #0106) were purchased from Tocris and rapamycin

from LC Laboratories (R5000). THC was dissolved in 5% ethanol

and 5% cremophor in NaCl. Vehicle groups received this solution.

THC was injected daily (5 mg/kg, i.p.) between PNDs 30 and 45.

SB258585 (injected at 2.5 mg/kg, i.p.), rapamycin (injected at

1.5 mg/kg, i.p.), and CPPQ (injected at 2.5 mg/kg, i.p.) were

dissolved in 5% DMSO and 5% Tween-80 in NaCl. All mice received

the same number of injections. Correspondingly, control mice were

successively injected with the vehicle used for THC and the vehicle

used for SB258585/Rapamycin and are referred as Veh/Veh on the

figures. Likewise, mice treated with the vehicle used for THC and

SB/Rapa were referred as Veh/SB and Veh/Rapa, respectively, while

mice treated with THC and the vehicle used for SB/Rapa were both

referred to THC/Veh.

Slice preparation

Animals were anesthetized with isoflurane before sacrifice. Slices

were performed as previously described (Barre et al, 2016; Berthoux

et al, 2019). Brains were removed and rapidly transferred into ice-

cold dissection buffer maintained in 5% CO2/95% O2 and contain-

ing 25 mM NaHCO3 (Sigma S5761), 1.25 mM NaH2PO4 (Sigma

S8282), 2.5 mM KCl (Sigma P3911), 0.5 mM CaCl2 (Sigma C5080),

7 mM MgCl2 (Sigma M2670), 25 mM glucose (Sigma G7021),

110 mM choline chloride (Sigma C1879), 11.6 mM ascorbic acid

(Sigma A4034), and 3.1 mM pyruvic acid (Sigma P3256). Coronal

brain slices (300 lm) were cut in ice-cold dissection buffer using a

vibratome (Leica VT1200S). Slices were then transferred to artificial

cerebrospinal fluid (aCSF, containing 118 mM NaCl, 2.5 mM KCl,

26.2 mM NaHCO3, 1 mM NaH2PO4, 11 mM glucose, 1.3 mM MgCl2,

2.4 mM CaCl2, and maintained in 5% CO2/95% O2), at room

temperature (22–25°C).

Electrophysiological recordings

Patch recording pipettes (3–5 MΩ) were filled with intracellular

solution (115 mM Cs-gluconate, 20 mM CsCl (Sigma C3011),

10 mM HEPES (Sigma H3375), 2.5 mM MgCl2, 4 mM Na2ATP

(Sigma A2383), 0.4 mM NaGTP (Sigma G8877), 10 mM sodium

phosphocreatine (Sigma P7936), and 0.6 mM EGTA (Sigma E4378),

pH 7.3). Whole-cell recordings were obtained from layer V pyrami-

dal neurons (300–400 lm from pial surface) of prelimbic PFC using

a Multiclamp 700B amplifier (Axon Instruments) under an Axio-

scope2 microscope (Zeiss) equipped with infrared differential inter-

ference contrast optics. Data were filtered at 2 kHz and sampled at

10 kHz using Digidata 1440A (Molecular Devices) under the control

of pClamp 10 (Axon Instruments). There were no significant dif-

ferences in input or series resistance among groups. For miniature

postsynaptic currents, the recording chamber was perfused with

ACSF supplemented with 1 lM tetrodoxin at 22–25°C. mEPSC and

mIPSC recordings were performed in the presence of 0.1 mM picro-

toxin and 0.1 mM CNQX with 0.1 mM D, L-AP5, respectively.

Currents were monitored for 10 min, and the quantification was

made during the last 2 min of recording with Clampfit 10.2 (Axon

Instruments).

Intrinsic electrophysiological properties were assessed by

current-clamp recordings. Patch recording pipettes were filled with

intracellular solution (120 mM K-gluconate, 10 mM KCl, 10 mM

HEPES, 1.8 mM MgCl2, 4 mM Na2ATP, 0.3 mM NaGTP, 14 mM Na-

phosphocreatine, 0.2 mM EGTA, pH 7.2). Resting membrane poten-

tial of each cell was measured immediately after the whole-cell

patch formation. Action potentials (APs) were evoked by a ramp

current injection with 10-pA increments for 2 ms, and only the first

AP was used to determine the AP threshold and the minimal current

necessary to induce firing (rheobase). The firing rate was recorded

by a current injection at 150 pA for 250 ms.

Hyperpolarization-activated cation current (Ih) was measured

as the voltage sag to a 500 ms hyperpolarizing current injection

(50-pA increment from �400 pA to 0). Synaptic transmissions

were blocked by adding 0.1 mM picrotoxin, 0.01 mM CNQX, and

0.1 mM D,L-AP5.

Electrically induced LTD was generated by a pairing protocol

consisting in seven trains of 50 Hz stimuli (100 pulses per train),
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delivered at 0.1 Hz, as previously described (Berthoux et al, 2019).

Currents were monitored for 6 min before tetanic stimulation.

Quantification of AMPA EPSC amplitude was made during the last

5-min period before tetanic stimulation and during the last 5-min

period of recording, using Clampfit 10.2 (Axon Instruments).

Analysis of mTOR activity in mouse PFC

Mice PFC were rapidly dissected and homogenized in ice-cold buffer

containing 0.32 M sucrose, 10 mM HEPES, pH 7.4, and a cocktail of

protease and phosphatase inhibitors (Roche). Homogenates were

centrifuged at 1,000 × g for 10 min to remove nuclei and large

debris. Protein concentration in supernatants (PFC protein extracts)

was determined by the bicinchoninic acid method. Proteins were

resolved on 4–15% gradient gels (Bio-Rad) and transferred elec-

trophoretically onto nitrocellulose membranes (Bio-Rad).

Membranes were incubated in blocking buffer (Tris–HCl, 50 mM,

pH 7.5; NaCl, 200 mM; Tween-20, 0.1%, and skimmed dried milk,

5%) for 1 h at room temperature and overnight with primary anti-

bodies in blocking buffer: rabbit anti-phospho-S2448 mTOR 1:1,000

(Cell Signaling #2971), rabbit anti-phospho-T389 p70S6K 1:1,000

(Cell Signaling #9205), and mouse anti-panActin 1:2,000 (Lab Vision

MS-1295-B). Membranes were then washed and incubated with

horseradish peroxidase-conjugated anti-rabbit or anti-mouse anti-

bodies (1:4,000 in blocking buffer, Millipore #12-348 and 12-349,

respectively) for 1 h at room temperature. Immunoreactivity was

detected with an enhanced chemiluminescence method (ECL detec-

tion reagent, GE Healthcare) using a ChemiDocTM Touch Imaging

System (Bio-Rad).

Immunohistochemistry

Mice were anesthetized with pentobarbital (100 mg/kg, i.p.;

CevaSanteAnimale) and transcardially perfused with 4%

paraformaldehyde, 0.1 M sodium phosphate buffer (PBS, pH 7.4).

Brains were post-fixed overnight in the same solution and stored at

4°C. Coronal slices (50 lm) were cut in the PFC with a vibratome

(Leica VT1000S) and stored at �20°C in a cryoprotectant solution

until being processed for immunohistochemistry. Briefly, brain

sections were blocked in 1% Triton X-100, 10% goat serum, 0.1 M

PBS for 2 h, and immunostained overnight with primary antibodies:

rabbit anti-5-HT6 receptor 1:500 (ab103016, Abcam), guinea-pig

anti-CB1 receptor 1:500 (Frontier Institute #ab2571593), mouse anti-

PSD95 1:500 (NeuroMab #75-028), mouse anti-Bassoon 1:1,000

(Enzo Life Sciences, #ADI-VAM-P5003), mouse anti-GAD65 1:500

(Millipore #MAB351R), and rabbit anti-SERT 1:500 (Sigma

#PC177L). Slices were then incubated with Alexa 594- or Alexa 488-

conjugated goat anti-rabbit (1:1,000, Jackson immunoresearch),

Alexa 488-conjugated anti-guinea-pig IgG (1:1,000, Jackson

immunoresearch) or Alexa 594-conjugated goat anti-mouse (1,000,

Jackson immunoresearch). Sections were mounted and were

analyzed under a 40× oil-immersion objective using a confocal

microscope (Carl Zeiss LSM 780). Briefly, for each image, we deter-

mined a precise ROI that was applied for all images. Then, we

performed segmentation by thresholding to generate binary images

from each selection using the « Otsu » auto-threshold function. For

co-localization analysis, we used Mander’s split coefficients to iden-

tify the fraction of CB1 receptors or 5-HT6 receptors that co-localizes

with synaptic markers and the fraction of CB1 that co-localizes with

5-HT6 receptors using the macro « coloc 2 » from ImageJ.

Behavioral analysis

Novel object recognition task
One week before the test, mice were extensively handled: The first

2 days, the operator put his hand on the home cage of the animals

to familiarize the animals to his presence, and the following days,

the animals were handled few minutes per day by the operator.

Testing was carried out in a Plexiglas box placed in a dimly lit room

with clearly visible contextual cues (black on white patterns) on the

surrounding walls. Mice were habituated to the arena for 10 min

per day, on days 1 and 2. On days 3, mice performed the novel

object recognition task. The mice had a 10-min training session, a

30-min retention interval during which they were transferred back

to the home cage, and a 10-min test session. The objects were plas-

tic toys (approximately 3 cm width, 3 cm length, 5 cm height) and

were cleaned with 10% ethanol between sessions. The experiments

were video-recorded, and exploration times (nose in contact or sniff-

ing at < 1 cm) were measured by a blinded observer. Mice with

total time exploration of less than 3 s in test session were excluded.

Discrimination indexes [(exploration time of novel object � explo-

ration time of familiar object)/total object exploration time] were

compared between groups.

Social preference task
Testing was carried out in a rectangular, three-chamber box with

dividing walls made of clear Plexiglas and an open middle section

(60 cm length × 40 cm width in total, each compartment has a

length of 20 cm), which allows free access to each chamber

(Kaidanovich-Beilin et al, 2011). Before the test, each tested

mouse was placed for 10 min in the middle compartment a three-

chamber device, without the walls between the compartments, to

allow free access to the three compartments. Then, a control

mouse (same age, same sex as tested mice) was placed inside a

wire containment jail, located in one chamber. In the second

chamber, an object was placed inside a wire containment jail.

Then, the walls were removed between the compartments, to

allow free access for the test mouse to explore each of the three

chambers. Duration of direct contacts between the tested mouse

and the containment jail or cup housing the conspecific or object

was recorded for 10 min. The experiments were video-recorded,

and exploration times (nose in contact or sniffing at < 1 cm)

were measured by a blinded observer. Sociability indexes [(explo-

ration time of congener � exploration time of object)/total explo-

ration time] were compared between groups.

Social discrimination task
For the social novelty discrimination test (ability of an adult mouse

to discriminate novel from familiar congeners), the same procedure

as for the social preference task was used but the object in the wire

containment jail was replaced by a mouse (same age, same sex as

the tested mouse) during the second session. The walls between the

compartments were then removed to allow free access to each of

the three chambers for the tested mouse. The time of interaction the

test mice with each congener was recorded for 10 min. Mice with

total time exploration of less than 3 s in test session were excluded.
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Social discrimination indexes [(exploration time of the novel

congener � exploration time of familiar congener)/total exploration

time] were compared between groups.

Elevated Plus Maze
Anxiety-related behavior was assessed in an Elevated Plus Maze

(EPM) consisting in a black plexiglass apparatus with four elevated

(50 cm above the floor) arms (26 cm long × 5 cm wide) set in cross

from a neutral central square (5 × 5 cm). Two opposing arms, chip-

board walls, and two opposing arms were devoid of walls (open

arms), under dim lighting conditions (> 50 lux). Cumulative time

spent in open (aversive) and closed (non-aversive) arms was

recorded during a 5-min session.

Circular corridor
Locomotor activity was measured for 60 min in a circular corridor

(14 cm wide, 18 cm in diameter) with four infrared beams placed at

90° angles (Imetronic, Pessac, France) in a low luminosity environ.

Statistical data analysis

For biochemistry, immunohistochemistry, and electrophysiology, a

minimum of three animals was used in each group. Mice from both

sexes were indifferently used, and they were submitted to behav-

ioral experiments in a randomized sequential order. Behavioral

recordings were blindly analyzed. Data were analyzed using

GraphPad Prism software (v. 7.0). The homogeneity of sample vari-

ance was tested using Brown–Forsythe’s test. As long as no variance

among groups was detected, ANOVA was performed. Statistical

significance was determined by one-way ANOVA followed by

Newman–Keuls test for electrophysiological and biochemical experi-

ments, or by one-way ANOVA followed by Bonferroni test for

behavioral experiments. Detailed statistics for figures are in the

Appendix Table S1.

Expanded View for this article is available online.
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