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Faradaic current measurements have been carried out on three different types of 

mullite: 2:1 mullite single crystals (Ec), 3:2 ceramics and 11% mullite/Mo 

composites. Measurements were carried out in very thin samples (60 m) at high 

voltages (500 to 1000V). Under these conditions, measurable currents were recorded 

even at room temperatures. Results indicate notable differences between these three 

samples, which suggest that, although they share the same name and similar crystalline 

structure, binding energies and defect distributions seem to be very different. Finally, it 

has been seen that the excellent behaviour against dielectric breakdown of ceramic 

mullite does not correspond to those of single crystals or mullite based cermets. 
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Introduction. 

From a electromagnetic point of view, mullite is an aluminum-silicate characterized by 

large insulating and dielectric strength properties[1]. This material is commonly 

employed in high voltages environments as insulator supporting material and for over-

voltage protection[2]. In addition, due to its low thermal expansion and resistance to 

deformation under load, mullite ceramics is the most common material employed for 

thermocouple tubing, kiln furniture, and liner material in tube-type furnaces. 

Mullite has the general composition Al4+2xSi2-2xO10-x. According to its formula with x-

values varying between about 0.20 and 0.85, it contains variable amounts of alumina 

and silica. Mullite ceramics usually have an alumina/silica ratio of 3:2 (designated as 

3:2- or stoichiometric mullite), while single crystals have 2:1 compositions (designated 

as 2:1-mullite). Depending on the composition, a variable amount of oxygen vacancies 

is present in mullite, with the x-value of the general formula corresponding to the 

number of vacancies. Although, 3:2- and 2:1-mullites have similar crystal structures 

their oxygen defect structure must be different. In the case of 3:2 composition (x=0.25) 

1 oxygen vacancy occurs per 4 unit cells, while for 2:1-composition there are 2 oxygen 

vacancies per 5 unit cells.  

 

It has been suggested that oxygen hopping towards these vacancies may produce some 

ion conductivity in mullite at high temperature. Although very difficult to measure, 

some ion conductivity of the ceramic material above 1100ºC with an activation energy 

of 4.5eV has been previously reported [3]. Below this temperature, n-type electronic 

conduction might be expected to predominate [2]. On doping with transition metallic 

cations, conductivity increases several orders of magnitude at 400ºC[4] . 

 

Because of the high insulating character of mullite, electric current measurements have 

not been performed at room temperature yet. In fact, for conductivities of the order of 

10
12 

S·m
1

, only currents below pA are applied or voltages of 1 V (a typical large 

voltage value for impedance measurements) in a regular size sample (10x10x1 mm). 

Therefore, in order to understand the conduction mechanisms at room temperature, high 

voltages in addition with very thin samples were applied. For that reason, our 

experimental setup have optimized for detecting very low currents. Because we have 

employed a picoamperimeter to detect very low currents, this experimental setup forces 
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us to work in the direct current (DC) regime. In this sense, the experimental results 

cannot be interpreted as usual linear ion conductivity experiments (impedance 

spectroscopy). In the present case, applied electric fields are large enough to displace 

charge carriers from shallow potential wells, but not enough to distort the bonding 

potential of the crystalline structure. It should be noted that under these conditions, 

several conduction mechanisms can be activated, so that, if the conductivity of all of 

them are much different, only the less resistive is the one to be detected. In 

conductive/insulator materials, Schottky and/or tunnel electronic conductivity, can be 

detected once the voltage exceeds the linear regime [5, 6]. However, for insulator 

materials, such as glasses or oxidic ceramics, ion diffusion processes can be activated, in 

such manner that a faradaic current can be recorded. Because metallic electrodes block 

the ion current, ion carriers accumulate on the corresponding electrode. Therefore, the 

dependence of this current with voltage, temperature and time can supply valuable 

information about electrically charge defects. 

Experimental procedure. 

Mullite single crystal growth 

2:1-mullite single crystals with lengths up to 80 mm and diameters up to 20mm were 

supplied by the Institute of Crystal Growth (Berlin, Germany) using the Czochralski 

crystal growth technique. The following starting materials were used (wt.%): Al2O3 

(77.3) and SiO2 (22.7). For a detailed description of the mullite single crystal growth 

procedure see e.g. Guse and Mateika [7]. Several orientations were cut and polished, but 

unfortunately, only the piece with c-axis parallel to the crystal surface presented the 

required stability properties to be thinned down to 60 m. 

Processing of mullite 

 

Monolithic mullite ceramics were obtained from mullite powders (Scimarek 

Ltd., Japan) with an average particle size of 1.5 µm, specific surface area of 7m
2
/g, and 

chemical analysis (wt.%) as follows: Al2O3 (71.5), SiO2(27.3), Na2O (0.02), MgO 

(0.04), CaO (0.07) and Fe2O3 (0.05) 

 

A suspension of 50 wt.% solid content (using ethyl alcohol as liquid media) was 

homogenized by milling with zirconia balls in polyethylene containers at 150rpm for 18 

h and then dried at 65 ºC for 24 h. The resulting powders were milled in an agate mortar 
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and then sieved to a particle size <43 µm. Finally, the powders were pressed 

isostatically at 200 MPa, and the resulting compact was sintered in vacuum (5x10
3
 Pa) 

at 1650 ºC for 1 h, with a heating and cooling rate of 10 ºC/mm. 

 

Processing of mullite/Mo composites 

 

Monolithic mullite/Mo composites, processing has been previously reported[8]. The 

following starting materials were used: (1) 99.9% pure Mo metal (Sigma-Aldrich Co., 

US) with an average particle size of 1-2 µm; (2) Mullite Symulox M72 MC (Nabaltec 

AG, Germany) with an average particle size of 3-5 µm, and with the following chemical 

composition (wt.%) Al2O3 (72.0), SiO2 (26.5), Na2O + K2O (0.6), CaO + MgO (0.3) and 

Fe2O3 (0.3), TiO2 (0.2). 

 

  Different mullite/Mo composition were mixed in destilled water with 1 wt.% of 

deflocculant (Dolapix PC67) addition. All suspensions were homogenized by milling 

with zirconia balls in polyethylene containers by a Turbula T2F mixer for 24 h. 

 

  The slurries used to obtain the composites were dried at 80ºC, for 24 h. The resulting 

powders were crushed in an agate morter and then passed through a 100 m sieve. 

Before the sintering process the powders were processed in reduction atmosphere of H2 

for 1 hour at 850ºC. The reduced powders were sintered in a Spark Plasma Sintering 

(SPS) oven at 1500ºC for 3 minutes in vacuum under 100 MPa pressure.[9] 

 

Electrical measurements 

For electrical measurements, all samples were cut, ground and polished to a 

thickness of ~0.1 mm. Electrical  contacts were made by applying silver paint on the 

surfaces of the samples by means of circular masks with a fixed area of 15.9 mm
2
. 

Current-Voltage(I-V) data were acquired using a Keithley 6517A electrometer as a 

voltage source and picoampere meter. All measurements were realized inside a faraday 

cage with a controlled temperature and atmosphere (dry nitrogen) environment. 
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Results and Discussion. 

Electric current densities vs. applied field for different temperatures referring to the 

three mullite materials appear in figures 1 to 3. 

 

Experimental data have been fitted to the standard model for ion conductivity of ionic 

conductors[10] 
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In this formula, , q, 0, n, W and E stand for mean free path, carrier charge, jump 

frequency, carrier volume density, activation energy, and applied electric field 

respectively. The results of fittings appear in table I. In this table, it has been assumed 

that q is the electron charge, and0 is fixed to 0 =10
13

 s
-1

 which is the typical frequency 

for phonon vibrations, so that,  and n can be estimated, although strong correlation 

between these two parameters may appear.  

In fig.1 the fitted experimental data corresponding to 2:1-mullite single crystal are 

shown. For this material, the carrier density is anomalous high while the mean free path 

very small. However it should be noted that according to the conductivity model 

(Equation (1)) the mean free path appear multiplying to the internal electric field. In this 

particular sample, it seems that a leakage current of about 10
-6

Am
-2

 is present in all the 

experiment on single crystal. It is not clear the origin of this current, however it seems 

to be independent of the applied field. Actually, to this current a potential drop should 

be associated so that it is likely that the microscopic electric field could be smaller than 

the externally applied. In any case, the fitted activation energy is 0.82 eV, which does 

not depend on the electric field intensity, is similar to the one obtained for oxygen 

vacancies ion conductors.  

Additionally, in fig.1 can be seen that at fields larger than 10
7
 V/m pre-breakdown or 

electronic conductivity start to appear which suggests that this sample is very fragile 

and does not support high electric fields. This is contradictory to the common 

knowledge that states that dielectric strength of mullite is quite high.  

In fig.2, the current density plot for a 3:2 mullite ceramic appears For the 3:2-mullite 

ceramic sample, the current density is notably smaller than in the case of 2:1 single 

crystal. Although this fact is in agreement with all the previous knowledge about the 

insulating properties of mullite, it introduces a new question about the resemblances 
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between mullite single crystal and ceramics. The mean free path is much larger and the 

carrier density much smaller than those corresponding to the 2:1 mullite single crystal 

(Table I). However, the activation energy is smaller (0.7 eV) than in the case of the 

single crystal. 

The last considered system is a ceramic/metal composite with a metal concentration 

below the percolation threshold (11 vol.  %). It is expected that this composite will 

present different values of conductivity and activation energy, due to the effect of the 

metal and some possible oxide which can diffuse along the mullite crystalline structure.  

In fig.3, the conductivity values for this composite can be seen. 

The fitted values for this sample (Table I) indicate that the carrier density in the cermet 

is slightly higher than in the case of monolithic ceramic, while the mean free path is 

larger than in the previous case. In addition, the activation energy displays a 

considerable reduction (W=0.54 eV), which could be justified by the effect of 

Molybdenum particles which may introduce defects as MoO or MoO2 due to a partial 

oxidation of its surface[11]. 

From the comparison of these three samples several interesting facts can be deduced. In 

the first place, the mullite single crystal presents conductivity parameters much different 

from those of ceramics. This odd result can be justified because the chemical 

composition of both samples is different which suggests that if conductivity were due to 

oxygen hoppings versus oxygen vacancies (a plausible hypothesis), activation energy 

and defect density are much different from single crystal to ceramics.  

Another important result deduced from conductivity measurements on single crystal is 

the small dielectric strength of the material. In fact, the sample suffered pre-dielectric 

breakdown processes at the largest employed fields. This behaviour further indicates 

that 2:1-mullite has a large concentration of mobile defects and vacancies which can be 

drifted by the effect of moderate electric field, so that once the faradaic current 

displaces them to precipitate on the corresponding electrode, crystalline structure 

becomes unstable and electrochemical breakdown processes [2] take place.  

The 3:2-mullite ceramic, presents very good insulating properties. However, even for 

this system, an ionic current with activation energy of 0.7 eV can be detected. The ionic 

character of the faradaic current is determined because the resistance of the sample 

increases with time, as a consequence of depletion of carriers. It should be noted that 

long term current measurements under high fields have been done on these kinds of 



 

 

7 

samples (data not shown) and we have not observed any notable instability apart from a 

loss of conductivity. 

The effects of cations on mullite conductivity has been previously mentioned[4]. In the 

present case, and due to the processing conditions of mullite/Mo composites, 

molybdenum oxide appears on the surface of metallic particles. Consequently, after 

sintering, some molybdenum cations diffuse into the ceramic phase and Mo-doping  of 

mullite is obtained. The energy of activation is reduced to 0.54 eV, the carrier density 

increases in a factor of 2.5 and the mean free path increases more than an order of 

magnitude. Additionally, this material presents a very poor dielectric strength. 

Conversely, to the case of mullite ceramics, this materials presents a prominent ageing 

under high voltages, and as in the case of a single crystal, pre-breakdown and even 

breakdown processes appear after several days of measurements at constant high field. 

As it happens also in the case of the single crystal, the amount of defects in the 

composite is larger than the pure ceramic sample so that it points out as the possible 

origin of electrical instability. Finally, it should be noted that as it has been shown for 

BaTiO3/Ni composites, which behaves in a similar way as the Mullite/Molybdenum [6, 

11, 12] ones, the electric field can be increased even by a factor of 10
4
 by the effect of 

metallic inclusions, especially for concentrations very close to the percolation threshold. 

Therefore, the internal electric field could be even one order of magnitude larger than 

the applied one, so that the very large mean free path value obtained from fitting for the 

Mu/Mo composites could be actually similar to the one corresponding to 3:2 ceramic 

mullite. 

Conclusions. 

As a conclusion, it can be stated that faradaic current is a valuable tool for determining 

the conductivity mechanisms of highly insulating materials, even at room temperature. 

The most striking result is that conductivity nature of 2:1 mullite single crystals is very 

different than 3:2 ceramics. Two possible reasons may account for this: 

- A higher carrier density in 2:1 single crystal mullite than in 3:2-mullite ceramics, 

due to the presence of a higher number of oxygen vacancies enabling higher 

oxygen ion conductivity. 

- The influence of existing (3:2- mullite ceramic) and non-existing (2:1-mullite 

single crystal) grain boundaries. Obviously this does not have a big influence, 
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since the grain boundaries should provide a higher carrier density and thus 

should increase the conductivity in the ceramic, which has not been observed. 

A conclusion is that the number of oxygen vancancies, being higher in 2:1-mullite 

single crystal and in mullite/Mo composites than in 3:2-mullite ceramics may control 

the different conductivities of phases. This suggests that the energetic configuration of 

crystal structures present notable results. In fact, although 3:2-mullite ceramics are well 

known for their high dielectric strength, both 2:1-mullite single crystals and 

mullite/Molybdenum composites present poor behaviour against dielectric breakdown. 
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FIGURE CAPTIONS 

 

 

Figure 1. Current density vs Electric field of Mullite single crystal at different 

temperatures: ( )408K( )393K( )378K( )363K( )348K( )333K. Solid lines 

correspond to calculated data, figures correspond to experimental data. 
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Figure 2. Current density vs Electric field of 3:2 mullite ceramic at different 

temperatures: ( )413K( )403K( )393K ( )383K( )373K .Solid lines correspond to 

calculated data, figures correspond to experimental data. 
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Figure 3. Current density vs Electric field of 3:2 mullite/Mo composite at different 

temperatures: ( )318K( )310K( )254K( )230K( )205K. Solid lines correspond to 

calculated data, figures correspond to experimental data. 

Table I 

 2:1 Mullite SC 3:2 Mullite Cer. 3:2 Mullite/Mo 

 (nm) 1.7 11 151 

n (at/m
3
) 2.90·10

21
 4.90·10

17
 1.20·10

18
 

W (eV) 0.82 0.7 0.54 

Emax (V/m) 1.00·10
7
 1.00·10

7
 5.00·10

6
 

Table 1. Fitted values for experimental data corresponding to the three mullite samples. 

 

 


