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Summary  

The effect of the microstructure on the dry sliding wear of six aluminium alloy 6061 

matrix composites reinforced with 15 vol.% of MoSi2 particles and two monolithic 6061 

alloys processed by powder metallurgy with and without ball milling has been studied. 

Wear testing was undertaken using pin-on-ring configuration against an M2 steel 

counterface at 0.94 m/s and normal load of 42, 91 and 140 N. The wear resistance of the 

aluminium alloys was significantly improved by ball milling and the addition of 

reinforcing MoSi2 particles due to a more stable and more homogeneous microstructure, 
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which avoids the detachment of the mechanically mixed layer. Wear rate of materials in 

T6 decreases as solutionized hardness of the materials increases. This behaviour is 

rationalized by taking into account the precipitation state of the matrix. In addition, 

wear rate follows a Hall-Petch type relationship, showing that the reduction of matrix 

grain size plays an important role in the increase in the wear resistance of the 

composites. The results indicate that the present intermetallic reinforced composites can 

be considered potential substitutes for ceramic reinforced aluminium alloys in 

tribological applications. 

Keywords: Sliding wear; Metal-matrix composite; Intermetallics; Hardness; Wear 

testing; Grain size. 

1. Introduction 

Aluminium matrix composites (AMCs) are attractive because they can present a 

good combination of properties, such as high elastic modulus, tensile strength and wear 

resistance [1,2]. Brake rotors, pistons, connecting rods and integrally cast AMCs engine 

blocks are some of the successful applications of these materials in the automotive 

industry [3].  

As reviewed by Sannino and Rack [4], the wear behaviour of AMCs can be 

influenced by both extrinsic (applied load, sliding velocity, etc.) or intrinsic factors 

(material characteristics). Most studies [4,5,6] indicated that the wear resistance of 

AMCs manufactured by powder metallurgy (PM) techniques increased with increasing 

particle size and/or volume fraction of particles. However, as far as reinforcement 

distribution and matrix grain size are concerned, few studies are available in the 

literature. By applying suitable processing conditions, both parameters can be 

modulated during the mixing step of the AMCs prior to consolidation, especially by ball 

milling, that is a high-energy procedure involving repeated deformation-welding-
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fracture mechanisms [7]. Ball milling has been successfully used to improve particle 

distribution throughout the matrix [8,9] and it is also well known that it promotes a high 

degree of deformation, reduces grain size and produces an extremely fine distribution of 

oxide dispersoids in the structure of the alloy matrix.  

Hard ceramic particles, such as SiC or Al2O3, are widely employed as reinforcement 

of AMCs because of their high hardness and elastic modulus [2]. However, their high 

abrasiveness complicates machining steps and severely damages counterfaces in 

tribological applications. Indeed, some authors [10] have found that hard ceramics can 

actually increase the wear rate of the mating counterface, due to their abrasive action, 

and thus reduce the overall wear resistance of the tribo-system. In the last years, 

intermetallics have emerged as possible substitutes for ceramic reinforcement. It has 

been shown that nickel aluminides can improve the wear resistance of aluminium alloys 

to a level similar to that of a SiC reinforced composite, whilst at the same time reducing 

counterface wear rate [10,11]. There is another type of intermetallic, MoSi2, that is an 

excellent candidate to be used as reinforcement in AMCs as it confers high thermal 

stability and mechanical properties on the composite [9,12]. 

The aim of this work is to investigate the influence of the matrix and reinforcement 

characteristics on the dry sliding behaviour of six powder metallurgy 

AA6061/MoSi2/15p composites against a tool steel counterface, acting at different 

applied loads. Wear properties of PM AA6061/MoSi2/15p are compared with those of 

ceramic reinforced AMCs from the literature. 

2. Experimental 

2.1 Materials and characterization 

The AA6061 powder with particle diameter < 50 μm and nominal composition in 

mass%: 0.45 Si, 0.96 Mg, 0.27 Cu, 0.0023 Mn, 0.16 Cr, 0.15 Fe, balance Al, was 
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produced by argon gas atomisation and supplied by Alpoco, Sutton Coldfield, UK. Two 

initial ranges of irregular shaped MoSi2 particles were selected: <3 μm (composites 

Group 1) and 10-45 μm (composites Group 2) which were obtained by self-propagating 

high temperature synthesis (SHS) at INASMET-Tecnalia, San Sebastian, Spain. To get 

different sizes and distributions of reinforcement, the AA6061 powder was blended with 

15% volume of MoSi2 by three methods: rotating cube, wet blending and planetary ball 

milling operating at 200 rpm for 4 and 10 hours with a ratio of balls to material of 7:1 

and without any process control agent. The powders were encapsulated and 

consolidated by extrusion in a horizontal direct hot extrusion press at a temperature of 

450ºC, a ram speed of 0.4 mm/s and an extrusion ratio of 27:1; this gave 8 mm diameter 

bars that were left to air cool. Table 1 lists all the materials prepared, which include two 

unreinforced matrix alloys used as reference. The consolidated materials were studied in 

solutionized and T6 (maximum hardness) states. Solution heat treatment was performed 

at 520ºC for 0.5 hours and water quenched, and peak hardness was determined at 170ºC 

[9]. 

Table 1. Materials, MoSi2 particle size ranges (Dro), blending methods and codes. 

Material 
Dro  

(µm) 
Blending method Code 

AA6061 
- 

 

As-received 0AR 

Ball mill: 4 h 0M(4h) 

AA6061/ 

MoSi2/15p 

Group 1 

< 3 

 

Wet blend 1W 

Ball mill: 4 h 1M(4h) 

Ball mill: 10 h 1M(10h) 

AA6061/ 

MoSi2/15p 

Group 2 

10-45 

 

Rotating cube 2C 

Ball mill: 4 h 2M(4h) 

Ball mill: 10 h 2M(10h) 

  

Microstructural characterization of extruded materials was performed by scanning 

electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) 

using a FEG-JEOL 6500 microscope. Image analyses of the composites were performed 
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by Image-Pro Plus software on back-scattered electron images to quantify reinforcement 

size and distribution. The degree of particle clustering was quantified by CProbe 

software to measure the coefficient of variation of the mean near-neighbour distance 

(COV) [13] that varies between 0 and 1 and decreases with increasing homogeneity of 

the distribution.  Investigation of the aluminium grain size was undertaken using a fully 

automatic HKL Technology EBSD attached to FEG-SEM microscope described above. 

Chemical analysis was carried out on all samples to determine the amount of Fe by a 

Varian SpectrAA 220FS atomic absorption spectrometer and O by infrared absorption 

in a LECO TC-436 instrument. Vickers hardness of consolidated materials was 

measured in solutionized and T6 (maximum hardness) condition. At least 5 indentations 

were performed for each condition by applying a load of 1 kg for 15 seconds. The 

results are presented with an accuracy of ± 0.03 GPa. More experimental details of the 

microstructural characterization techniques employed and hardness measurement can be 

found elsewhere [9]. 

2.2 Wear testing 

The wear behaviour was investigated on transverse cross sections of T6 samples. 

With the purpose of comparing both aging conditions, some solutionized materials were 

also studied. The wear tests were performed under dry sliding conditions using a 

Cameron–Plint TE-53 multi-purpose friction and wear tester with a pin-on-ring 

configuration. The samples were prepared as round pin specimens of 8 mm diameter, 

with the contact surface metallographically polished to a 1 µm diamond finish prior to 

testing. An M2 tool steel counterface (nominal composition in mass%: 0.95-1.05 C, 

0.15-0.40 Mn, 0.2-0.45 Si, 3.75-4.5 Cr, 0.3 max Ni, 4.5-5.5 Mo, 5.5-6.75 W, 1.75-2.2 

V,  balance Fe) was used, hardened in the range 800–850HV, in the form of a crowned 

ring of 10 mm width and 60 mm diameter. The counterface was also polished to a 1 µm 
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diamond finish prior to every testing. Testing was undertaken at a constant sliding 

velocity of 300 rpm (0.94 m/s) for loads of 42, 91 and 140N (applied via a cantilever 

beam). All wear test specimens were cleaned in acetone and weighed to an accuracy of 

±1mg prior to testing and at intervals of 2.5 km during the test up to 10 km of sliding 

distance. The worn surfaces were characterized by the FEG-SEM described above. 

3. Results and discussion 

Back-scattered electron (BSE) SEM micrographs of composite cross sections at the 

same magnification are shown in Figure 1. Qualitatively, it is evident that MoSi2 

particle size decreases with milling time and that MoSi2 distribution is quite 

homogeneous, except in the wet blended composite (1W) where agglomerates can be 

seen. 

 

Figure 1. Back-scattered SEM micrographs on cross sections of AA6061/MoSi2/15p: 

composites of Group 1, top; composites of Group 2, bottom (with reference to Table 1).  

 

Table 2 summarizes all microstructural parameters quantified: size and distribution 

of MoSi2 particles, aluminium matrix grain size and oxygen and iron contents, and the 
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Vickers hardness values in solutionized and T6 conditions in the eight extruded 

materials. As can be seen, high energy ball milling reduced the reinforcing particle size 

to sub-micrometric level and increased the homogeneity of their particle distribution 

throughout the matrix, except for 2M(4h). As expected, the more heterogeneous 

distribution is obtained in composite 1W which should be attributed to the large 

difference between particle size of reinforcement, < 3 µm, and aluminium, < 50 µm 

[14]. The determination of aluminium matrix grain size was performed on cross sections 

through the EBSD maps presented in [9]. Ball milling reduced the average values of 

matrix grain size to 0.6-0.7 µm in the reinforced materials and to 1µm in the monolithic 

materials which is due to the generation and movement of dislocations due to the strong 

deformation occurring in the collisions between the stainless steel balls and the 

powders. Another consequence of ball milling is that oxygen reacts with both Al to 

form alumina as well as Fe from the container and media and enters the powder as worn 

fragments [7,9]. It is seen that oxygen and iron content increased with ball milling time 

in each group of materials. 

The values of Vickers hardness are also given in Table 2. It can be appreciated that the 

composites follow the expected general trend of higher solutionized hardness and less age-

hardening than the unreinforced alloys. For each group of materials, solutionized hardness 

increases as ball milling time increases. In the T6 condition hardness does not follow the 

same rule. In this case, the as-received unreinforced 6061 alloy 0AR is harder than the ball 

milled (BM) alloy 0M(4h) and the 1M(4h) composite presented the highest hardness value, 

followed by 2C, 1W and 1M(10h) composites. This behaviour has been attributed to the 

fact that, in these materials, hardening ability decreases with decreasing grain size, 

indicating that the ability of the matrix to age-harden is mainly dependent on grain size and 

quite independent of the presence of reinforcing particles [9]. 
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Table 2. Materials, sample code, mean MoSi2 particles size after blending (Drf), 

coefficient of variation of the mean near-neighbour distance (COVd), aluminium matrix 

grain size (d), oxygen (%O) and iron (%Fe) contents and Vickers hardness in 

solutionized (Hs) and T6 (HT6) conditions. 

Material Code 
Drf 

(µm) 
COVd 

d 

(µm) 

%O 

(%mass) 

%Fe 

(%mass) 

HV (GPa) 

Hs HT6 

AA6061 
0AR - - 2.2 0.18 0.16 0.64 1.14 

0M(4h) - - 1.4 0.44 0.20 0.70 1.06 

Group 1 

AA6061/ 

MoSi2/15p 

< 3m  

1W 1.54 0.55 1.9 0.26 0.15 0.90 1.30 

1M(4h) 0.80 0.51 1.0 0.39 0.19 1.04 1.41 

1M(10h) 0.59 0.41 0.6 0.90 0.24 1.24 1.27 

Group 2 

AA6061/ 

MoSi2/15p 

10-45 m  

2C 17.85 0.41 2.0 0.19 0.12 0.82 1.34 

2M(4h) 1.96 0.46 1.1 0.40 0.19 0.96 1.26 

2M(10h) 0.83 0.41 0.7 0.80 0.21 1.17 1.20 

  

Figure 2 shows the volume loss of the unreinforced alloys and the composites after 

10 km of sliding distance for all tested loads. As expected, for each material, volume 

loss increases as load increases. The beneficial effect of the reinforcing MoSi2 particles 

is clear, especially at higher loads, since the monolithic alloys lost more than double the 

volume than the composites. Moreover, due to the severity of the wear at 91 N it was 

not even possible to finish the test in the case of the as-received alloy 0AR. For both 

monolithic alloys, the wear at 140 N can be described as catastrophic since the whole 

test specimen was consumed within the first few minutes of sliding. From the 

comparison of both unreinforced alloys, it is seen that the alloy ball milled for 4 hours 

0M(4h), lost much less volume than the non-milled alloy 0AR, showing that ball 

milling improves the aluminium alloy wear resistance. The same occurs in the 

composites, especially at 140 N, where the wet blended composite 1W clearly exhibited 

the worse behaviour, followed by 2C. Although less evident, also for 42 and 91 N the 
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ball milled composites exhibited superior wear resistance than the non-milled 

composites. Another noteworthy feature that is derived from Figure 2 is that there is no 

practical difference between the wear behaviour of composites in solutionized and T6 

conditions, which indicates that in this study the wear resistance is not influenced by the 

aging state of the matrix. 
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Figure 2. Volume loss of the unreinforced alloys and composites materials after 10 km 

of sliding distance for each load tested. 

 

Figure 3 a) b) c) gives the volume loss as a function of sliding distance for all loads 

and materials in T6. Roughly, three sections can be appreciated according to the slope 

of the curves. An initial one before 2.5 km; a second one that starts at 2.5 km, which has 

a lower slope that increases with load and corresponds to a mild wear regime or steady 

state region; and a third one with a high slope. These three regions are better appreciated 

when the wear rate Q (volume loss divided by sliding distance) is represented against 

load, as shown in Figure 3d). In this plot it is observed that the severe regime is present 

in the unreinforced alloys for all loads and that it is less severe in the ball milled alloy. 

For the composite materials, the wear rate for all tested loads can be considered as mild, 
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except for the non ball milled 1W and, less pronounced, 2C composites at 140N, which 

are more likely to be considered as severe. During the wear tests, the strong volume loss 

coincides with heavy noise and vibration, together with transfer of pin material to the 

ring. This type of seizure has been referred to as galling seizure [15]. 
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Figure 3. Volume loss as a function of sliding distance at: a) 42 N, b) 91 N and c) 140 N 

for materials in T6 condition. d) Wear rate Q as a function of load at 10 km. 

 

To the naked eye, the worn surface of both monolithic alloys tested at 42 N was 

partly covered with a dark layer, the extent of which decreased with sliding distance 

until it disappeared in the non-milled alloy, 0AR, at 7.5 km, leaving a metallic surface 

which is consistent with the transition to a severe wear mechanism. At high 

magnification, Figure 4a), the worn surface of the 0AR alloy exhibited grooving, most 
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probably produced by ploughing by the harder asperities on the surface of the M2 

counterface. 

The aspect of the worn surfaces of the composites was significantly different to that 

of the monolithic alloys. In the ball milled composites, the dark surface layer increased 

in extension with the sliding distance and with the load tested. This agrees with the fact 

that wear of AMCs against a steel counterface produces a layer of material in the AMCs 

called a mechanically mixed layer (MML), which is formed by transfer and mixing of 

materials, under certain load and velocity range. Several studies [16,17,18] associate the 

high wear resistance of the composites under dry sliding with the formation of this 

stable tribolayer which acts as a protective layer that supports and distributes the load 

over the AMCs.  Therefore, the wear mechanism in the ball milled composites can be 

considered mild oxidative, without which in the load range studied, the transition would 

have taken place to a severe regime. As example of ball milled worn surfaces, the one of 

the 10h-milled composite, 1M(10h), tested at 42 N is shown in Figure 4b). It is 

completely covered by a dark surface layer that is smoother than that of the 

unreinforced alloy. 

For the non milled composite materials the behaviour is a mixture between the 

monolithic alloys and the ball milled composites. In 2C composite the wear regime is 

also mild but has a lower proportion of the dark layer at 140 N on the worn surface, 

which is consistent with the lower wear resistance than the ball milled composites. The 

surface layer in 1W composite decreases with increasing load, almost disappearing at 

2.5 km at 140 N, leaving most of its surface with a rough metallic aspect at the end of 

the test, Figure 4c). This is consistent with the high wear rate exhibited at 140 N and, 

may be, with a transition of the wear regime to severe one. Therefore, MoSi2 particles 

and ball milling delay the transition to the severe wear regime and significantly improve 
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the wear resistance of the aluminium alloy, especially at 140 N. In Figure 4d), EDS 

obtained on the worn surfaces show, apart from the elements that form part of the tested 

materials, a significant signal of Fe and some Cr and V that come from the M2 

counterface. 

 

 

Figure 4. Worn surface after 10 km of: a) unreinforced alloys 0AR at 42 N, b) 1M(10h) 

composite at 42 N, c) 1W at 140 N and d) EDS of the worn surface of c). The arrow in 

a) indicates sliding direction. 

  

The above observation on the wear behaviour indicates that the superior wear 

resistance of the composites with respect to the monolithic alloys is due to the formation 

and stability of the surface layer on the surface of the materials worn. According to 

Rosenberger et al. [16], the formation of the MML requires deposition of mechanically 

mixed materials until a steady layer is formed in which the rate of deposition equals the 
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rate of material lost by wear. In the materials with low hardness (monolithic materials) 

the softer substrate produces the detachment of the surface layer which is not longer 

formed, and the wear regime becomes severe. At 42 N and 91 N, the formation and 

stability of the surface layer in composites is independent of size and distribution of the 

reinforcing particles. At 140 N, the surface layer in the ball milled materials seemed to 

increase with the sliding distance but kept constant in 2C composite and not was longer 

observed in 1W. This can be attributed to the fact that the contact temperature increases 

due to the friction as the load increased which provoked the non-milled material to 

soften. Moreover, the more clustered MoSi2 particle distribution in 1W accelerates the 

detachment of the surface layer. 

In Figure 5a) the wear rate of composites in the mild region is plotted against the 

inverse of hardness of the composites in T6 condition (HT6), except for 1W at 140N 

which that has been considered to be in the severe regime. According to the classic 

Archard law for sliding wear (Q=KW/H, where W is the applied load, H is the material 

hardness and K is a dimensionless coefficient) [19], for each load, Q should increase 

linearly with 1/HT6. However, this correlation does not hold in the present case for 

neither the composite or the monolithic alloy. This is evidence that the wear resistance 

of these materials is insensitive to the aluminium alloy hardness in T6 condition, as is 

the case in other Al alloys [20,21]. The explanation for this behaviour is that, under the 

abrasive contact conditions, the near surface would have experienced high enough 

strains (and temperature) to promote re-dissolution of the age hardening precipitates 

principally via shearing, i.e. work softening. This implies that the worn materials are 

actually in the solutionized condition, and not in T6, which is confirmed by the fact that 

volume loss of materials in T6 and in solutionized conditions are the same (Figure 2). 

According to this, is the plot of Q (of originally T6 materials) versus the inverse of 
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hardness of solutionized materials (Hs) the one that should give a linear relationship. 

Effectively, as can be seen in Figure 5b), where Q has been plotted against 1/Hs, Q 

increases linearly with Hs at 42 N and 91 N, although at 140 N this relationship is not 

evident at all. 
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Figure 5. Wear rate (Q) in T6 composites as a function of 1/H in: a) T6 (HT6) and b) 

solutionized (Hs) conditions. 

 

In addition to the effect of the reinforcing MoSi2 particles, the microstructure of the 

matrix should also influence the wear resistance, especially the grain size of the matrix 

[22]. The active strengthening mechanism in the matrices fabricated with the milled 

powders would be a combination of two factors, a reduction in matrix grain size as 

predicted by the Hall-Petch relationship, and an increase in oxide dispersoids, as 

predicted by the Orowan equation for the interaction between particles and dislocations. 

Corrochano et al. described in a previous work [9] that the solutionized hardness, Hs, of 

these materials follows a Hall-Petch mechanism, i.e. Hs  d
-1/2

. Taking into account that 

Q is proportional to Hs
-1

, it follows that Q should be proportional to d
1/2

. This 

proportionality is confirmed in Figure 6 in the materials tested at 42 and at 91N, 

indicating that at these loads matrix grain size also plays a role in the wear resistance of 

the composites and matrix alloys, so that a decrease in grain size results in an 
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improvement of wear resistance. The high correspondence between Q and d
1/2

 also 

indicates that the difference of wear resistance behaviour among the composites is 

mainly due to the difference in matrix grain size, so that the other microstructural 

variables such as dispersoids introduced during ball milling and size and distribution of 

MoSi2 particles have a secondary effect. Obviously, they do have an influence not only 

by themselves but also through their effect on matrix grain size, so that a higher amount 

of dispersoids, a smaller MoSi2 particle size and a more homogeneous distribution 

promote a smaller matrix grain size [9], which improves wear resistance. 
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Figure 6. Wear rate (Q) as a function of square root of composites matrix grain size 

(d
1/2

). 

 

The failure of a direct relationship between wear resistance and grain size at 140 N 

should be explained by the temperature increase during testing. As demonstrated in 

[16], this increase can promote softening of the aluminium matrix. This is particularly 

important when comparing the ball milled composites with the non-milled materials 1W 

and 2C. While the ball milled microstructure is stable against long annealing time at 

high temperature due to the presence of fine oxide dispersoids and small MoSi2 

particles, Table 2, the non-milled composites, with a much smaller amount of 

dispersoids and larger MoSi2 particles are more prone to experience grain growth. 

Moreover, in the case of 1W, which is the one that presents the highest wear rate, its 
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more clustered MoSi2 particle distribution (highest COV) favours cracks nucleation, 

fracture and decohesion of particles at reinforcement agglomerations, as they act as 

preferential sites for these phenomena [23]. In such a case, pulled out particles can act 

as third abrasive bodies producing a further decrease in wear resistance. In addition, the 

reinforcement free zones are soft and more capable of plastic deformation [24]. 

Therefore, ball milling improves the wear resistance of the composites at 140 N due to a 

more stable and more homogeneous microstructure being generated in the process.  

Interesting to notice from the wear results of the AA6061/MoSi2/15p composites is 

that wear resistance improves with decreasing particle size, although most studies 

[4,6,25,26] reported the opposite behaviour. The reason for this should be sought in the 

fact that, in our materials, homogeneity of the distribution also increases with 

decreasing particle size, in opposite to the general trend of worse distribution associated 

with smaller particles. Moreover, smaller particles suffer less internal fracture and 

debonding than larger ones, which should be added to the fact that they promote smaller 

matrix grain size and thus higher hardness. All these features contribute to this improve 

in wear behaviour with decreasing reinforcing size. 

To conclude the evaluation of the present materials, a comparison between wear 

resistance of the 10h-milled AA6061/MoSi2/15p composites, 1M(10h) and 2M(10h), with 

AMCs reinforced with NiAl, Al2O3 and SiC particles found in the literature is performed. 

Values are summarized in Table 3. It has to be noted that this is not straightforward 

because material processing history, microstructure and type and parameters of wear test 

may not be the same, and they may play a significant role in modifying wear properties. In 

addition, this information sometimes is not even available. As seen in Table 3, the wear 

resistance of AA6061/MoSi2/15p is one order of magnitude better than AA6092/Ni3Al/15p 

tested in identical conditions [24]. With regard to the AMCs reinforced with ceramic 
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particles, MoSi 2 particles promote superior wear resistance in aluminium alloys than those 

reinforced with Al2O3 at similar test loads [27,28,29,30,31].  In relation to the AMCs 

reinforced with SiC particles, the AA6061/MoSi2/15p in this work present a slightly higher 

wear rate than AA6061/SiC/8p tested to 40 N but where the sliding velocity was 0.63 m/s 

[30], slightly lower than 0.94 m/s. Nevertheless, another study on SiC reinforcement 

showed a wear rate of three orders of magnitude higher, though the sliding velocity also 

was higher, 6.0 m/s [32]. 

Table 3. Al-based particulate reinforced composite materials after dry sliding at 

different conditions.  

Material 

Load 

(N) 

Sliding velocity 

(m/s) 

Wear rate, Q 

(x10
-3

mm
3
/m) Ref. 

AA6061/MoSi2/15p  

1M(10h) 

42 

0.94 

0.9 

Present work 

91 1.4 

140 1.7 

AA6061/MoSi2/15p  

2M(10h) 

42 

0.94 

0,9 

Present work 

91 1.3 

140 1.9 

AA6092/Ni3Al/15p 

42 

0.94 

5.0 

[24] 

91 13.7 

140 18.2 

AA6061/Al2O3/20p 
52 

0.2 

3.6 

[27] 98 5.9 

AA6061/Al2O3/20p 50 0.2 9 [28] 

AA6061/Al2O3/20p 
50 

0.63 

2 

[29] 100 2.8 

AA6061/Al2O3/8p 40 0.63 0.7 [30] 

AA6061/Al2O3/10p 
40 1.0 

1.3 

[31] AA6061/Al2O3/20p 1.2 

AA6061/SiC/8p 40 0.63 0.6 [30] 

AA6061/SiC /10p 
10 6.0 

600 

[32] AA6061/SiC /20p 565 
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4. Conclusions 

Different microstructures have been generated in six AA6061/MoSi2/15p composites 

and two monolithic AA6061 alloys processed by powder metallurgy by varying initial 

reinforcement size and mixing method. The dry sliding wear behaviour of these materials 

has been studied as a function of processing and microstructural parameters. 

- The composite materials present a much higher wear resistance than the corresponding 

monolithic alloys. MoSi2 reinforcing particles delay the transition to severe wear regime of 

AA6061 aluminium alloy. 

- Ball milling improves the wear resistance of the materials due to a more stable and more 

homogeneous microstructure generated by the introduction of dispersoids and the 

refinement of the microstructure. This avoids the detachment of the mechanically mixed 

layer, especially at high load. Ball milling also delays the transition to severe wear regime. 

- In the present composites, wear resistance improves with decreasing reinforcing 

particle size mainly due to the simultaneous increase in the homogeneity of the 

distribution of the MoSi2 reinforcing particles. 

- The wear rate is independent of the aging state of the materials (T6 or solutionized), so 

that the values of hardness that should be used to analyse the results are those of the 

materials in solutionized condition. 

- At 42 and 91N, wear rate of materials in T6 fulfils the Archard law, decreasing as 

hardness of solutionized materials increases. 

- At 42 and 91N, wear rate follows a Hall-Petch type relationship, i.e. it varies with the 

square root of the matrix grain size, showing that wear resistance increases as matrix 

grain size decreases. 

- At 140 N, the more clustered MoSi2 particle distribution in 1W accelerates the 

detachment of the surface layer which promotes an earlier transition to a severe regime. 
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- The comparison of wear resistance of the 10h-milled AA6061/MoSi2/15p composites to 

those of ceramic reinforced AA6061 alloys indicates that the present intermetallic 

reinforced materials can be considered as potential substitutes for ceramic reinforced 

aluminium alloys in tribological applications. 
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