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Abstract: Our recent study demonstrated altered expression of Notch ligands, receptors, and effector
genes in testes of pubertal rats following reduced androgen production or signaling. Herein we
aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor
(Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells.
Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC).
We found that testosterone (10−8 M–10−6 M) increased the expression of Notch1 receptor, its active
form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1
(p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9
as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and
ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding
protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway
regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling
in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in
controlling Sertoli cell function.
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1. Introduction

Mammalian testis sperm production is a process supported and controlled by somatic cells of
seminiferous epithelium, Sertoli cells. These cells are considered to be key mediators of androgen action
in the control of spermatogenesis. In seminiferous tubules, the expression of androgen receptor (AR),
a member of nuclear receptor subfamily 3, is restricted to Sertoli cells [1,2] and selective ablation of the
AR in these cells leads to spermatogenic arrest, indicating that AR in Sertoli cells is crucial to maintain
spermatogenesis [3]. Binding of testosterone (major testicular androgen produced by interstitial tissue
of the testis) to the AR triggers classical signaling pathway, inducing nuclear localization, dimerization,
and interaction of hormone-receptor complex with androgen response element, a DNA sequence
located in the regulatory region of androgen regulated genes [4]. In addition, alternative pathways
may account for rapid effects of androgens via cytoplasmic or membrane-localized AR [5]. It is now
well established that in adult males AR signaling in Sertoli cells is required for Sertoli cell maturation,
the maintenance of the blood-testis barrier, Sertoli cell-spermatid adhesion, completion of meiosis and
spermiation [6].
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In 2014, a member of the Zrt and Irt-like protein zinc transporter family ZIP9 was demonstrated
to display specific, high-affinity binding of testosterone. Both functions of ZIP9, zinc transport and
testosterone-induced activation of second messengers, are mediated through G proteins [7]. In AR-deficient
rat Sertoli cell line, 93RS2, testosterone binding to ZIP9 stimulated extracellular signal-regulated protein
kinase 1/2 (ERK1/2), cAMP-response element binding protein (CREB), and activating transcription
factor 1 (ATF-1) phosphorylation and regulated the expression of tight junction proteins claudin-1 and
claudin-5 [8]. Recently, we have found that ZIP9 is also localized to Sertoli cells in mouse and bank vole
seminiferous epithelium [9,10]. In bank vole, a seasonally breeding rodent, expression level of ZIP9 during
reproductive quiescence was correlated with testes regression status [10]. In dogs, the levels of ZIP9 in
the testes were abrogated after long-term gonadotropin-releasing hormone-agonist treatment, which
indicates that expression of this protein depends on the activity of hypothalamic-pituitary-gonadal
axis [11]. The role of ZIP9 in testis pathology has not been described yet. To date, the presence of
ZIP9 and its involvement in the regulation of apoptosis [12] and metastasis [13] of prostate and breast
cancer cells have been demonstrated. However, it has been recently found that ZIP9 immunoreactivity
does not show a significant difference between cancerous and non-cancerous breast and prostate
specimens [14].

Apart from hormonal signals, Sertoli cell physiology is controlled by local interactions, including
paracrine signaling, gap junctional communication and contact-dependent signaling [15]. The last of
these is represented by a Notch signaling pathway triggered by the interaction of Notch receptors with
Jagged or Delta-like ligands localized in the plasma membranes of adjacent cells. Proper Notch pathway
activity in Sertoli cells is crucial for determination of germ cell fate during early testis development
and controls spermatogonial differentiation in adult testis [16,17]. Notch1/HEY1/HES1 pathway is
involved in the control of glial-derived neurotrophic factor production and Cyp26b1 expression in
Sertoli cells [17,18]. Disruption of Notch signaling in adult testis results in increased apoptosis and
spermatogenesis defects [19].

In contrast to many signaling pathways, Notch pathway lacks intermediate steps and does not
exploit downstream secondary messengers for signal amplification. Binding of a ligand to Notch
receptor results in receptor cleavage and translocation of Notch intracellular domain (NICD) to the
nucleus, where it interacts with a transcription factor recombination signal binding protein (RBP-J),
and Mastermind-like 1 [20]. The Notch co-activator complex induces the expression of target genes
belonging to hairy/enhancer of split (Hes) and Hes-related with YRPW (Tyr-Arg-Pro-Trp) motif 1 (Hey)
families [21].

Despite its simplicity, outcomes of the pathway activation may be diverse even in the same cell
type due to its complex regulation at different levels [22,23]. Studies using various tissues and cellular
models demonstrated that this pathway may also crosstalk with other signaling pathways and such
interactions may determine the final outcome [24–27].

Androgens were identified as factors modulating activity of Notch signaling in several cell types.
Long-term testosterone enanthate treatment increased the expression of activated Notch1 in muscle
satellite cells of older men consistent with increased satellite cell replication [28]. The importance
for androgen-Notch interaction for the course of prostate development and morphogenesis was also
demonstrated [29,30]. DeFalco et al. [31] found that in mice testosterone plays a role in maintaining
the balance between progenitor cells and differentiated fetal Leydig cells, regulating levels of JAG1
and Notch2. In respect to androgen action in Sertoli cells, particular attention was devoted to genes
related to the development of the blood-testis barrier [32]. Our recent study demonstrated that
Notch pathway in Sertoli cells is involved in the regulation of blood-testis barrier proteins, claudins,
in androgen-dependent manner. Using RNAi technique to reduce the expression of androgen receptors,
we provided evidence that the effects of Notch signaling on claudin-5 and claudin-11 are dependent
on the activation of ZIP9 or AR, respectively [9]. Notably, this was the first report on ZIP9 regulation
by the Notch pathway. We have also found that reduced androgen production or signaling alters the
expression of Notch receptors, ligands and effector genes in testes of pubertal rats [33]. To provide
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deeper insight in androgen-Notch crosstalk in mammalian testis and reveal the mechanisms involved
in this interaction, we aimed to explore the role of nuclear and membrane androgen receptors in the
regulation of Notch pathway activation in rodent Sertoli cells in vitro.

2. Results

Firstly, to investigate whether Notch pathway activity in Sertoli cells is directly regulated by
androgens, relative level of Notch1 expression, activated form of Notch1 receptor (N1ICD) and the
expression of the target genes Hey1 and Hes1 were determined in two murine Sertoli cell lines TM4
(from 11–13 day-old mice; expressing both the AR and ZIP9) and 15P-1 (from 6 month-old mice;
lacking the AR, but expressing ZIP9). We found that testosterone, in the range of serum and testicular
concentrations 10−8 M–10−6 M [34–36], increased mRNA and protein expression of Notch1/N1ICD
(p < 0.05, p < 0.01, p < 0.001), Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in both
cell lines (Figure 1a–d). The lowest concentration capable of effectively activating Notch pathway
(10−8 M) was used in further experiments.
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Next, to determine the involvement of AR and ZIP9 in the regulation of Notch pathway activity 
we knocked down each of the receptors using RNAi technique. In TM4 cells, knockdown of either 

Figure 1. The effect of testosterone on Notch1, Hey1 and Hes1 mRNA, and Notch1 intracellular domain
(N1ICD), HEY1 and HES1 protein expression in TM4 and 15P-1 Sertoli cell lines. Cells were treated
with a vehicle (control, C), 10−8 M, 10−7 M or 10−6 M testosterone (T) for 24 h (a,b) Relative expression
of mRNAs (RQ) was determined using quantitative real-time RT-PCR analysis. The expression values
of the individual genes were normalized to the mean expression of Rn18s, B2m, Gapdh and Actb.
(c,d) Western blot detection of the proteins. The relative level of studied proteins was normalized to
β-actin. The protein levels within the control group were arbitrarily set at 1. The histograms are the
quantitative representation of data (mean ± SD) of three independent experiments, each in triplicate.
Significant differences from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.

Next, to determine the involvement of AR and ZIP9 in the regulation of Notch pathway activity
we knocked down each of the receptors using RNAi technique. In TM4 cells, knockdown of either AR
or ZIP9 partly abrogated the effect of testosterone on RBP-J activity (Figure 2a) and Notch1/N1ICD level
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(Figure 2c,e) (p < 0.05, p < 0.01, p < 0.001), which suggests that both receptors modulate Notch signaling
activity. In Ar-silenced cells, weaker immunofluorescence signal of N1ICD was observed mainly in cell
nuclei, whereas ZIP9 knockdown caused signal reduction in both nuclei and cytoplasm (Figure 3a)
when compared to the control. In 15P-1 cells, Zip9 silencing fully blocked testosterone-induced Notch
pathway activation (p < 0.001) (Figure 2b,d,f) and N1ICD signal almost totally disappeared (Figure 3b).
Qualitative analyses of N1ICD signal were confirmed using quantitative image analysis (Figure 3c,d).
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Figure 2. The effect of androgen receptor (AR) and ZIP9 knockdown on Notch pathway activity,
Notch1 mRNA and N1ICD expression in TM4 (a,c,e) and 15P-1 (b,d,f) Sertoli cells. (a,b) Cells were
transfected with 2 × 10−12 M of recombination signal binding protein (RBP-J) reporter and 5 × 10−8 M
non-targeting siRNA (control), AR-siRNA (AR-Kd) or ZIP9-siRNA (ZIP9-Kd). After 16 h cells were
treated with 10−8 M testosterone (T) or vehicle (C). Cells were harvested after a 24 h incubation and
the ratio of firefly-derived luminescence over renilla-derived luminescence was determined. Data are
means ± SD for a single experiment done in triplicate. (c–f) Cells were treated with transfection reagent
alone (C), transfection reagent + non-targeting siRNA (negative control, NT), transfection reagent +

AR siRNA or ZIP9 siRNA. After 24 h 10−8 M T or vehicle was added to the culture. (c,d) Relative
expression of mRNAs (RQ) was determined using real-time RT-PCR analysis. The expression values
of the individual genes were normalized to the mean expression of Rn18s, B2m, Gapdh and Actb.
(e,f) Western blot detection of the proteins. The relative level of studied protein was normalized to
β-actin. The protein levels within the control group were arbitrarily set at 1. The histograms are the
quantitative representation of data (mean ± SD) of three independent experiments, each in triplicate.
Significant differences from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 3. Immunofluorescence analysis of N1ICD expression in TM4 (a,c) and 15P-1 (b,d) cells following
AR or ZIP9 knockdown. Cells were transfected with transfection reagent alone (C), transfection reagent
+ 5 × 10−8 M AR siRNA (AR-Kd) or ZIP9 siRNA (ZIP9-Kd). After 24 h 10−8 M T or vehicle was
added to the culture. Cells were fixed after a 24 h incubation. (a,b) Representative microphotographs
of TM4 and 15P-1 cultures. Arrows indicate positive signal. Sertoli cell nuclei were stained with
4′,6-diamidino-2-phenylindole (DAPI; blue). Right panels in controls (C) represent the merged images.
Scale bar = 25 µm. (c,d) The fluorescence intensity was quantified using ImageJ and displayed in
corrected total cell fluorescence (CTCF). Histograms represent the mean ± SD. Significant differences
from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.

Further, we tested the effect of pharmacological anti-androgens hydroxyflutamide (HF) and
bicalutamide (Bic) on Notch pathway activation in Sertoli cell lines and primary Sertoli cells (PSC).
HF is an active metabolite of pure AR antagonist, flutamide, which does not block membrane-initiated
androgen actions [12,37–39]. In contrast, Bic was demonstrated to inhibit activation of both AR and
ZIP9 [40,41].

HF partly blocked testosterone effect on RBP-J transcriptional activity in TM4 cells (p < 0.01)
(Figure 4a) but had no effect in 15P-1 cells (Figure 4b). Bic effectively inhibited testosterone-induced
RBP-J activity in both cellular models studied (p < 0.001) (Figure 4a,b).

The effect of testosterone on Notch1/N1ICD expression was partly suppressed by HF in both
TM4 (p < 0.01; Figure 4c,f,l) and PSC (p < 0.01; Figure 4e,h,n), whereas Bic completely inhibited
testosterone-induced Notch1/N1ICD expression in all cellular models studied (p < 0.001; Figure 4c–h,l–n).
Loss of immunofluorescence signal of N1ICD following Bic exposure was seen (Figure 4i–k).
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Figure 4. The effect of hydroxyflutamide (HF) and bicalutamide (Bic) on Notch pathway activity,
Notch1 mRNA and N1ICD expression in TM4 (a,c,f,i,l), 15P-1 (b,d,g,j,m), and primary (PSC; e,h,k,n)
Sertoli cells. (a,b) TM4 and 15P-1 cells were transfected with 2 × 10−12 M of RBP-J reporter. After 24 h
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cells were treated with 10−8 M testosterone (T), 10−4 M hydroxyflutamide (HF), 10−6 M bicalutamide
(Bic) or vehicle (C). Cells were harvested after a 24 h and the ratio of firefly-derived luminescence
over renilla-derived luminescence was determined. Data are means ± SD for a single experiment
done in triplicate. (c–k) Cells were treated 10−8 M T, 10−4 HF, HF + T, 10−6 M Bic, Bic + T or vehicle
(C) for 24 h. (c–e) Relative expression of mRNAs (RQ) was determined using real-time RT-PCR
analysis. The expression values of the individual genes were normalized to the mean expression of
Rn18s, B2m, Gapdh and Actb. (f–h) Western blot detection of the proteins. The relative level of studied
protein was normalized to β-actin. The protein levels within the control group were arbitrarily set
at 1. The histograms are the quantitative representation of data (mean ± SD) of three independent
experiments, each in triplicate. (i–k) Immunofluorescence analysis of N1ICD expression. Arrows
indicate positive signal. Scale bar = 10 µm. (l–n) The fluorescence intensity was quantified using
ImageJ and displayed in corrected total cell fluorescence (CTCF). Histograms represent the mean ± SD.
Significant differences from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.

Finally, we examined the effect of androgen receptor signaling inhibition on the expression of
Notch pathway effector genes Hes1 and Hey1. AR knockdown in TM4 cells abolished the effect of
testosterone on Hey1 mRNA and protein expression (p < 0.001), whereas ZIP9 knockdown had no
effect (Figure 5a–d).
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Figure 5. The effect of AR and ZIP9 knockdown on Hey1 mRNA and HEY1 protein expression in
TM4 (a,c) and 15P-1 (b,d) Sertoli cells. Cells were treated with transfection reagent alone (C), transfection
reagent + 5 × 10−8 M non-targeting siRNA (negative control, NT), transfection reagent + 5 × 10−8 M
AR siRNA (AR-Kd) or ZIP9 siRNA (ZIP9-Kd). After 24 h 10−8 M T or vehicle was added to the
culture. (a,b) Relative expression of mRNAs (RQ) was determined using real-time RT-PCR analysis.
The expression values of the individual genes were normalized to the mean expression of Rn18s, B2m,
Gapdh and Actb. (c,d) Western blot detection of the proteins. The relative level of studied protein was
normalized to β-actin. The protein levels within the control group were arbitrarily set at 1. The histograms
are the quantitative representation of data (mean± SD) of three independent experiments, each in triplicate.
Significant differences from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Immunofluorescence revealed decreased signal only in Ar-silenced cells (Figure 6a,c). In 15P-1
cells testosterone-stimulated expression of HEY1 was not affected by Zip9 silencing (Figure 4b,d).
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Figure 6. Immunofluorescence analysis of HEY1 expression in TM4 (a,c) and 15P-1 (b,d) cells following
AR or ZIP9 knockdown. Cells were transfected with transfection reagent alone (C), transfection reagent
+ 5 × 10−8 M AR siRNA (AR-Kd) or ZIP9 siRNA (ZIP9-Kd). After 24 h 10−8 M T or vehicle was added to
the culture. Cells were fixed after a 24 h incubation. (a,b) Representative microphotographs of TM4 and
15P-1 cultures. Arrows indicate positive signal. Sertoli cell nuclei were stained with DAPI (blue). Right
panels in controls (C) represent the merged images. Scale bar = 25 µm. (c,d) The fluorescence intensity
was quantified using ImageJ and displayed in corrected total cell fluorescence (CTCF). Histograms
represent the mean ± SD. Significant differences from control values are denoted as ** p < 0.01, and
*** p < 0.001.

In TM4 and PSCs, HF completely abolished the effect of testosterone on Hey1 expression (p < 0.001).
Similar effect was observed for Bic (p < 0.01) (Figure 7a,c,d,f). Immunofluorescence signal was
clearly reduced in both HF and Bic treated cells (Figure 7g,i,j,l). In contrast, Bic had no effect on
basal and testosterone-stimulated Hey1 expression in 15P-1 cells, which was also demonstrated by
immunofluorescence (Figure 7b,e,h,k). This indicates that AR-mediated signaling is involved in the
regulation of Hey1 in Sertoli cells, whereas ZIP9 is not implicated.
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Figure 7. The effect of hydroxyflutamide (HF) and bicalutamide (Bic) on Hey1 mRNA and HEY1 protein
expression in TM4 (a,d,g,j), 15P-1 (b,e,h,k), and primary (PSC; c,f,j,l) Sertoli cells. Cells were treated
with 10−8 M testosterone (T), 10−4 HF, HF + T, 10−6 M Bic, Bic + T or vehicle (C) for 24 h. (a–c) Relative
expression of mRNAs (RQ) was determined using real-time RT-PCR analysis. The expression values
of the individual genes were normalized to the mean expression of Rn18s, B2m, Gapdh and Actb.
(d–f) Western blot detection of the proteins. The relative level of studied protein was normalized
to β-actin. The protein levels within the control group were arbitrarily set at 1. The histograms
are the quantitative representation of data (mean ± SD) of three independent experiments, each in
triplicate. (g–i) Immunofluorescence analysis of HEY1 expression. Arrows indicate positive signal.
Scale bar = 10 µm. (j–l) The fluorescence intensity was quantified using ImageJ and displayed in
corrected total cell fluorescence (CTCF). Histograms represent the mean ± SD. Significant differences
from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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In TM4 cells Ar silencing had no effect on Hes1 expression (Figure 8a,c), while ZIP9 knockdown
significantly reduced testosterone-stimulated Hes1 expression in both TM4 and 15P-1 cells (p < 0.05,
p < 0.001) (Figure 8a–d).
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Figure 8. The effect of AR and ZIP9 knockdown on Hes1 mRNA and HES1 protein expression in
TM4 (a,c) and 15P-1 (b,d) Sertoli cells. Cells were treated with transfection reagent alone (C), transfection
reagent + 5 × 10−8 M non-targeting siRNA (negative control, NT), transfection reagent + 5 × 10−8 M
AR siRNA (AR-Kd) or ZIP9 siRNA (ZIP9-Kd). After 24 h 10−8 M T or vehicle was added to the
culture. (a,b) Relative expression of mRNAs (RQ) was determined using real-time RT-PCR analysis.
The expression values of the individual genes were normalized to the mean expression of Rn18s,
B2m, Gapdh and Actb. (c,d) Western blot detection of the proteins. The relative level of studied
protein was normalized to β-actin. The protein levels within the control group were arbitrarily set
at 1. The histograms are the quantitative representation of data (mean ± SD) of three independent
experiments, each in triplicate. Significant differences from control values are denoted as * p < 0.05,
** p < 0.01, and *** p < 0.001.

In testosterone-exposed cells immunofluorescence signal of HES1 was localized to both cell nuclei
and cytoplasm (Figure 9a,b). In Ar-silenced TM4 cells signal was maintained mainly in cell nuclei,
whereas ZIP9 knockdown resulted in marked reduction of signal intensity in cell cytoplasm, and loss
of the signal in most cell nuclei of both TM4 and 15P-1 (Figure 9a,b). Qualitative analyses of signals
were confirmed using quantitative analysis of fluorescence intensity (Figure 9c,d).
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stained with DAPI (blue). Right panels in controls (C) represent the merged images. Scale bar = 25 
µm. (c,d) The fluorescence intensity was quantified using ImageJ and displayed in corrected total cell 
fluorescence (CTCF). Histograms represent the mean ± SD. Significant differences from control values 
are denoted as ** p < 0.01, and *** p < 0.001. 
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loss of nuclear HES1 staining was found (Figure 10g–i). Qualitative analysis revealed significant 
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regulated via ZIP9-dependent signaling in rodent Sertoli cells. 

Figure 9. Immunofluorescence analysis of HES1 expression in TM4 (a,c) and 15P-1 (b,d) cells following
AR or ZIP9 knockdown. Cells were transfected with transfection reagent alone (C), transfection reagent
+ 5 × 10−8 M AR siRNA (AR-Kd) or ZIP9 siRNA (ZIP9-Kd). After 24 h 10−8 M T or vehicle was added to
the culture. Cells were fixed after a 24 h incubation. (a,b) Representative microphotographs of TM4 and
15P-1 cultures. Arrows indicate positive signal. Sertoli cell nuclei were stained with DAPI (blue). Right
panels in controls (C) represent the merged images. Scale bar = 25 µm. (c,d) The fluorescence intensity
was quantified using ImageJ and displayed in corrected total cell fluorescence (CTCF). Histograms
represent the mean ± SD. Significant differences from control values are denoted as ** p < 0.01, and
*** p < 0.001.

In testosterone-treated TM4 and PSC cells the expression of Hes1/HES1 was not affected by HF
(Figure 10a,c,d,f), whereas Bic inhibited the effect of testosterone on Hes1 mRNA and HES1 protein
expression in all cellular models (p < 0.01, p < 0.001) (Figure 10a–f). In TM4 and PSC cells exposed
to HF immunofluorescence signal was detected mainly in cell nuclei (Figure 10g,i). In Bic treated
cells loss of nuclear HES1 staining was found (Figure 10g–i). Qualitative analysis revealed significant
reduction of fluorescence intensity following Bic exposure when compared to cultures treated with
testosterone alone (p < 0.01, p < 0.001) (Figure 10j–l). Taken together, these results suggest that Hes1 is
regulated via ZIP9-dependent signaling in rodent Sertoli cells.
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Figure 10. The effect of hydroxyflutamide (HF) and bicalutamide (Bic) on Hes1 mRNA and HES1 protein
expression in TM4 (a,d,g,j), 15P-1 (b,e,h,k), and primary (PSC; c,f,i,l) Sertoli cells. Cells were treated
with 10−8 M testosterone (T), 10−4 HF, HF + T, 10−6 M Bic, Bic + T or vehicle (C) for 24 h. (a–c) Relative
expression of mRNAs (RQ) was determined using real-time RT-PCR analysis. The expression values
of the individual genes were normalized to the mean expression of Rn18s, B2m, Gapdh and Actb.
(d–f) Western blot detection of the proteins. The relative level of studied protein was normalized
to β-actin. The protein levels within the control group were arbitrarily set at 1. The histograms
are the quantitative representation of data (mean ± SD) of three independent experiments, each in
triplicate. (g–i) Immunofluorescence analysis of HES1 expression. Arrows indicate positive signal.
Scale bar = 10 µm. (j–l) The fluorescence intensity was quantified using ImageJ and displayed in
corrected total cell fluorescence (CTCF). Histograms represent the mean ± SD. Significant differences
from control values are denoted as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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3. Discussion

In the present paper we show that activity of Notch signaling is regulated by testosterone acting
via both AR and ZIP9 receptors, thus providing evidence that a crosstalk between Notch and androgen
pathways exists in Sertoli cells. Herein, we found that testosterone is a potent stimulator not only
of Notch1 receptor expression, but also its activation, as demonstrated by increased N1ICD level,
increased nuclear accumulation of N1ICD and enhanced RBP-J transcriptional activity. The stimulatory
effect of androgens on Notch1 was previously described in myogenic progenitor cells during pubertal
development [42]. In contrary, in ventral prostate of orchiectomized rats, inhibitory action of androgen
on Notch1 signaling was reported [29]. Therefore, the effect of androgens on Notch1 signaling clearly
depends on cellular context. Previous studies showed that epigenetic factors and availability of
cofactors influence the AR-regulated transcriptome and finally determine the final response of the
cell [43,44]. Moreover, several papers reported that testosterone binding to ZIP9 activates different G
proteins and various downstream signaling events in cell type-specific manner [8,12,45,46].

In TM4 cells, Ar-silencing only partly blocked the effect of testosterone on Notch1 pathway activity,
suggesting that AR-mediated action is not the only mechanism involved in testosterone effect on Notch
pathway. In agreement, in both TM4 and PCS cells, HF (AR antagonist) was unable to totally block
the effect of testosterone. An increase in Notch signaling activity following testosterone exposure
was significantly lower in HF-treated cells than in vehicle-treated cells. Moreover, the stimulatory
effect of testosterone on Notch signaling was also observed in 15P-1 cells, in which we detected no
AR expression. Taken together, these results suggested that other receptor(s) besides the AR may be
involved in the regulation of Notch pathway by testosterone.

RT-PCR, western blotting and immunofluorescence analyses confirmed that all cellular models
used herein express ZIP9. Both, ZIP9 knockdown or treatment of 15P-1 cells with Bic (antagonist
of AR and ZIP9) abolished testosterone-induced upregulation of Notch1/N1ICD expression and
Notch pathway activity. This led us to the conclusion that both AR and ZIP9 are involved in
testosterone-mediated increase in Notch signaling in Sertoli cells.

The activity of canonical Notch pathway in Sertoli cells is manifested by enhanced expression of
HES1 and HEY1 transcriptional repressors [9,17,21]. Accordingly, we found that testosterone-induced
Notch signaling activity was followed by upregulation of Hey1 and Hes1 mRNA and protein. However,
androgen receptors’ silencing experiments and antiandrogen exposures provided evidence that different
androgen signaling pathways are involved in the control of each effector gene. In TM4 and PSC
AR knockdown or inhibition, respectively, abolished the effect of testosterone on HEY1 expression,
indicating that HEY1 is regulated by AR-dependent pathway. In prostate cancer cells HEY1 functions
as a corepressor for AF1 in the AR, inhibiting transcription from androgen-dependent target genes [47].
Although such interaction has not been confirmed in Sertoli cells yet, HEY1 may be considered as a
factor involved in AR-controlled cellular responses. It is possible that HEY1 upregulation in response
to AR activation may limit AR-regulated transcription, serving as negative feedback regulatory
mechanism in AR-expressing cells.

Zip9 silencing in TM4 cells was ineffective in blocking testosterone action on HEY1 expression or
localization, which suggested that ZIP9 was not involved in its regulation. This was confirmed in 15P-1
cells, where testosterone exposure increased HEY1, but ZIP9 knockdown or exposure to Bic were not
able to prevent the action of testosterone. Since AR was undetectable in 15P-1 cells, our results suggest
that some other AR- and ZIP9-independent mechanism is involved in HEY1 regulation by androgen in
AR-negative Sertoli cells. In recent years TRPM8 (transient receptor potential cation channel subfamily
M member 8) and GPRC6A (G protein-coupled receptor class C group 6 member A) proteins were
demonstrated to mediate the action of androgens in prostate cancer cells [48–50]. Both proteins are
localized also in rodent Sertoli cells [51,52], but their role as potential androgen receptors in these cells
remains to be investigated.

Reduction of AR signaling by siRNA or HF exposure was unable to prevent stimulatory effect
of testosterone on Hes1 expression in TM4 and PSC, whereas ZIP9 knockdown or inhibition by Bic
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effectively blocked this effect, demonstrating that ZIP9 is involved in the regulation of HES1 expression.
This is in agreement with our previous observations that in vivo AR blockade by flutamide did not
attenuate the immunoexpression of HES1 in rat Sertoli cells, whereas testosterone reduction led to a
decrease of HES1 immunostaining intensity measured with densitometry [33]. Interestingly, although
strong immunofluorescence signal was maintained in cell nuclei following AR knockdown or inhibition,
signal intensity was diminished in cell cytoplasm. This may suggest that despite no effect on HES1
expression level, AR-mediated signaling influence subcellular distribution of HES1 protein, regulating
its nuclear transport. On the other hand, AR was required for FOXA1-enhanced Notch pathway
activation in endometrial cancer cells, increasing Notch1 and HES1 expression [53]. Nevertheless,
in Sertoli cells, the expression of two effector proteins HEY1 and HES1 is regulated by androgens
via different signaling pathways. Diverse HEY1 and HES1 regulation by dihydrotestosterone was
earlier observed in R1 castrate-resistant prostate cancer cell line, however the mechanism was not
investigated in that study [54]. In light of the data, further studies are required to understand how AR
and ZIP9 differentially regulate Hes1 and Hey1 expression by activation of transcriptional activity of
RBP-J in Sertoli cells. Based on the recent findings by Clocchiatti et al. [55], who demonstrated physical
association between AR and RBP-J in primary human dermal fibroblasts, it is likely that both proteins
are constituents of a common, ligand-dependent complex, which regulates transcription of target genes.
To date, evidence for direct interaction between ZIP9 and NICD is lacking. However, CREB consensus
motifs were found in association with numerous RBP-J sites in murine T-cells [56], which may indicate
a possible interaction with CREB-mediated signaling pathways, such as ZIP9 signaling. Currently,
it is becoming evident that in addition to the DNA sequence, other factors, such as protein-protein
interactions, may play a role in RBP-J associations with chromatin. In consequence, interactions with
different transcription factors may modulate activities of RBP-J, and thus Notch signaling could be
diversified through differential DNA targeting [57].

Finally, it should be noted that cell culture models used in the present study allow us to obtain
precise insight into the interactions of particular signaling pathways in Sertoli cells, however further
research using AR and ZIP9 knock-out mouse models are necessary to confirm these relations in the
environment of seminiferous epithelium in vivo.

Taken together, testosterone regulates Notch signaling in Sertoli cells acting at various levels
of this pathway. Androgen signaling through both AR and ZIP9 receptors controls not only the
expression and activation of Notch1, RBP-J transcriptional activity, the expression of Notch target
genes, and distribution of the effector proteins within the cells, as demonstrated herein, but also the
expression of Notch ligands in both Sertoli and germ cells, as we reported previously [33]. Another
possible androgen target is γ-secretase and the process of Notch receptor cleavage. It was demonstrated
that presenilin 1 (PS1), an enzymatic unit of γ-secretase, is regulated by testosterone in the cerebral
cortex of male mice in age-dependent manner [58] and its expression is altered in hippocampus of
hypogonadal male mice [59]. In addition, androgens may act on intracellular regulators of Notch
signaling. For instance, androgens up-regulate transcription of Notch inhibitor, Numb, in prostate
cancer cells [60]. Finally, it cannot be excluded that, at least to some extent, androgens may modulate
Hes1 or Hey1 expression in Notch-independent manner, as it was described for other signaling
pathways [61]. Whether any of these mechanisms are also involved in androgen effect on Notch
signaling in Sertoli cells needs further consideration.

4. Materials and Methods

4.1. Cell Line Cultures and Treatments

The mouse Sertoli cell lines TM4 (Cat no. CRL-1715) and 15P-1 (Cat no. CRL-2618) were purchased
from American Type Culture Collection (ATCC, Manassas, VA, USA) and were maintained under
standard conditions. Properties of both cell lines were evaluated according to cell line authentication
recommendations of the Global Bioresource Center (ATCC). Microscopic observation, analysis of
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proliferation and viability and detection cell-specific markers expression (androgen binding protein
(Abp), Desert Hedgehog (Dhh), SRY-box 9 (Sox9), sulphated glycoprotein-2 (Sgp-2), GATA binding
protein 4 (Gata4); Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland; Table S1) were performed. Cells were seeded directly into cell culture plates or on coverslips.
Before each experiment, cells were serum starved for 24 h. The same cell concentration (0.5 × 106/cm2)
was used in all experiments, so the ratio of T concentration and initial cell number was constant
between experiments.

Cells were treated with 10−8 M to 10−6 M testosterone (T, Cat no. 86500; Sigma-Aldrich, St. Louis,
MO, USA) or anti-androgens 10−4 M hydroxyflutamide (HF; Cat no. H4166; Sigma-Aldrich) or 10−6 M
bicalutamide (Bic) (Cat no. B9061; Sigma-Aldrich) alone or with the addition of 10−8 M T for 24 h.
Control cells were incubated in the presence of the vehicle (0.01% dimethyl sulfoxide, DMSO).

4.2. Transfection of TM4 or 15P-1 Cells with siRNA Duplexes

To knockdown AR or ZIP9 in Sertoli cells by RNAi, TM4 or 15P-1, cells were seeded at
0.1 × 105 cells/cm2 in 6-well plates [9]. Next, the cells were transfected with Silencer™ Select siRNAs
(AR-specific siRNA assay ID: s62547, ZIP9-specific siRNA assay ID: s116149; Thermo Fisher Scientific,
Waltham, MA, USA) using jetPrime Transfection Reagent (Polyplus-Transfection S.A., Bioparc, Illkirch,
France) in serum-free Opti-MEM (Cat no. 11058021; Life Technologies, Gaithersburg, MD, USA),
according to the manufacturer’s instructions. Negative control cells were treated with jetPrime
Transfection Reagent alone or jetPrime Transfection Reagent plus Silencer™ Select Negative Control
No. 1 (non-targeting siRNA; Cat no. 4404020; Thermo Fisher Scientific). Positive control was performed
using Silencer™ Select GAPDH Positive Control siRNA (Cat no. 4390849; Thermo Fisher Scientific).
After 24 h, cells were washed twice to remove silencing duplexes and transfection medium. Cells were
treated with 10−8 M T or a vehicle for 24 h. Transfection efficiencies were in the range of 87 ± 2% for AR
siRNA and 73 ± 5% for ZIP9 siRNA. No cytotoxic effect of used concentrations of siRNAs was detected
(CellTiter-Glo® Luminescent Cell Viability Assay, Cat no. G7570; Promega, Madison, WI, USA).

4.3. Reporter Assay

RBP-J reporter assay was performed using Cignal RBP-J Pathway Reporter Assay (Cat No. 336841;
Qiagen, Hilden, Germany) according to manufacturer’s instruction. In the first experiment, TM4 and
15P-1 cells were transfected with RBP-J reporter (a mixture of an inducible RBP-J responsive firefly
luciferase reporter and constitutively expressing Renilla construct) and AR siRNA or ZIP9 siRNA.
After 16 h cells were treated with T or vehicle. In the second experiment, cells were transfected with
RBP-J reporter and after 24 h treated with T, HF or Bic.

Luciferase activity was measured after 24 h using Dual-Glo Luciferase Assay System (Promega)
with TECAN Infinite M200 Pro luminometer (Tecan; Männedorf, Switzerland). Firefly luciferase
experimental reporter was normalized to Renilla luciferase activity to control transfection efficiency.

Negative controls were performed as follows: (i) RBP-J reporter and non-targeting siRNA;
(ii) a mixture of non-inducible firefly luciferase reporter and constitutively expressing Renilla construct
(Cignal Negative Control); (iii) Cignal Negative Control and AR siRNA or ZIP9 siRNA; (iv) Cignal
Negative Control and non-targeting siRNA. As a positive control a mixture of a constitutively expressing
GFP construct, constitutively expressing firefly luciferase construct, and constitutively expressing
Renilla luciferase construct was used (not shown).

4.4. Primary Sertoli Cell (PSC) Culture and Treatments

Sertoli cells were isolated from 20-day-old rat testes according to previously described protocol [62].
Sertoli cells from 20-day-old rat are differentiated and have almost negligible contamination with
somatic and germ cells. Primary cells were plated onto Matrigel- (Cat no. 354234; BD Biosciences, San
Jose, CA, USA) coated 12-well plates at 0.5 × 106 cells/cm2 and incubated in serum-free Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with growth factors and an antibiotic in a humidified
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atmosphere of 95% air and 5% CO2 (vol/vol) at 35 ◦C. At 48 h after plating, cultures were treated with a
hypotonic buffer (20 mM Tris pH 7.4 at 22 ◦C) to lyse contaminating germ cells and obtaining primary
Sertoli cell cultures with 98% purity [63,64]. Next, primary Sertoli cells were treated with 10−8 M T,
10−4 M HF, or 10−6 M Bic alone or with T for 24 h. Control cells were incubated in the presence of the
vehicle (0.01% DMSO).

4.5. RNA Isolation, Reverse Transcription and Real-Time Quantitative RT-PCR

Total RNA was extracted from cells with TRIzol® reagent (Cat no. 15596026; Life Technologies)
according to the manufacturer’s instructions. Contaminating DNA and DNase was removed with
TURBO DNA-free™ Kit (Cat no. AM1907; Ambion, Austin, TX, USA) according to the manufacturer’s
instructions. The yield and quality of the RNA were assessed by determining the A260:A280 ratio
(NanoDrop ND2000 Spectrophotometer, Thermo Fisher Scientific) and by electrophoresis. An A260:280
ratio not lower than 1.9 was accepted for cDNA synthesis.

High-Capacity cDNA Reverse Transcription Kit (Cat no. 4368814; Applied Biosystems, Carlsbad,
CA, USA) was used to obtain total cDNA. Reactions for each RNA sample were run in the absence
of RT to assess genomic DNA contamination. Real-time RT-PCR analyses were performed with the
StepOne Real-time PCR system (Applied Biosystems) with the cDNA templates, primers (Institute of
Biochemistry and Biophysics, Polish Academy of Sciences) listed in Table 1 and SYBR Green master
mix (Cat no. 4309155; Applied Biosystems), as described previously [9].

Table 1. Sequences of forward and reverse primers.

Gene Forward Primer Reverse Primer

Mouse

Actb CTGGAACGGTGAAGGTGACA AAGGGGACTTCCTGTAACAATGCA
B2m TTCTGGTGCTTGTCTCACTCA CAGTATGTTCGGCTTCCCATTC

Gapdh GGAGATTGTTGCCATCAACG GGAGATTGTTGCCATCAACG
Hes1 ACCTTCCAGTGGCTCCTC TTTAGTGTCCGTCAGAAGAGAG
Hey1 GCCGAAGTTGCCCGTTATCTG GCCGAAGTTGCCCGTTATCTG

Notch1 GATGCCACCTGAACAACTGC TGACAACAGCAACAGCAAGG
Rn18S CTCTGGTTGCTCTGTGCAGT GGCTCCTTGTAGGGGTTCTC

Rat

Actb AAGTACCCCATTGAACACGG ATCACAATGCCAGTGGTACG
B2m GGACTGGTCTTTCTATATCCTGGC GATCACATGTCTCGATCCCAGTAG

Gapdh GGAGATTGTTGCCATCAACG CACAATGCCAAAGTTGTCA
Hes1 GGCAGGCGCACCCCGCCTTG GCAGCCAGGCTGGAGAGGCT
Hey1 AAAGACGGAGAGGCATCATCG GCAGTGTGCAGCATTTTCAGG

Notch1 GCAGCCACAGAACTTACAAATCCAG TAAATGCCTCTGGAATGTGGGTGAT
Rn18S GCCGCGGTAATTCCAGCTCCA CCCGCCCGCTCCCAAGATC

Amplification efficiency [65], was between 97% and 104%. Melting curve analysis and subsequent
agarose gel electrophoresis were used to confirm amplification specificity. In all real-time RT-PCR
reactions, a negative control corresponding to RT reaction without the reverse transcriptase enzyme
and a blank sample were carried out. mRNA expressions were normalized to the mean expression of
reference genes Rn18s, B2m, Actb and Gapdh mRNA (relative quantification, RQ = 1) with the use of the
2−∆∆Ct method [66].

4.6. Western Blot Analysis

Lysates were obtained by sample sonification with a cold Tris/EDTA buffer (50 mM Tris, 1 mM
EDTA, pH 7.5) supplemented with protease inhibitors (Cat no. P8340; Sigma-Aldrich). Samples were
resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing
conditions, transferred to polyvinylidene difluoride membranes (Sigma-Aldrich) and analyzed by
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immunoblotting with the respective primary antibodies as previously reported in detail [63]. Briefly,
nonspecific binding sites were blocked with 5% (wt/v) non-fat dry milk containing 0.1% (v/v) Tween20.
Next, the membrane was incubated with the respective primary antibody (Table 2) at 4 ◦C overnight,
followed by a horseradish peroxidase-conjugated secondary antibody (1:3000; Cat no. PI-1000-1;
PI-2000-1; Vector Labs., Burlingame, CA, USA) for 1 h at room temperature.

Table 2. Details of primary antibodies used for Western blot and immunofluorescence.

Antibody Host Species Vendor Cat. Number Dilution

Anti-actin Mouse Sigma-Aldrich A2228 1:3000 (WB)
Anti-HES1 Rabbit Thermo Fisher PA5-28802 1:1000 (WB); 1:100 (IF)
Anti-HEY1 Rabbit Thermo Fisher PA5-40553 1:2000 (WB), 1:100 (IF)

Anti-N1ICD Rabbit Abcam ab8925 1:1000 (WB), 1:200 (IF)

IF—immunofluorescence; WB—Western blot.

Proteins were detected by chemiluminescence and images were captured with a ChemiDocTM
XRS+ System (Bio–Rad Labs., München, Germany). All immunoblots were stripped and reprobed
with an antibody against β-actin (Table 2). The molecular weights of target proteins were estimated by
reference to standard proteins (Cat no. 1610397; Bio–Rad Labs.). To obtain semi-quantitative results,
immunoblots were analyzed using the ImageLab software (Bio–Rad Labs.). Each data point was
normalized against its corresponding actin data point.

4.7. Immunofluorescence

Immunofluorescence labeling was performed on cells seeded on coverslips and treated as described
in Sections 4.1, 4.2 and 4.4. The cells were washed with phosphate buffered saline (PBS), fixed with
methanol–acetone and immunostained as described [67]. Nonspecific binding sites were blocked
with 10% normal goat serum (Cat no. G9023; Sigma-Aldrich) for 20 min. Cells were incubated in the
presence of primary antibodies (Table 2) at 4 ◦C overnight. Next, Cy3-cojugated goat anti-Rabbit IgG
(1:200; Cat no. A10520; Thermo Fisher Scientific) was applied for 60 min. Coverslips were mounted
with Vectashield mounting medium (Cat no. H-1500; Vector Labs.) with 4′,6-diamidino-2-phenylindole
(DAPI) and examined with epifluorescence microscope Nikon Eclipse Ni (Nikon Instech Co., Japan).
No background fluorescence was observed in the negative controls, where the primary antibody was
omitted (not shown). The fluorescent images acquired with a 40× objective were analyzed using
ImageJ software (National Institutes of Health, Bethesda, MD). An outline was drawn around each
cell (100 cells per sample) and the area, integrated density and mean gray value were measured
along with adjacent background readings. Next, corrected total cell fluorescence (CTCF) = integrated
density (area of selected cell ×mean fluorescence of background readings) was calculated as described
previously [68].

4.8. Statistical Analysis

Each variable was tested using the Shapiro-Wilk W-test for normality. The homogeneity of
variance was assessed with Levene’s test. Statistical differences in relative luciferase activity, mRNA
expression levels, as well as differences in protein expression levels were assessed using one-way
ANOVA, followed by Tukey’s post hoc comparison test. Statistical analyses were performed on raw
data using Statistica 10 software (StatSoft Inc., Tulsa, OK, USA). Data were presented as means ± SD.
Data were considered statistically significant at * p < 0.05, ** p < 0.01, *** p < 0.001.

5. Conclusions

Our findings demonstrate that androgens influence activity of Notch pathway in rodent Sertoli cells.
For the first time, we provided evidence for the role of membrane androgen receptor ZIP9 in the control
of Notch pathway. Activation of AR- and ZIP9-mediated signaling produce different but complementary
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effects on Notch effector gene expression, pointing to cooperation of classical and non-classical androgen
signaling pathways in controlling Sertoli cell function (Figure 11). The importance of Notch pathway
in Sertoli cells for the regulation of spermatogenesis has just begun to be elucidated and the functional
role of androgen-Notch signaling crosstalk in seminiferous epithelium requires further investigation.
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