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Abstract: The aim of this study was to examine whether additional digital intraoral radiography
(DIR) image preprocessing based on textural description methods improves the recognition
and differentiation of periapical lesions. (1) DIR image analysis protocols incorporating clustering with
the k-means approach (CLU), texture features derived from co-occurrence matrices, first-order features
(FOF), gray-tone difference matrices, run-length matrices (RLM), and local binary patterns, were used
to transform DIR images derived from 161 input images into textural feature maps. These maps
were used to determine the capacity of the DIR representation technique to yield information about
the shape of a structure, its pattern, and adequate tissue contrast. The effectiveness of the textural
feature maps with regard to detection of lesions was revealed by two radiologists independently with
consecutive interrater agreement. (2) High sensitivity and specificity in the recognition of radiological
features of lytic lesions, i.e., radiodensity, border definition, and tissue contrast, was accomplished by
CLU, FOF energy, and RLM. Detection of sclerotic lesions was refined with the use of RLM. FOF texture
contributed substantially to the high sensitivity of diagnosis of sclerotic lesions. (3) Specific DIR
texture-based methods markedly increased the sensitivity of the DIR technique. Therefore, application
of textural feature mapping constitutes a promising diagnostic tool for improving recognition of
dimension and possibly internal structure of the periapical lesions.
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1. Introduction

The importance of assessment of periapical lesions in clinical decision-making is well known.
Osteolytic lesions form as periapical lesions in response to inflammatory infiltrates and are often
associated with morbidity of the root canal pulp [1–4]. Recognition of osteolytic changes provides
important information about the viability of a tooth, which influences decision-making during
the treatment process. The relevant anatomical structures themselves are often small, which hinders
acquisition of adequate anatomical outline. Moreover, the relative complexity of the region is increased
by the presence of superimposing structures that result in “anatomical noise”. All of these factors
contribute to the difficulty in recognition of bone resorption on radiographic images, which impedes
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the accuracy of diagnosis using digital intraoral radiography (DIR) images and may result in periapical
lesions going undetected or detection is inadequate [5–7].

All of the above-mentioned factors contribute to the relatively low sensitivity of lesion detection of
70% reportedly associated with DIR images, which is markedly less than that of cone-beam computed
tomography (CBCT) [8]. While visualization of lesions on CBCT is superior to that on DIR, the radiation
dose the patient is exposed to via CBCT is considerably higher than that associated with conventional
radiography. Therefore, use of CBCT is questionable, especially as a follow-up modality. In the current
work, we present how effective DIR image analyses are with the use of image post-processing in order
to refine the acquired information.

Texture feature analysis was first used to evaluate the structure of osteoporotic bone [9–11],
where fractal dimension and 13 Haralick features were used for osteoporosis classification on
mandibular X-ray images [9]. Similar techniques were applied to analyze periapical bone loss [12–15],
where the Gray-Level Co-occurrence Matrix and Fractal Brownian Motion Model were used for bone-loss
area detection [15] and localization [12]. Numerous features formed the basis for segmentation [13]
and bone loss degree measurement [14]. Other applications of texture analysis were used for
periapical bone healing [16–18], where radiological assessment of treatment effectiveness of guided
bone regeneration was measured. The most similar research to the presented is considered in [19,20],
where the authors tried to detect the type of cyst using the Gray-Level Co-occurrence Matrix and its
related properties. By using textural analysis to enhance bone representation derived from DIR images,
trabecular structure may be depicted more informatively, and the shapes of different anatomical
structures may be determined more accurately. Such techniques may also facilitate more precise
determination of changes in the periapical bone region.

The aim of the present study was to examine the applicability of different texture analysis techniques
to radiographic dental images for the refinement and possible differentiation of periapical lesions.

2. Materials and Methods

2.1. Ethics Approval and Consent to Participate

The study protocol was designed in accordance with the guidelines of the Declaration of Helsinki
and the Good Clinical Practice Declaration Statement. Particular care was taken to ensure the safety
of personal data, and all images were anonymized before processing. Written informed consent for
the publication of clinical details and anonymized clinical images was obtained from the scientific
committee and management department of the dental clinic. The usual requirement for informed
consent from patients was waived in view of the retrospective nature of the research.

2.2. Experiment Overview

The experiment described in this work consisted of three main parts:

1. Data collection—the medical-dental data describing the lesions was gathered. In all the cases,
it was assured that a quality of obtained dental images was adequate. The data was carefully
scrutinized for technically improper images to be rejected. Only 12-bit images recorded in digital
imaging and communications in medicine (DICOM) format were accepted. Personal information
in images was concealed by special software.

2. Texture feature map computation—the digitized radiographs were of various quality, therefore
some standardization was necessary. Sometimes, improving the contrast by image processing
methods (e.g., histogram stretching or equalization - HISTEQ) was sufficient, yet in the presented
problem it was not satisfactory. Therefore, for each image a set of texture feature maps
were prepared. Those maps may also be characterized with low contrast, hence again
(as in the preprocessing step) the standard methods for its improvement were applied in
the post-processing stage.
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3. Results evaluation—finally the data was revised by experienced radiologists whose statements
were the basis for the assessment of results.

A detailed description of these three parts of the experiment is given below and is presented in
Figure 1.
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Figure 1. Image processing system schema. DIR, digital intraoral radiography. ROI, region of interest.

2.3. Dataset Description

Sixty-five anonymized DIR images from patients who attended the dental clinic from 2015 to 2017
were used in the study. Sixty-five dental DIR images, consisting of 35 images showing lytic lesions
and 30 showing sclerotic lesions, were subjected to analysis. Radiographic material of patients of both
sexes aged 26–57 years was used in the study. The images were selected from the institutional picture
archiving and communication system (PACS). The selection criteria were acceptable image quality
and suspicion of the presence of a periapical lesion on DIR.

Periapical radiographs were obtained using a dental X-ray system (Carestream Trophy with
RVG 5200, Kodak, Rochester, NY, USA). Digital images were acquired at 70 kVp and 7 mA with
a mean exposure time of 0.05 s, image dimensions of 1200 × 1600 pixels, and a pixel size of 0.018 mm.
Digital images were saved in 16-bit digital imaging and communications in medicine (DICOM) format
in the local PACS.

2.4. Texture Feature Map Computation

The original DIR images were analyzed using OsiriX (Pixmeo) on a Mac OS-based
platform. The DIR images underwent texture preprocessing in the MATLAB environment
(MathWorks, Natick, MA, USA) on Windows. The clustering of image colors was implemented using
the clustering with a k-means approach (CLU). The co-occurrence matrices (COM) [21], first-order
features (FOF), gray-tone difference matrices (GTDM) [22], run-length matrices (RLM) [23], and local
binary patterns (LBP) [24,25] were applied. The details of the texture methods are described in [26].
Most of the mentioned methods (COM, FOF, GTDM, and RLM) in the original version compute several
features to describe the whole image content. However, such an approach would not be useful for
diagnostic purposes, so a new image (called a “texture feature map”) reflecting the feature values
calculated in a small region of interest was computed. As a consequence, several texture feature maps
(depending on the number of features designed for each texture operator) were generated using this
technique. In the current study, each texture feature map was generated using the “moving window”
approach where, for each pixel, the new feature value was calculated on the basis of data collected in
a square window (with sides of an odd number of pixels in length), to ensure that the considered pixel
is in the center. In the current study, a 21 × 21 pixel square was used. This size achieves a consensus
between computational overhead resulting in image processing time (which grows exponentially with
the size and statistical stability of the results, where 441 elements used to fill a histogram of 256 bins
is sufficient to achieve statistically reliable results) and image quality. For the LBP texture operator,
the radius, R, was in a range from 3 to 15 pixels and there were 8 samples taken in the circular
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neighborhood in the described experiments. In the case of clustering, from 10 up to 50 clusters were
considered. The RLM calculated the matrix for images quantized to 32 and 64 colors, while the matrix
stored the maximal length of 10 elements in a run. The square neighborhood applied to calculate
the GTDM matrix was evaluated for sides 3, 7, and 11, yet the smallest one returned the best result.
Some examples of texture feature maps achieved with the techniques described here are presented in
Figure 2.

2.5. Pre- and Post-Processing of Images

The DICOM images store shade information using 12 bits, the aim of which is to save as much
detailed information in the scanned data as possible, while most algorithms for image processing are
used to work with gray-scale images coding the information on 8 bits. Therefore, in order to process
the data, the depth of the color was reduced, and the images were converted to 8-bit color coding.
This operation makes it possible to compute the texture feature maps with the standard approach to
texture processing and has been proven to remove some of the noise [27].
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Figure 2. Various aspects of image preprocessing. (a) Original data. (b) The same image after histogram
equalization shows improved contrast but does not depict the structure clearly in the tooth region.
(c–f) Examples of feature maps derived from a digital intraoral radiographic image via various texture
analysis methods. CLU, clustering with k-means approach; DIR, digital intraoral radiography; FOF,
first-order features; GTDM, gray-tone difference matrices; LBP, local binary patterns.

When an image is of low quality, particularly when it lacks sharpness and contrast, the histogram
equalization operation can be applied to ensure that the whole color range is used, thereby rendering
objects more easily visible, as shown in Figure 2b. However, this approach is prone to failure when used
on images that contain both very dark and very light objects, as is often the case with plain radiographic
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images. Hence, there is a need for more sophisticated methods to depict the data in a more informative
manner. Nevertheless, application of the histogram equalization (HEQ) method in the preprocessing
stage (e.g., before the texture feature map is computed) was tested, and when followed by the RLM
technique, proved to be useful because the texture feature map quality improved significantly.

On the other hand, the contrast of some textural feature maps was low and did not present
the content clearly. For those, histogram stretching after the final result was applied which aims
in scaling the pixel values in order to assure use of the full range of 8-bit color coding (0–255).
This transformation does not change the image content but makes it easier for a radiologist to evaluate.
There were also some cases where application of histogram equalization gave a better effect.

2.6. Experiment Methodology

The native DICOM images and texture feature maps obtained were analyzed on a 4K retina
monitor by two radiologists with 10 and 30 years of experience in analysis of classical bone radiograms
including dental. Standard DIR images were assessed first. The pictures were then examined separately
using the techniques described above, i.e., CLU, COM, FOF, GTDM, RLM, and LBP. The prepared
feature images were evaluated for radiodensity, border definition, and tissue contrast. Figure 3
presents the analyzed regions. The aforementioned parameters were estimated separately to evaluate
assumptive improvement of visualization and the subsequently increased accuracy in detection of
periapical lesions. Radiodensity analysis was used to evaluate bone density changes, border definition
presented edge definition of the changes, and gray-scale contrast meant tissue contrast was used for
evaluation of the lesion character. All features were summarized in the evaluation chart. Results were
encoded in 1/0 code where 0 meant lack of the recognition of the feature and 1 meant its visual
confirmation. In order to comprehensively evaluate the texture feature map usability, two main
clinical issues were analyzed—sclerotic lesions and lytic lesions. Interrater reliability was at the level
of 98% (on the basis of concordance correlation) where doubtful cases were established on the basis of
interrater consensus.
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Figure 3. Example of assessment of a periapical lesion. (a) Entry digital intraoral radiographic
image. (b) Differentiation of radiodensity in the lesion (different shapes are pointed out by
the arrows). (c) Border definition (pointed out by small arrows). (d) Tissue contrast between
lesion and the neighborhood (shown by the arrows).

3. Results

Figure 4 shows the performance of each image processing approach with respect to radiological
changes. The original DIR images are presented in the top row, next to the same images after histogram
equalization transformation. As shown, despite the images gaining better contrast, the visibility of
changes did not improve substantially. In the next row in Figure 4, the region where changes existed
is enclosed within a red line. In the following rows, the texture feature maps computed for CLU,
FOF energy, GTDM busyness, (HEQ) RLM, short run high gray level run emphasis, and LBP are
given. Recognition of the borders of the lesions and their internal structure was markedly improved
in comparison with the initial DIR image. In the FOF group, the contours of lytic changes were
represented effectively. LBP and CLU revealed previously hidden information about the internal
structure of the lesions and tissue contrast. (HEQ) RLM was found to improve visualization of lytic
and sclerotic lesions markedly.

The delineation of sclerotic lesions and internal pattern recognition were achieved with CLU,
RLM, and LBP texture feature maps.

The potential utility of each method was calculated based on data derived from experts, and changes
are expressed as sensitivity and specificity for the different groups of texture feature maps that are
gathered in the bar plots presented in Figure 5. All samples presenting lesions and marked as such
by experts take place for true positive (TP) cases. When there was a change unnoticed by the expert,
there was a true negative (TN) result. Then, when the expert noticed the change in the DIR data
without lesions, a false positive (FP) result was recorded. False negative (FN) results corresponded to
the situation in which the data presented any changes, and the expert confirmed it. Consequently,
the formulas for sensitivity and specificity are as follows:

Sensitivity =
TP

TP + FN
,

Speci f icity =
TN

TN + FP
.
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A very low percentage value meant that the transformation did not improve visibility of a lesion,
while a high percentage value indicated improved visibility and a marked increase in potential lesion
recognition after texture map utilization in comparison to DIR. Performance of each image processing
approach with respect to radiological changes is presented on separate graphs in Figure 5, illustrating
the sensitivity and specificity of the proposed methods. Recognition and differentiation of the lytic
lesions after use of the texture feature maps showed the highest sensitivity for the (HEQ) RLM texture
feature map, with scores of 94%, 89%, and 94% for radiodensity, border definition, and tissue contrast,
respectively; specificity for recognition of these parameters was 86%, 89%, and 43%. The next best
performing texture feature map was CLU, with a sensitivity of 83%, 77%, and 80%, and a specificity
of 74%, 97%, and 51% for radiodensity, border definition, and tissue contrast, respectively. FOF texture
feature maps showed relatively low sensitivity for lytic lesions (60%, 69%, and 51%) but high specificity
(94%, 91%, and 69%) for recognition of the three chosen radiological features.

For the sclerotic lesions, the (HEQ) RLM texture feature map was again found to have the best
performance, with a sensitivity of 97%, 80%, and 97% for recognition of radiodensity, border definition,
and tissue contrast, respectively. The specificity of the following texture feature maps was lower for
recognition of radiodensity changes (47%) but better for border definition (90%) and tissue contrast
differentiation (53%). FOF texture feature maps performed well in detection of sclerotic lesions, with
recognition of radiodensity, border definition, and tissue contrast in 73%, 70%, and 57% of cases,
respectively, with high specificity for the chosen features of 60%, 83%, and 73%. No important
refinement of recognition of sclerotic lesions was observed for CLU texture feature maps, which had
low sensitivity of values of 60%, 60%, and 3% for the three radiological features.

The highest sensitivity for detection of sclerotic lesions was shown for the (HEQ) RLM texture
feature maps in terms of radiodensity differentiation, border definition, and tissue contrast recognition,
but its specificity was not higher than that of the CLU and FOF texture feature maps. FOF texture
feature maps showed good sensitivity for detection of sclerotic lesions and had better specificity than
the CLU and RLM texture feature maps.
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The best performance in terms of recognition of the features analyzed in both sclerotic and lytic
lesions was achieved for the (HEQ) RLM texture feature map, although the FOF texture feature map
showed acceptable specificity for recognition of these parameters. CLU was also a well-performing
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4. Discussion

During image analysis, the observer first notices whole objects, anything that has delineated
edges, and anything that is in contrast with the surrounding area. However, when the image quality
is very low, the content is blurred, the image has no contrast, or an object’s texture may appear very
similar to that of the background. In such cases, only analysis of local differences that may be hard to
discern on standard radiography may unmask some of the vital information that can be derived from
the image. Although it may be impossible to detect differences by assessment of plain radiographic
images, transforming visual data derived from an image with algorithms designed to map structural
differences may reveal hidden content. The process used in our study is presented in Figure 2 in
a sequence of images depicting how a substantial amount of additional information about a lesion was
gained in comparison to the initial DIR image.

The method of using texture feature maps obtained by texture analysis of the DIR images used in
the current study is consistent with that used in some previous studies [19,20]. Those methods are
applicable to wide range of problems e.g., for identification of macerals [28], defect detection [29].
Moreover, there exists a MaZda system [30], which implements some of the described texture feature
maps and returns similar results when compared to our implementation. Systems for differentiating
cysts, ameloblastomas, and keratocysts on DIR images are described in those reports. The general
approach consists of image preprocessing (e.g., opening, contrast stretching), obtaining similarity
measures, and texture analysis.

In the current study, a much broader set of texture features based on different approaches to
image analysis was utilized. FOF feature maps yielded significant improvements in delineation of lytic
changes in comparison with DIR. GTDM enhanced visualization of the internal structure within a lytic
area and important details of adjacent trabeculation with preserved lesion contours. LBP yielded
a surface scene with a clearly differentiated surface pattern at the site of the lytic area. CLU increased
tissue contrast in areas of lytic changes. Importantly, (HEQ) RLM increased differentiation of the border
and contrast in lytic lesions but did not perform so well for sclerotic changes. Performance of
different texture feature maps expressed in terms of sensitivity, specificity, F1 score, and accuracy
were summarized in the Table 1 (for the lytic lesions recognition) and the Table 2 (for sclerotic
lesions recognition).
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Table 1. Sensitivity, specificity, F1 score, and accuracy in the differentiation of the different diagnostic
parameters of the lytic lesions after use of texture feature maps.

Sensitivity Specificity F1 Accuracy

CLU
radiodensity 0.8286 0.7429 0.7945 0.7857
border def 0.7714 0.9714 0.8571 0.8714
tissue contr 0.8000 0.5143 0.7000 0.6571

FOF
radiodensity 0.6000 0.9429 0.7241 0.7714
border def 0.6857 0.9143 0.7742 0.8000
tissue contr 0.5143 0.6857 0.5625 0.6000

GTDM
radiodensity 0.3143 0.8857 0.4400 0.6000
border def 0.3714 0.8571 0.4906 0.6143
tissue contr 0.2857 0.8000 0.3846 0.5429

LBP
radiodensity 0.5143 0.6857 0.5625 0.6000
border def 0.1714 0.8571 0.2609 0.5143
tissue contr 0.3714 0.5143 0.4000 0.4429

HISTEQ-RLM
radiodensity 0.9429 0.8571 0.9041 0.9000
border def 0.8857 0.8857 0.8857 0.8857
tissue contr 0.9429 0.4286 0.7500 0.6857

Table 2. Sensitivity, specificity, F1 score, and accuracy in the differentiation of the different diagnostic
parameters of the sclerotic lesions after use of texture feature maps.

Sensitivity Specificity F1 Accuracy

CLU
radiodensity 0.6000 0.5333 0.5806 0.5667
border def 0.6000 0.5333 0.5806 0.5667
tissue contr 0.0333 1.0000 0.0645 0.5167

FOF
radiodensity 0.7333 0.6000 0.6875 0.6667
border def 0.7000 0.8333 0.7500 0.7667
tissue contr 0.5667 0.7333 0.6182 0.6500

GTDM
radiodensity 0.6333 0.6333 0.6333 0.6333
border def 0.3667 0.9333 0.5116 0.6500
tissue contr 0.5000 0.7667 0.5769 0.6333

LBP
radiodensity 0.7000 0.4667 0.6269 0.5833
border def 0.4000 0.8333 0.5106 0.6167
tissue contr 0.5333 0.6667 0.5714 0.6000

HISTEQ-RLM
radiodensity 0.9667 0.4667 0.7733 0.7167
border def 0.8000 0.9000 0.8421 0.8500
tissue contr 0.9667 0.5333 0.7945 0.7500

Few studies of texture analysis have evaluated periapical changes. Possible differentiation of
lytic lesions for granulomas and periapical cysts on the basis of radiograms with use of radiometric
analysis by histogram calculation and histogram equalization were proposed by Shrout and White,
respectively [31,32]. In another study, after some classic image processing methods (top hat, erosion,
and opening) were performed, the skeleton was extracted, and textural features were calculated
for the region of interest. A pair of pre-treatment and post-treatment values was then tested in
an evaluation of the healing process [33]. The scope of such studies has typically been the detection
of areas of alveolar bone on periapical dental radiographs [12–15]. These considerations were
focused on segmentation, detection of lesions, and measuring the degree of alveolar bone loss rather
than a textural analysis in cases requiring differentiation of lesions. A similar approach has been
reported for the analysis of panoramic images in order to enhance the recognition of caries [34].
Another study assessed the treatment effectiveness of guided bone regeneration in cases of post-resectal
and post-cystal bone loss on DIR images obtained using RVG 6100 digital radiography equipment
(Kodak) [16]. Fractal dimension measurements (power spectral density, triangular prism surface area,
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blanket, intensity difference scaling, and variogram methods) were performed, and the images became
smoother during the healing process after bone loss [35].

Despite the progress to date in the quality of plain radiographic images, DIR still has a number
of limitations. In addition to “anatomical noise” and small differences in bone density, there are
other phenomena that impede image quality and hinder the anatomical recognition of potentially
pathological structures [36,37]. Current technical developments in informatics hardware have made it
possible to perform very complicated calculations in a relatively short time at low cost.

The approach used in the current study provides significantly more radiological information
than standard DIR images. This comprehensive study is the first where usability of such a broad set
of approaches to image texture analysis was presented. Based on our findings, from a radiological
perspective, we consider these techniques a step forward in the recognition and precise localization of
periapical cystic lesions. A limitation of this retrospective study is the lack of histological verification
of the lesions analyzed; however, comparison of texture feature map analysis with histological results
will be the issue of an upcoming study of our team. The strengths of this study include evaluation of
the most popular textures known to date (mathematical transformations of image analyses applicable
to DICOM-based high-resolution DIR images). Future studies should investigate the development of
new image processing algorithms based on the current study, and correlations with histopathological
specimens in order to evaluate their ability to predict different histologically depicted lesions on
the basis of image texture.

5. Conclusions

The RLM texture feature map significantly improves recognition of lytic and sclerotic lesions,
albeit with lower specificity for sclerotic lesions, in comparison to DIR images. CLU, in comparison to
the DIR images, markedly increases visualization of lytic lesions with high sensitivity and specificity
but is less able to detect the radiological features associated with sclerotic changes. FOF texture feature
maps significantly improve detection of the radiological features of both sclerotic and lytic lesions,
compared to DIR, with good sensitivity and specificity.
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