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nuclear matter even at extreme conditions such as those inside neutron stars.
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1. Introduction

The modern understanding of strong interactions in the Stan-
dard Model of particle physics is based on the theory of Quan-
tum Chromodynamics (QCD), a non-abelian gauge theory where 
the fundamental degrees of freedom are carried by the quark and 
gluon fields. Despite its great success at very high energies, we 
are unable to achieve the same precision in the low-energy regime 
using full QCD, since the theory becomes nonperturbative. In par-
ticular, theoretical computations of the properties of baryons and 
nuclei from QCD are extremely difficult even for the smallest nu-
clei, and phenomenological models are usually employed, instead.

The Skyrme model [1] offers an alternative approach to this 
problem. It constitutes a nonlinear field theory of mesons which 
corresponds to an effective field theory for low-energy QCD in 
the large Nc expansion. In the Skyrme model, baryons and nu-
clei emerge as topological solitons, i.e., classical solutions with 
localized energy density which are stabilized due to the nontriv-
ial topology of the vacuum manifold. As a consequence, many 
non-perturbative features of low-energy QCD, like the conserva-
tion of baryon number, the extended character of nucleons, or the 
global symmetries of QCD and the corresponding symmetry break-
ing patterns, follow from built-in properties of the Skyrme model. 
This field of research has experienced significant progress in recent 
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years, as different generalizations of the model, like the addition 
of higher derivative terms [2] or additional degrees of freedom 
(DoF)—e.g., vector mesons [3–8]—, or more general potential terms 
[9], have been proposed to better reproduce the observed nuclear 
properties [10–14]. Further, improved quantization methods which 
go beyond the moduli space quantization of spin and isospin have 
significantly contributed to this recent progress, see, e.g., [15–17].

On the other hand, the first observations of gravitational waves 
by LIGO opened a new window for the exploration of matter at ul-
tra high densities, like at the cores of Neutron Stars (NS), which are 
thought to be the most dense objects allowed by General Relativ-
ity (GR) before collapsing to a black hole. Indeed, recent [18]—and 
prospect—observations of mergers of NS binaries will allow us to 
constrain the equation of state (EoS) of nuclear matter at such high 
densities. In particular, since the Skyrme model and its generaliza-
tions allow to find star-like solutions when coupled to GR, these 
observations may serve us to determine whether the (generalized) 
Skyrme model is a consistent way to describe the properties of 
nuclei and nuclear matter at a large range of scales in a unified 
manner.

Different models for NS as Skyrme solitons have been previ-
ously proposed, for example, in [19,20]. These models are interest-
ing from a theoretical point of view, because they allow to obtain 
the EoS of NS cores from a relatively simple field theoretic de-
scription. However, none of the Skyrmion star models present in 
the literature have achieved a good agreement with current obser-
vational data of NS [21]. In this paper, we present an EoS for NS 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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based on a generalized Skyrme model which satisfies all recent ob-
servational constraints of NS, such as the maximum mass limit or 
the deformability as measured in coalescent binary systems.

In this article we will use units in which c = 1. For masses and 
lengths we use either nuclear physics units (MeV and fm) or as-
trophysical units (solar masses M� and km).

2. Skyrme crystals

The Skyrme model is an effective field theory of strong interac-
tions at low energies which emerges in the large Nc limit of QCD. 
It is defined via the Lagrangian

LS K = − f 2
π

4
Tr

{
LμLμ

} + 1

32e2
Tr

{[Lμ, Lν ][Lμ, Lν ]} − μ2U, (1)

with fπ the pion decay constant and e the Skyrme coupling con-
stant. Also, Lμ = U †∂μU is the left invariant Maurer-Cartan form 
associated to the SU(2)-valued Skyrme field U (x), and U = U(U ) is 
a potential. For the pion mass potential Uπ = (1/2) tr (1 − U ), the 
parameter μ is related to the pion mass mπ via μ = (1/2) fπmπ .

In order to obtain finite energy configurations, one imposes 
constant boundary values of U at |x| → ∞, so that the physi-
cally relevant Skyrme field configurations define maps U : S3 →
SU (2) � S3, and thus the Skyrme model presents topological soli-
tons (Skyrmions), whose topological charge equals the topological 
degree of these maps,

B =
∫

B0d3x, with Bμ = 1

24π2
εμνρσ Tr

{
Lν Lρ Lσ

}
(2)

the baryon density current. The Skyrme model (1) describes an 
interacting theory for the Goldstone bosons associated to the (bro-
ken) chiral symmetry, but baryons emerge as topological solitons, 
whose topological charge corresponds to the baryon number [22]. 
Furthermore, the Skyrme model has been applied to the study of 
matter at extremely high densities, required to describe the EoS of 
NS. To do so, one needs to find the lowest energy solutions of the 
Skyrme model for the very large baryon number of NS, typically 
N ∼ N� ∼ 1057.

It is well known [21,23,24] that the lowest energy solutions of 
the standard Skyrme model (described by the Lagrangian density 
(1)) for very large baryon number consist of crystalline cubic lat-
tices of B = 4 Skyrmions—which can be thought of as α particles. 
The energy per baryon of such solutions as a function of the lattice 
parameter of the unit cell, l, is given by:

E(l) = E0

[
a

(
l

l0
+ l0

l

)
+ b

]
(3)

being a = 0.474 and b = 0.0515 adimensional quantities whose 
numerical values were obtained in [24]. We fit the values of energy 
(per baryon) and lattice length corresponding to the minimum en-
ergy configuration, E0 = 923.32 MeV and l−3

0 = n0 = 0.16 fm−3, to 
reproduce the energy per baryon of infinite nuclear matter at nu-
clear saturation density n0, [25]. Note that our values slightly differ 
from those originally proposed in [24] due to the different fit [26]
[27]. From this expression one may obtain the energy per baryon 
as a function of the pressure [19], i.e., the EoS of the Skyrme crys-
tal (at zero temperature).

Indeed, by the thermodynamical definition of pressure at zero 
temperature,

p = − ∂ E

∂V
≡ −∂ E(l)

∂l3
= − 1

3l2
dE(l)

dl
, (4)

we have
2

p(l) = a
E0

3l2

(
l0
l2

− 1

l0

)
. (5)

This expression for the pressure vanishes at the finite length l = l0, 
which is a well-known property of infinite nuclear matter at satu-
ration density n0. Further we shall argue below that the standard 
Skyrme crystal should provide the leading contribution to the nu-
clear EoS close to nuclear saturation. This explains the fit of the 
Skyrme crystal parameters l0 and E0 to the infinite nuclear matter 
values.

The above expression p(l) can be inverted (solved for l),

l20
l2

= 1

2

(
1 +

√
1 + 12

E0a
pl30

)
, (6)

and we may substitute the resulting l(p) into (3) to obtain the 
energy per baryon of the crystal as a function of the pressure, i.e. 
the equation of state for the Skyrme crystal (at zero temperature).

3. The generalized Skyrme model

Since it is an effective theory, the Skyrme model can be ex-
tended by adding higher order terms to the Lagrangian. The only 
possible Lorentz-invariant extra term with at most second order 
time derivatives of the Skyrme field is [10]

L6 = −λ2π4 BμBμ, (7)

with λ a coupling parameter. Thus, the generalized Skyrme La-
grangian reads L gen

S K = LS K + L6.
Unfortunately, neither large B solutions for L gen

S K nor the cor-
responding EoS have been found, to our knowledge. However, at 
sufficiently high densities—for instance, those which occur at the 
core of a neutron star, which can reach several times the nuclear 
saturation density n0—, the sextic term (7) provides the most im-
portant contribution to the EoS, related to the ω meson repulsion 
of nuclear matter [28]. The sextic term alone defines a barotropic 
perfect fluid with energy density ρ6 = λ2π4n2 = p (see below), 
where p is the pressure and n the baryon number density. The 
EoS ρ6 = p is maximally stiff with a speed of sound equal to 1, 
which explains its dominance at high density.

L gen
S K has another interesting submodel which will be rele-

vant for us, the so-called BPS (=Bogomolnyi-Prasad-Sommerfield) 
Skyrme model LB P S = L6 − μ2U(U ). This model supports topo-
logical soliton configurations saturating a BPS energy bound [10], 
hence the name of the model. Minimally coupling this submodel 
to gravity [29], we obtain its stress-energy tensor which still is of 
the perfect fluid form, T μν

B P S = (p + ρ)uμuν − pgμν , with the fol-
lowing definitions (here g := ∣∣det

{
gρσ

}∣∣),
uμ = Bμ√

gρσ Bρ Bσ
, p = λ2π4 g−1 gρσ Bρ Bσ − μ2U, (8)

and ρ = p + 2μ2U . Further, the proper baryon number density is 
n = uμ(g− 1

2 Bμ) =
√

g−1 gμν BμBν . Note that this perfect fluid is, 
in general, non-barotropic, since the potential term U introduces 
a dependence on the Skyrme field in p and ρ , such that no sim-
ple algebraic relation can be found between them. Nevertheless, 
one may still perform a mean-field approximation and obtain an 
effective, barotropic EoS for the BPS Skyrme fluid, which offers the 
interesting possibility to compare the results obtained within the 
exact and the mean-field approaches [29].

In the case of interest here, however, we will introduce a con-
stant effective potential μ2U = ρ0, which is supposed to take into 
account the effects of the subleading contributions above a certain 
threshold value pPT for the pressure, see below. This is equivalent 



C. Adam, A.G. Martín-Caro, M. Huidobro et al. Physics Letters B 811 (2020) 135928
to choosing the theta-term potential of ref. [29] and implies the 
barotropic EoS

ρ = ρ6 + ρ0 = λ2π4n2 + ρ0 = p + 2ρ0 (9)

already at the full field-theory level.

4. A generalized equation of state

Both the standard Skyrme model and the BPS submodel have 
been previously used to describe nuclear matter inside NS [21]. 
However, it is clear from these attempts that the true equation 
of state for Skyrme matter should take into account both mod-
els in a unified fashion, because the results from approximating 
the full model with either of the two submodels deviate from 
the most recent observational data of NS, and do so in opposite 
directions. For example, the maximum mass of NS is either too 
small (for pure skyrmion crystals) or too large (for BPS Skyrmion 
stars) as compared with the current constraints [21]. As explained, 
the generalized Skyrme model has not been solved yet for large 
baryon number. Nevertheless, we may still obtain some informa-
tion of these high baryon number solutions by scaling arguments 
of the energy terms for the different submodels of the complete 
Lagrangian.

Indeed, consider for example the case of the Skyrmion crystal, 
whose energy per baryon is given by (3), and let σ ∈ (0, 1]. A scale 
transformation of the space coordinates of the form x 
→ x/σ can 
be understood as a mapping between crystalline solutions, respec-
tively, with lattice size l and σ l. On the other hand, since the lat-
tice length is a function of the pressure, we conclude that two so-
lutions at different pressures p and p′ which have a lattice length 
of l(p) and l′(p′) respectively, are related through a scale transfor-
mation σ(p, p′) such that l′(p′) = σ(p, p′)l(p). In particular, any 
configuration with lattice length l(p) will be related to the zero 
pressure crystal (minimum energy configuration) via l(p) = σ(p)l0, 
where σ(p) = σ(0, p) can be seen as a function relating the pres-
sure of the crystal and the scaling parameter. Furthermore, taking 
into account (6), we find

σ(p) =
√√√√√ 2

1 +
√

1 + 12l30
E0a p

. (10)

This expression has indeed the correct limits of σ(p → ∞) → 0
and σ(p = 0) = 1.

This equivalence between pressure and scaling allows us to 
write the energy per baryon of the Skyrmion crystal at any 
pressure (i.e. σ �= 1) as a simple function of σ = l/l0, E(σ ) =
a E0

(
σ + σ−1

) + b E0. Obviously, the contribution from the term 
proportional to σ becomes negligible for large pressure, whereas 
the term proportional to σ−1 dominates in this regime (σ  1).

Next, consider the sextic term contribution to the energy (and 
energy per baryon) of a fluid element �

E6

B
= (

∫
�

d3x
√

g ρ6)

(
∫
�

d3x
√

g n)
, (11)

which transforms as E6 
→ σ−3 E6 under a scaling of spacetime co-
ordinates. This implies that the sextic contribution will dominate 
the energy per baryon at sufficiently high pressure. Therefore, we 
may assume that a solution of the complete model will provide an 
EoS which tends to the EoS of the submodel ρ6 at high pressure, 
with an asymptotic energy per baryon of E6/B = ρ6/n = λπ2√p. 
This is, therefore, the asymptotic behavior of the energy per baryon 
at high pressure also for the full model.
3

On the other hand, as the pressure decreases to a certain value 
(which depends on λ), E6/B becomes of the order of the energy 
per baryon of the Skyrme crystal, and the BPS approximation to 
the complete solution will start to fail. For even lower p, the con-
tribution of E6/B will be subleading in comparison to the Skyrme 
crystal.

This supports the idea that a transition of some kind must take 
place within this generalized model, between the crystalline phase 
of the standard Skyrme model and the perfect fluid phase of the 
BPS model. A quantitative prediction of the pressure value p P T

where this transition occurs, as well as the determination of its 
character—a smooth crossover or a phase transition—would require 
the knowledge of the full solution or, at least, the value of the pa-
rameter λ, because the contribution to the energy per baryon of 
the sextic term strongly depends on λ.

In [20], the BPS submodel was used to model the full neutron 
star core and, therefore, the model parameters λ and μ were fit-
ted to match with the infinite nuclear matter approximation at 
zero pressure. In the present case, however, the Skyrme crystal 
describes the low-pressure region and, therefore, should be fitted 
to nuclear matter. In this section, we will propose an EoS for the 
generalized model corresponding to L gen

S K . The value of λ will be 
determined, instead, by the behavior of the EoS in the limit of very 
high pressure, in which, as argued, it can be approximated by only 
the sextic term, see below.

From the previous considerations, we can construct a general-
ized EoS which takes into account both the standard Skyrme and 
BPS submodels at different regimes, based on simple assumptions 
on the behavior of the full solutions in the low and high pres-
sure regimes, without knowing these solutions explicitly. Indeed, 
we will assume that the low pressure solutions of the complete 
model are still Skyrme crystals whose energy is approximately de-
scribed by (3). In the fluid high-pressure phase, we will assume 
that the sextic term provides the most important contribution, and 
the complete solutions can be well described by a BPS Skyrme 
model. We can model this behavior by introducing a certain value 
of the pressure, p P T , above which the solutions are described by a 
BPS fluid. Therefore, the generalized EoS ρGen(p) must satisfy

ρGen(p) �
{

ρS K (p), p << p P T

const. + p, p >> p P T .
(12)

A simple way of parametrizing this behavior that yields a smooth 
transition between these two regimes is to consider an EoS of the 
form

ρGen(p) = (1 − α(p))ρS K + α(p)(p + ρS K (p P T )), (13)

where α(p) is a function which interpolates between the two 
regimes, i.e., α → 0 for p/pPT → 0 and α → 1 for p/pPT → ∞. 
Concretely, we consider the interpolating functions

α(p, pPT, β) =
(

p
p P T

)β

1 +
(

p
p P T

)β
(14)

as in [33]. Here, smaller values of β produce a more gradual tran-
sition, whereas larger values correspond to a faster transition be-
tween the two regimes. For the transition between the Skyrme 
crystal and the BPS fluid at pPT, we have to choose the rather 
gradual transition β = 0.9, because otherwise the resulting energy 
density (13) would lead to acausal propagation (a speed of sound 
larger than one) in some regions inside the star for some values of 
p P T .

As a result of this interpolation, the energy density contribu-
tion from the crystal becomes less and less important as p grows, 
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Fig. 1. Comparison of the Skyrme crystal and the generalized model EoS to other 
neutron star EoS usually considered in the literature, namely, APR4 [30], WFF1 [31]
and BCPM [25] (the BCPM EoS turns out to be numerically very similar to SLy4 
[32]). In this figure, we show the curve for the generalized model with p P T = 50
MeV/fm3, but the range of possible values of p P T (p∗) that yield results consistent 
with observations corresponds to the blue (yellow) stripe: p P T ∈ [25, 50] MeV/fm3, 
p∗ ∈ [0.5, 2.0] MeV/fm3.

freezing at its value at p P T for sufficiently high pressures, playing 
the role of an effective potential energy for the BPS Skyrme model. 
The p dependence for p > p P T is taken into account by ρ6, which 
is known to provide the leading contribution for large p. There-
fore, the generalized EoS (13) is effectively equivalent to that of 
a BPS Skyrme model with a theta potential [11] for p >> p P T . In 
the following section, we will see that the value of p P T determines 
the maximum mass of a NS, so we may adjust the value of p P T to 
agree with the current maximum mass limit for NS.

To obtain the baryon density n in the generalized model, we 
use the well-known Euler relation ρ = −p + ∂ρ

∂n n, which yields a 
differential equation for n, that we integrate using n(p = 0) ≡ n0 =
0.16 fm−3 as initial condition to obtain the curve n(p). The result, 
and the corresponding EoS ρ(p), are shown in Fig. 1, where other 
EoS have been included for comparison.

4.1. Addition of crust: the hybrid EoS

The generalized Skyrme EoS (13), by construction, only de-
scribes nuclear matter above nuclear saturation [34]. Below sat-
uration density, nuclear matter in a NS is known to be in a rather 
inhomogeneous state, resulting from a competition between nu-
clear and electromagnetic forces (e.g., “nuclear pasta” phases [35]). 
In principle, the (generalized) Skyrme model can be coupled to 
the electromagnetic interaction, so these low-density phases are 
fundamentally within its scope. Full field-theoretical calculations 
for this coupled system and for large B are, however, not fea-
sible, and a macroscopic (hydrodynamical) treatment is currently 
unknown. On the other hand, the standard methods of nuclear 
physics, such as many-body techniques, can be used to describe 
these low-density NS crust regions and are completely reliable 
there. This motivates us to consider a hybrid version of (13) in 
which, at a sufficiently low density n∗ (or, equivalently, p∗), a neu-
tron star crust EoS ρBCPM(p) is glued,

ρHyb(p) �
{

ρBCPM(p), p ≤ p∗
ρGen(p), p ≥ p∗.

(15)

Concretely, we choose the BCPM EoS of [25], based on the 
Brueckner-Hartree-Fock (BHF) approach (plus the BCPM density 
4

Fig. 2. Mass-Radius relation for the hybrid model (red curves) for different combi-
nations of values of p∗ = {0.5,1,2} MeV/fm3 and pPT = {25,40,50} MeV/fm3. The 
red shaded region corresponds to the accessible region of the hybrid model with p∗
and p P T within the given ranges (see Fig. 1).

functional for the crust). For the crust and the outer core n � n0, 
nuclear matter is well understood, and standard nuclear physics 
EoS like [25] should provide a precise description of NS matter. 
Again, we choose a smooth transition between the two regimes, 
using the interpolating function (14). Now we choose the faster 
transition β = 2, exactly as was done in [33] (replacing pPT by p∗).

5. Observational constraints

To determine the static properties of the resulting NS, we sim-
ply insert the hybrid EoS (15) into the relativistic equations of 
hydrodynamical equilibrium, the so-called Tolman-Oppenheimer-
Volkoff (TOV) equations [36,37]. In this hybrid EoS, there are only 
two free parameters, namely the values of p∗ and p P T correspond-
ing to the low and high density parts of the hybrid EoS. Here we 
show that recent astrophysical and gravitational wave observations 
actually tightly constrain the value ranges for both parameters. For 
example, from the mass-radius curves for different values of these 
parameters, we find that only the value of p P T affects the maxi-
mum NS mass in the model. Thus, we could for example constrain 
the value of p P T using the maximum mass limit for nonrotat-
ing NS of M/M� = 2.16+0.17

−0.15 proposed in [38]. However, given 
the recent GW observations of GW190425, with a total mass of 
3.4+0.3

−0.1 M� and mass ranges of components varying from 1.12 to 
2.52 M� [39] and GW190814, a compact binary merger between 
a 22.2 − 24.3M� black hole and a secondary object which falls in 
the mass gap (2.50 − 2.67M�) [40], we have allowed the range of 
values of p P T to yield stars of maximum mass up to ∼ 2.7 M�

In Fig. 2 we show different mass-radius curves of the hy-
brid model corresponding to different values of p P T . We can 
see a good agreement, for any pair (p∗, pPT) within the ranges 
p∗ ∈ [0.5,2] MeV/fm3 and p P T ∈ [25,50] MeV/fm3, with the most 
likely mass-radius relation for the NS corresponding to the
GW170817 event [18]. We haven’t included the corresponding data 
of the second BNS event, namely, GW190425, since it was less in-
formative on matter effects than GW170817, although our data is 
still compatible with this event as well, specially for lower val-
ues of p P T [39]. In the same figure, we represent the masses 
of some of the heavier pulsars measured by the NICER collab-
oration, PSR J1614 − 2230 (1.928 ± 0.017M�) [41], PSR J0348 +
0432 (2.01 ± 0.04M�) [42] and PSR J0740 + 6620

(
2.14+0.10

−0.09 M�
)

[43], as well as the most probable M-R region from combined 
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Fig. 3. ̃ as a function of the mass ratio. The orange shaded regions correspond to 
the 50% (dark) and 90% (light) credible regions for the joint posterior of ̃ and q
PDFs as obtained in [49] assuming a low spin prior. Notation for curves from the 
EoS (15): Hyb__p P T __p∗ .

observations of GW and these heavy pulsars [44]. Also, other con-
straints from NICER, chiral EFT and multimessenger observations 
are represented, adapted from [45] and [46].

The observed gravitational waveform can also be used to place 
direct constraints on the tidal deformability of NS. Indeed, the 
waveform produced by the coalescence of two NS at the early 
phase of the inspiral depends on the underlying EoS mostly 
through the tidal Love number [47]. However, the individual Love 
numbers for the two stars cannot be disentangled in the observed 
gravitational waveform. Instead, what is measured is the so-called 
effective tidal deformability ̃, a mass weighted average of the 
deformabilities of the individual stars in the merger [48]. Simi-
larly, the two component masses are not measured directly, but 
the chirp mass, Mc = m1 q3/5/(1 + q)1/5 where q = m1/m2 is the 
mass ratio, can actually be tightly constrained. In the case of the 
GW170817 event, the chirp mass was constrained to 1.188+0.004

−0.002
at the 90% confidence level, and the mass ratio was constrained to 
be in the range 0.7 − 1 within the same confidence level, whereas 
the effective tidal deformability was inferred to be smaller than 
800 [49].

Such measurements allow to reduce the set of Skyrme mod-
els able to reproduce the NS properties. Following [50], we have 
solved the Einstein equations for slowly rotating Skyrmion stars 
with the hybrid EoS using the Hartle-Thorne formalism [51,52] and 
obtained the dimensionless tidal deformability of stars described 
by this model as a function of their TOV mass. On the other hand, 
since the chirp mass of the binary progenitor of GW170817 is well 
measured, for any given EoS the effective deformability reduces to 
a simple EoS-dependent function of the mass ratio. These curves, 
together with the constraints commented above, are represented 
in Fig. 3, from where it follows that our new EoS is compatible 
with the data from [49] for the ranges of p∗ and pPT considered. 
Future measurements of the tidal deformability of NS will allow 
us to further constrain these ranges, since we find that the curves 
̃(q) depend on the particular values of both parameters.

5.1. The sextic term and the ω meson

As explained, the sextic term (7) automatically provides the 
leading contribution at high densities if it is included in the ef-
fective action. On the other hand, this term is physically justified 
because it provides the leading contribution of the ω meson repul-
sion in a derivative expansion which results from integrating out 
the ω field from an extended Lagrangian which includes both pi-
ons and vector mesons [3,5,6]. This relation to the ω meson not 
only motivates the sextic term, but it also leads to an expres-
sion of its coupling constant λ in terms of the physical parameters 
of the ω meson. Indeed, it can be shown [53] that λ2 = g2

ω h̄3

2π4m2
ω

, 
where mω and gω are, respectively, the mass and coupling con-
5

stant of the ω vector meson. Further, h̄ = 197.2 MeV fm is the 
reduced Planck constant. For the empirical values mω = 783 MeV
and g2

ω/(4π) ∼ 12 [6], we get λ2 ∼ 10 MeV fm3.
The λ coupling constant appearing in front of the sextic term 

in the generalized Lagrangian does not directly show up in the 
generalized EoS proposed in this work, whose parameters are con-
strained by the observations of maximum mass and deformability. 
However, the generalized Skyrme model EoS approaches the EoS 
of the BPS submodel for sufficiently large pressure, by assumption. 
We can, therefore, extract an effective value of λ by taking the 
limit of infinite pressure and using the BPS EoS (9), which imme-
diately implies n2 = (ρ + p)/(2λ2π4). The effective value of λ is 
then given by

λef f = lim
p→∞

1

n(p)π2

√
ρGen(p) + p

2
. (16)

For the range of values p P T ∈ [25, 50] MeV/fm3, we find that 
λ2

ef f ∈ [10, 13.5] MeV fm3. The values so obtained for λ2
ef f are, 

therefore, perfectly compatible with the values obtained by assum-
ing that the sextic term in the generalized Lagrangian results from 
integrating out the ω vector meson.

6. Conclusions

In this letter, we propose a completion of standard nuclear 
physics EoS at low densities—known to be reliable there—by an 
EoS based on the generalized Skyrme model in the uncharted 
territory above nuclear saturation density n0. In the simplest ver-
sion of Skyrme models, where electromagnetic effects, quantum 
corrections or the proton-neutron mass difference are not taken 
into account, they can describe nuclear matter only for n ≥ n0, by 
construction. The use of the generalized Skyrme model at densi-
ties n0 < n ≤ nmax is based on the assumptions that i) strong-
interaction effects (nuclear repulsion) are more important than 
degeneracy pressures in that region, ii) the extended character 
of nucleons—which is automatic in the Skyrme model—is relevant 
at high pressure and iii) nucleons are the only relevant DoF in-
side NS cores (no exotic contributions). This last assumption is 
shared by many NS models. Here, nmax corresponds to the cen-
tral density of the maximum mass NS, which is nmax = 7.1n0
for p P T = 50 MeV/fm3 and nmax = 5.3n0 for p P T = 25 MeV/fm3, 
safely below the deconfinement phase transition density ∼ 40 n0
[54].

We find that the resulting EoS provides an excellent descrip-
tion of NS properties, compatible with all constraints, among them 
the latest ones from LIGO. Our EoS contains two parameters which 
have a clear physical interpretation as transitions between stan-
dard nuclear matter and the Skyrme crystal (p∗) and between 
this crystal and a Skyrme fluid (p P T ). In particular, we propose a 
rather smooth transition between a crystalline and a fluid regime 
for 20 ≤ p P T · fm3/MeV ≤ 50, whose precise position may be de-
termined by more precise NS binary observations. Let us remark 
that the very recent observation of the GW190814 event [40], 
with a certain indication of an NS with a mass of about 2.6 M�
[55,56], can be easily accommodated by our generalized Skyrme 
model EoS, by simply choosing a slightly lower value of pPT ∼ 25
MeV fm−3 for the transition between Skyrme crystal and BPS fluid, 
see Fig. 2.

We also find that the range of values for the effective coupling 
constant λ of the sextic term which results from our generalized 
EoS and the fit to realistic NS is perfectly compatible with the 
range of values resulting from its relation to the ω meson.

Motivated by the results obtained with the hybrid EoS proposed 
above, it would certainly be interesting to try to derive a similar 
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EoS from an exact solution of the generalized Lagrangian, for ex-
ample, using a crystalline ansatz for the Skyrme field, as in [57]. 
One then could study whether this exact EoS presents a phase 
transition of some kind, in the same fashion as the proposed hy-
brid EoS. We leave this study for a future work.

Finally, we would like to comment on the similarities and dif-
ferences of our proposal to the scenarios considered in Ref. [8]. 
The calculations and discussions in [8] are based on the (stan-
dard) Skyrme crystal and are, in this sense, similar in spirit to ours. 
There are, nevertheless, some important differences. First of all, in 
[8] more degrees of freedom are considered, among them the dila-
ton to recover the scale symmetry of QCD at large densities. At 
low density, this symmetry is broken spontaneously—the dilaton 
freezes—and the Skyrme model is recovered. Further, the effects of 
higher mass mesons are taken into account implicitly in [8]. The 
main difference for the present purpose, however, is related to an-
other phase transition which is known to occur in the standard 
Skyrme crystal [23], namely the transition from a skyrmion phase 
to a half-skyrmion phase as density increases. In [8], this transition 
leads to a significant stiffening of the EoS which is mainly related 
to an enhanced contribution of the symmetry energy in the half-
skyrmion phase. In our case, we assume that in the region where 
the Skyrme model is effective (i.e., for p > p∗) we are always in the 
half-skyrmion phase. In addition, the Skyrme crystal influences the 
EoS only via its scaling properties in our case, see Eq. (3), and the 
effects of the symmetry energy are taken into account only im-
plicitly, by an appropriate choice of our physical parameters. The 
stiffening of the EoS is caused, instead, by the sextic term, i.e., by 
the ω repulsion, as explained in the main text.
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