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Abstract. The transition from acoustic noise in the radiation-dominated universe to the density structures in the matter domi-
nated epoch is considered. The initial state is a stochastic field of sound waves moving in different directions. The construction
of the initial state is compatible with the hyperbolic type of propagation equation for density perturbations, and parallel to the
theory of stochastic background of gravitational waves. Instantaneous transition between the cosmological epochs is assumed,
and Darmois-Israel joining conditions are applied to match solutions for sound waves with growing or decaying modes at the
decoupling. As a result a substantial amplification of the low scale structures is obtained.

Key words. cosmology: theory – cosmology: miscellaneous – cosmology: large-scale structure of the universe

1. Introduction

Simple models of transitions between different cosmolog-
ical epochs help us to understand amplification of scalar
fields, electromagnetic and gravitational waves in the expand-
ing universe (Frieman & Turner 1984; Abbott & Harari 1986;
Hu 1998; Grishchuk 1996; Allen et al. 2000). Typical cos-
mologies of that class consist of three phases: 1) a semiclas-
sical phase, which is commonly identified with de Sitter stage,
2) the radiation-dominated epoch described by the equation of
state p = ε/3, and 3) the matter dominated era when pressure is
negligible p = 0. Transitions between them are assumed to be
instantaneous. The physical meaning of these models is close
to that of simple models of the particle scattering on rectangu-
lar potential barriers in quantum mechanics. Asymptotic results
weakly depend on the barrier profile, so we hope, that in more
realistic cosmology, the perturbation amplitude in the remote
past and the far future should only marginally depend on the
transition details.

For scalar or electrodynamic fields, as well as for gravita-
tional waves the amplification can be measured by Bogolubov
coefficients (Birrell & Davies 1982). These fields are governed
by hyperbolic partial differential equations in each of dis-
cussed epochs and the changes in the equation of state – the
change in the background dynamics – result in a specific re-
lations between Fourier modes in the in and out state, re-
spectively. For some frequencies, counter-propagating waves
are substantially amplified (creation of pairs of particles with
opposite momentum) – the so called back scattering effect
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(Parker 1972) comes into play1. Similar effects may occur in
acoustic field (Lukash 1999). Fields enhancement on non static
background is generally referred to parametric amplification
(Grishchuk 1995).

Neither parametric amplification nor particle creation the-
ories provide appropriate language to describe the growth
of density perturbations in the transition to matter-dominated
epoch. The scalar perturbations form waves (Sachs &
Wolfe 1967; White 1973; Field & Shepley 1968) (in quantum
phonon-approach Lukash 1980; Chibisov & Mukhanov 1982)
only in the epochs of non vanishing pressure, but they trans-
form into non-travelling ingomogeneities (growing and decay-
ing modes) in the matter dominated epoch (p = 0). The change
then is two-fold: 1) the transition modifies the background dy-
namics; 2) the propagation equation change its differential type.
Bogolubov coefficients lose their physical meaning. Yet, the
general scheme of the field propagation throughout the transi-
tion epoch is the same: for the scalar or electrodynamic fields
the continuity of each field and its time derivative must be sat-
isfied at the transition, for metric perturbations (both scalar and
tensor) the first and the second fundamental forms must be con-
tinuous (Darmois-Israel conditions).

Classical perturbations in the cosmological models with
sharp transitions have been investigated by Kodama & Sasaki
(1984) or Hwang & Vishniac (1991). These authors limit them-
selves to the standing wave solutions and to regime of low fre-
quencies. A similar task for a universe with the radiation and
dust mixture has been undertaken by Mukhanov et al. (1992)

1 For low frequency gravitational standing waves of substan-
tial amplitude may appear (squeezed state of gravitational field,
Grishchuk 1996).
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also in the long wave limit. In quantum theories the radiation to
matter transition has been extensively discussed by Grishchuk
(1994) as a part of a more complex cosmological model in-
cluding an inflationary stage. Large scale perturbations where
investigated there in the context CMBR temperature fluctua-
tions. Relatively little is known about the low scale inhomo-
geneities.

In this paper we present exact formulae for density pertur-
bations in the universe with sharp transition in a full range of
frequencies. We start with acoustic noise in the radiation era
and investigate its transition to density structures in the mat-
ter dominated epoch. We employ the autocorrelation function
as a measure of structure, or equivalently its Fourier trans-
form – the spatial spectrum of inhomogeneities. This measure
agrees well with what other authors propose in cosmology.
However, despite the cosmological practice we do not limit
the basis of elementary solutions to “growing modes”. Instead,
we take into account the complete basis of Fourier modes, ad-
equate to the hyperbolic character of the propagation equa-
tion and in full analogy to a stochastic description of gravita-
tional waves (Allen et al. 2000) and quantum (phonon) theories
(Lukash 1980; Chibisov & Mukhanov 1982; Grishchuk 1994).
Since we disregard inflation, there is no squeezing mechanism
(Grishchuk 1995) for the acoustic field. We examine the spa-
tial power spectrum without being limited to standing waves,
and show that substantial amplification occurs in the high fre-
quency regime, which has not been investigated till now.

The structure of the paper is the following: in Sect. 2 we
discuss exact solutions to the perturbation equations in both
radiation and matter eras employing orthogonal gauge. In the
Sect. 3 we construct the 2-epoch model with the instantaneous
transition in the equation of state, by use of the Darmois-Israel
conditions. The Sect. 4 is devoted to the stochastic properties
of the acoustic field. Finally, we investigate the time evolution
of the spatial spectrum of cosmological inhomogeneities.

2. Perturbations in the Robertson-Walker universe

There are several independent methods to describe scalar per-
turbations in a gauge-invariant way (Olson 1976; Bardeen
1980; Brandenberger et al. 1983; Lyth & Stewart 1990;
Ellis & Bruni 1989). For the universe filled with an ideal fluid2

with arbitrary non- vanishing pressure p all of them lead to the
same result: under appropriate choice of the perturbation vari-
ables, the propagation equations converge to the wave equa-
tion (Sachs & Wolfe 1967; Field & Shepley 1968; Chibisov
& Mukhanov 1982; Golda & Woszczyna 2001). The density
perturbations form travelling waves. Below we consider ro-
tationless fluid, hence the hypersurfaces orthogonal to the
fluid flow can be globally defined, and therefore, the orthog-
onal gauge (Lyth & Mukherjee 1988; Lyth & Stewart 1990;
Padmanabhan 1993) is naturally applied.

The linear corrections to the energy density and the expan-
sion rate evolve according to

∂tδε(t, x) = −p0δϑ(t, x) − ε0δϑ(t, x) − ϑ0δε(t, x) (1)

2 With the diagonal energy momentum tensor Tµν = (ε + p)uµuν +
pgµν.

∂tδϑ(t, x) = −4Gπδε(t, x) − ∇
2δp(t, x)
p0 + ε0

−2
3
ϑ0δϑ(t, x) − (24Gπε0 − ϑ2

0)δp(t, x)

3(p0 + ε0)
(2)

where the subscript “0” refers to the unperturbed, background
FRW universe (ε0 = ε0(t), and p0 = p0(t) are solely functions of
time). The Eqs. (1) and (2) are derived from the Raychaudhuri
and the continuity equations by use of the standard lineariza-
tion procedure and by replacing the proper time by the orthog-
onal time. Below we limit ourselves to spatially flat universe
K = 0. In this case the background energy density and the ex-
pansion rate are related to each other by 8πGε0 = ϑ2

0/3.
Let us assume now that the universe is filled by the single

fluid with the equation of state P/ε = w = constant, where
the value of w determines both the evolution of the background
metric (unperturbed universe) and the sound velocity for small
perturbations. We express the energy density and the expansion
rate as the composition of the background energy values ε0, ϑ0

and the small inhomogeneous correction δε = ε0δ(t, x), δϑ =
ϑ0Θ(t, x)

ε(t, x) = ε0(t)(1 + δ(t, x)) (3)

ϑ(t, x) = ϑ0(t)(1 + Θ(t, x)) (4)

where δ(t, x) and Θ(t, x) play the role of the density and ex-
pansion contrasts, respectively. Transforming system (1), (2) to
a second order propagation equation for δ we obtain a partial
differential equation of the form

w(3)∆δ(t, x) =
ϑ2

0

6
(w − 1)(1 + 3w)δ(t, x)

+ϑ0

(
2
3
− w

)
∂tδ(t, x) + ∂2

t δ(t, x) (5)

with the background evolution given by ϑ0(t) = 2
(1+w)t or equiv-

alently in the conformal time η

w(3)∆δ(η, x) =

(
3w − 3
3w + 1

)
2
η2
δ(η, x)

−
(

3w − 1
3w + 1

)
2
η
∂ηδ(η, x) + ∂2

ηδ(η, x). (6)

The conformal time η is defined here as the integral
∫

1
a(t) dt

of the scale factor reciprocal over the orthogonal time t
and (3)∆ stands for the Laplace operator in 3-dimensional
Euclidean space. Equation (6) can be solved analytically by use
of Fourier transform. Actually, we are interested in two special
cases w = 1/3 (radiation-filled universe) and w = 0 (matter-
domination epoch).

The propagation equations for small perturbations (5), (6)
(and consequently (7) below) do not contain the gravitational
constant G, which means that inhomogeneities do not self-
gravitate unless the linear regime breaks down. They evolve as
acoustic waves in the expanding gas medium (compare Sachs
& Wolfe 1967; Stone 2000). All the perturbation equations ob-
tained in different gauge invariant formalisms can be reduced
to an equation of the form (5) by suitable changes of vari-
ables (and with different meaning of the variable δ and the
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time parameter) (Golda & Woszczyna 2001). The necessary
changes reads (in the notation: reference: original notation →
δ) (Sakai 1969): K → δ;
(Bardeen 1980): ρm → δ;
(Kodama & Sasaki 1984, Chap. IV): ∆→ δ;
(Lyth & Mukherjee 1988): δ→ δ;
(Padmanabhan 1993): δ→ δ;
(Brandenberger et al. 1983): ΦH/ρa2 → δ;
(Ellis et al. 1990):D→ δ.
Transformations of these equations to conformal time (if pa-
rameterized differently) are necessary.

In the universe filled with highly relativistic matter, the
scale factor a(η) evolves as a linear function of the conformal
time: a(η) =

√M/3 η, and preservesM = ε0a4 as the constant
of motion. Equation (6) expressed in conformal time takes the
canonical form (independent of first derivatives)

1
3

(3)∆δ(η, x) = −2δ(η, x)
η2

+ ∂2
ηδ(η, x). (7)

Equation (7) is essentially the same as the propagation
equation for gravitational waves in the dust-filled universe
(Grishchuk 1974; White 1992). It reduces to the wave equation
in its normal form
1
3

(3)∆̂δ(η, x) = ∂2
ηδ̂(η, x) (8)

for δ̂(η, x) defined as

δ̂(η, x) =
1
η
∂η(ηδ(η, x)). (9)

The variable δ̂(η, x) is the orthogonal-gauge analogue to
the Field-Shepley variable H (Field & Shepley 1968), or the
Sachs-Wolfe variable E Sachs & Wolfe (1967). Solutions
δ̂(η, x) and δ(η, x) expand into Fourier series in the way ap-
propriate for massless scalar fields (Birrell & Davies 1982),

δ̂(η, x) =
∫

(Akuk(ε)(η, x) + A∗ku∗k(ε)(η, x))dk (10)

δ(η, x) =
∫

(Akuk(ε)(η, x) +A∗ku∗k(ε)(η, x))dk. (11)

The modes uk(ε)(η, x) are simply 1√
2ω

ei(kx−ωη), while uk(ε)(η, x)
can be found as

uk(ε)(η, x) =
1
η

∫
ηuk(ε)(η, x)dη

=
1√
2ω

(
1 +

1
iωη

)
ei(kx−ωη). (12)

The generic perturbation δ(η, x) is composed of travelling plane
waves uk(ε) with decreasing amplitude. (Similar solutions are
known in the theory of gravitational waves (White 1992), and
scalar field Stebbins & Veerarghavan 1993). The Fourier co-
efficient Ak = −iωAk is an arbitrary complex function of
the wave number k, while δ(η, x) keeps real values. The fre-
quency ω obeys the dispersion relation ω2 = k2/3, hence
waves of all length-scales propagate with the same phase
and group velocity3 (compare Chibisov & Mukhanov 1982;

3 This is not the case of open or closed universes, where sound is
dispersed on the space curvature (Golda & Woszczyna 2001).

Sachs & Wolfe 1967; White 1973). Modes uk(ε), although dif-
ferent from the simple eikonal form, are still orthonormal in the
sense of the Klein-Gordon scalar product.

In the epoch of matter dominance m = ε0a3 is the con-

stant of motion and the scale factor evolves as a(η) = mη2

12 . The
propagation equation expressed in orthogonal gauge (in all for-
malism mentioned above) reads

− 6
η2
δ(η, x) +

2
η
∂ηδ(η, x) + ∂2

ηδ(η, x) = 0. (13)

Vanishing pressure implies the absence of the Laplace operator,
consequently, the general solution consists of growing and de-
caying solutions involving two arbitrary functions of the space
coordinates f1(x) and f2(x):

δ(η, x) = f1(x)η2 + f2(x)η−3. (14)

This solution expands into Fourier series

δ(η, x) =
∫ (

akeikx + a∗ke−ikx
)
η2 +

(
bkeikx + b∗ke−ikx

)
η−3dk

(15)

where the coefficients ak and bk are arbitrary complex
functions of k.

3. Matching conditions in the transition epoch

Consider now the two-epoch cosmological model composed of
both, the radiation epoch (governed by the equation of state p =
ε/3), and the succeeding epoch of matter domination (with p =
0). Below, the quantities related to these two epochs will appear
with the indices (1) and (2), respectively. We assume that the
transition between the epochs is instantaneous and occurs on
the hypersurface Σ orthogonal to the four velocity uµ of the
matter content.

The initial Cauchy conditions are unique and consistent on
the hypersurfaceΣ if the first and the second fundamental forms
are equal (Darmois 1927; Hawking & Ellis 1973)

hµν (1)(Σ) = hµν (2)(Σ), (16)

χµν (1)(Σ) = χµν (2)(Σ). (17)

Subscripts (1) and (2) refer to both half-spaces divided by the
surface Σ. For unperturbed background these equations imply
the continuity of the scale factor a(η) and its first derivative

a(1)(Σ) = a(2)(Σ), (18)

∂ηa(1)(Σ) = ∂ηa(2)(Σ). (19)

In our two-epoch model the matching conditions are satis-
fied by

a(1)(η) =

√
M
3
η, (20)

a(2)(η) =

√M(η + ηΣ)2

4
√

3ηΣ
, (21)

where ηΣ denotes the time of the transition, andM is the con-
stant of motionM = ε0a4

(1) of the radiation filled universe.



804 G. Siemieniec-Oziȩbło and A. Woszczyna: Acoustic instabilities in the universe

In the gauge-orthogonal formalism conditions ((16), (17))
can be rewritten to directly join the density and expansion per-
turbations in both epochs, before and after the transition. From
Eqs. ((16), (17)) one can easily find that the energy density ε
and the expansion rate ϑ are continuous on Σ. Indeed, the en-
ergy density ε is related to the induced curvature R(3) and the
second fundamental form by (Hawking & Ellis 1973)

2ε = R(3) − (χµµ)
2 − χµνχµν. (22)

The Ricci scalar R(3) on Σ consists of the metric form hµν(Σ)
and its space derivatives, so R(3) like hµν(Σ), is continuous in
the transition. χµν is continuous on the strength of Eq. (17).
As a consequence, Eq. (22) ensures, that ε is continuous. On
the other hand the continuity of the expansion rate ϑ(t) comes
directly from the same property of the second fundamental
form χµν. Eventually, after eliminating unperturbed values ε0
and ϑ0, the density perturbations obey

δε(1)(Σ) = δε(2)(Σ), (23)

δϑ(1)(Σ) = δϑ(2)(Σ) (24)

where

δε(η, x) = ε0δ(η, x), (25)

δϑ(η, x) = − ϑ0

P0 + ε0
δε(η, x) − 1

a(P0 + ε0)
∂ηδε(η, x), (26)

as derived from Eqs. (1) and (3). It is important to note that the
time derivatives of ε and ϑ may jump, therefore neither δε′(η)
nor δ′(η) = (δε(η)/ε)′ are continuous on Σ.

The starting point for the investigations of acoustic fields
and the structures they produce in the two-epoch universe is
the analysis of a single monochromatic wave (a single Fourier
mode)

uk(ε,1) =
1√
2ω

(
1 +

1
iωη

)
ei(kx−ωη). (27)

This wave, while falling on Σ, generates on the “other side” of
the transition surface a mixture of growing and decaying mode

uk(ε,2) = ak

(
η + ηΣ
ηΣ

)2

eikx + bk

(
η + ηΣ
ηΣ

)−3

eikx. (28)

The two coefficients ak and bk are uniquely determined from
Eqs. (23), (24). Indeed, evaluating Eqs. (25), (26) for the pertur-
bation ((27), (28)) and imposing the matching condition ((23),
(24)) one obtains

ak = − 3
40

1√
2ω

iωηΣe
−iωηΣ (29)

bk =
1√
2ω

(
8 +

8
iωηΣ

+
12
5

iωηΣ

)
e−iωηΣ . (30)

The frequency ω refers to the acoustic wave in the radiation
epoch, and is related to the wave number k by the linear dis-
persion relation ω = k/

√
3. In the epoch of matter dominance,

the perturbations lose their wave character, therefore it may be
better to parameterise them by the wave number k, which has

a well defined meaning in both epochs. Now, the modes uk(ε)

with coefficients ((29), (30)) take the form

uk(ε,1) =
31/4

√
2k

1 +
√

3
ikη

 eikx− ikη√
3 (31)

uk(ε,2) =
31/4

√
2k

eikx− ikηΣ√
3

− 3
40

ikηΣ√
3

(
1 +
η

ηΣ

)2

+

8 + 8
√

3
ikηΣ

+
12
5

ikηΣ√
3

 (1 + η
ηΣ

)−3 · (32)

The second independent solution consists of complex conju-
gates of uk(ε,1) and uk(ε,2). We will include it later to restore the
complete Fourier basis.

4. Random acoustic fields

The acoustic field in the early universe is shaped by thermo-
dynamic or quantum phenomena acting prior to and during
the radiation era. Their probabilistic nature leads to stochas-
tic description. We restrict ourselves to stochastic processes
homogeneous in the broad sense, called also weakly homo-
geneous processes, which keep their mean value and vari-
ance (standard deviation) invariant under translations. The two-
point autocorrelation functions for them are functions of the
distance between points solely – not of these points’ posi-
tions (Loeve 1963). Processes homogeneous in the broad sense
have their Fourier representations (Loeve 1963; Sobczyk 1991;
Yaglom 1961)

δ̂(η, x) =
∫

(Akuk(ε)(η, x) + A∗ku∗k(ε)(η, x))dk (33)

where the integral is understood to be the stochastic integral,
and the Fourier coefficients Ak are random variables. Their ex-
pectation values fulfil (Sobczyk 1991; Yaglom 1961)

E[AkA∗k′] ∼ δδ(k − k′) (34)

E[AkAk′] = 0 (35)

where δδ denotes Dirac’s delta. Conversely, each process obey-
ing Eqs. (34) and (35) is homogeneous in the broad sense.

The relations (34), (35) have a clear physical meaning. The
first of them expresses the statistical independence of waves
with different wave-vectors. The second means that phases of
perturbations at any moment and any place are statistically in-
dependent. Altogether they assure statistical independence of
waves moving in different directions. This stochastic process
can be also expressed in terms of the δ(η, x) variable. With help
of the random Fourier coefficientsAk satisfying

E[AkA∗k′] = Pk δδ(k − k′) (36)

E[AkAk′] = 0 (37)

we write

δ[η, x] =
∫ (
Akuk(ε)(η, x) +A∗ku∗k(ε)(η, x)

)
dk. (38)

We assume that the power spectrum of the acoustic noise Pk

depends solely on the magnitude of the wave vector and
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not on its direction. The perturbation is generic – no ad-
ditional constraints, nor any ordering or squeezing mecha-
nisms have been introduced. The construction of a random
acoustic field is identical with the construction of random
field of gravitational waves in the matter dominated universe
(Abbott & Harari 1986; Allen 1996; Allen & Romano 1999;
Maggiore 2000). It reflects the equivalence of the propaga-
tion equations for both these classes of perturbation. Stochastic
acoustic field fulfilling conditions (36), (37) can be understood
as a classical limit of the quantum phonon approach (Lukash
1980; Chibisov & Mukhanov 1982; Grishchuk 1994).

Modes uk(ε) while regularly extended across the transition
hypersurface Σ define a stochastic structure (by means of
integral (38)) in the matter dominated universe. The commonly
used measure of this structure is the two-point autocorrelation
function

R(η, h) =
1

4π

∫
E[δ(η, x)δ(η, x + h)]δδ(h·h − 1) dh (39)

defined on the constant time hypersurfaces. Under condi-
tions (34)–(37) this function reads

R(η, h) =
1

4π

∫
2uku∗kPk exp(ik·h)δδ(h·h − 1) dk dh

=

∫ ∞

0
4πk2 sin(hk)

hk
pk(η) dk (40)

where

pk(η) = 2uk(ε)u
∗
k(ε)Pk = τ(ε)Pk (41)

plays the role of the structure spatial spectrum and uk(ε)(η, x)
are modes defined by Eqs. (31) and (32) extended to both
epochs before and after the transition. In this way acoustic
noise in the radiation era with a given spectrum Pk determines
uniquely (via Darmois-Israel conditions) the spatial spectrum
of inhomogeneities pk(η) at any stage of the structure forma-
tion process.

It is important to clearly distinguish between pk and Pk,
and understand their roles in the cosmological context. As de-
fined above, pk is the Fourier transform of the two-point auto-
correlation function. In the cosmological literature it is called
the power spectrum4 by analogy to similar concept known
in the analysis of time series (Anderson 1971), but its physi-
cal dimension is different. On the other hand, Pk defined by
Eq. (36) is the genuine power spectrum of the acoustic field
(with the same physical sense as the Planck power spectrum
of the electromagnetic radiation), and can be obtained from
Hamiltonian description (Lukash 1980). Although in cosmol-
ogy one cannot directly observe Pk, this quantity defines the
physical state of acoustic field. This is Pk not pk, which should
be either guessed, or inferred from fundamental laws of physics
(Chibisov & Mukhanov 1982). The shape of Pk is not precised
in this paper.

The time factor τ(ε) = 2uk(ε)u∗k(ε) converts the acoustic
spectrum Pk into the spatial-spectrum pk(η). (It is numerically
equal to pk(η) for the white noise acoustic field: Pk = const.).

4 In this context we consequently use the name spatial power
spectrum.

Factor τ(ε) contains the entire time dependence of cosmolog-
ical inhomogeneities. Employing extended modes (31), (32),
we find

τ(ε,1) =

√
3

k

(
1 +

1

k̃2η̃2

)
(42)

τ(ε,2) =

√
3

k

(
128
5

(
1 +

5

2k̃2
+

9k̃2

40

)
(1 + η̃)−6

+
3(10 − 3k̃2)

25
(1 + η̃)−1 +

(
3k̃
40

)2

(1 + η̃)4

 , (43)

where η̃ is the normalized time parameter η̃ = η/ηΣ and the k̃
is the modified wave number k̃ = kηΣ/

√
3 which measures the

number of oscillations within the sound horizon on Σ. We hold
the factor

√
3/k in both τ(ε,1) and τ(ε,2) to keep modes uk(ε,1)

orthonormal in the sense of the Klein-Gordon scalar product
in the radiation era. It is easy to check that the time factor τ is
continuous on Σ.

In the radiation era, perturbations greater than the sound
horizon decrease, while the low scale ones maintain constant
amplitude. This can be seen directly from Eq. (42). The re-
sult qualitatively agrees with quantum theories (see Mukhanov
et al. 1992 Part III, formula 20.6). Quantitative difference
comes from the different gauge choice5. It should be em-
phasized that the spectrum Pk, the spatial spectrum pk and
the parameter τ are invariant under unitary transformations.
Therefore, the result is physically well defined – it is not the
effect of any particular choice of the Fourier basis.

In the matter era the perturbations (32) are a spe-
cific mixture of growing and decaying solution (compare
Ellis et al. 1990; Liang 1977). Therefore, despite vanishing
pressure, their evolution depend on their length-scales. The
dominant growing term (1+ η̃)4 in Eq. (43) is multiplied by k̃2,
which means strong amplification of short waves.

A peculiar velocity field can be measured by the devia-
tion δϑ from the homogeneous Hubble flow ϑ0 = 3H. Modes
of the fluid compression6 are associated to the density modes
(12), (27). On the strength of Eq. (26) we obtain

δϑ(1) =
1√
2ω

3
√

3

2
√Mη2

(
1 +

1
iηω
+

iηω
2

)
ei(kx−ηω). (44)

δϑ play a role in the matching conditions, as the
Darmois-Israel conditions require that both the density and
expansion fields be continuous at the transition. (Their time
derivatives my undergo discontinuity). The expansion contrast
Θ = δϑ/ϑ0 can be expressed as a stochastic integral

Θ(η, x) =
∫

(Akuk(ϑ)(η, x) +A∗ku∗k(ϑ)(η, x))dk (45)

5 The quadratic behaviour of the decreasing term is characteristic
for the orthogonal gauge. In the synchronous system of reference this
term decays as 1

k̃4 η̃4
. It can be easily derived in the Field–Shepley

formalism, see formula (5.3) of (Chibisov & Mukhanov 1982) after
substituting solutions of Eq. (4.7) and evaluating the integral over η.
Equivalently, it can be proved directly in the original Lifshitz formal-
ism (Golda & Woszczyna 2001).

6 The orthogonal gauge realizes the comoving system of reference,
where the four velocity is globally chosen as u = (1, 0, 0, 0), therefore
one cannot describe the peculiar velocity field directly by δu.
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with the same coefficientsAk as in Eq. (11), but with a different
modes uk(ϑ), given by

uk(ϑ,1) =
31/4

2
√

2k

1 +
√

3
ikη
+

1
2

ikη√
3

 eikx−ik η√
3 , (46)

uk(ϑ,2) =
31/4

√
2k

eikx− ikηΣ√
3

 ikηΣ

40
√

3

(
1 +
η

ηΣ

)2

+

4 +
4
√

3
ikηΣ

+
6ikηΣ

5
√

3


(
1 +
η

ηΣ

)−3 · (47)

In close analogy with the density perturbations, one can express
the peculiar velocities (perturbation in the expansion rate) in
terms of the spatial autocorrelation or spectrum. This time

R(η, h) =
1

4π

∫
E[Θ(η, x)Θ[x + h, η)]δδ(h·h − 1) dh (48)

and the time factor τ is given by formula (41) after replac-
ing uk(ε) by uk(ϑ)

τ(ϑ,1) =

√
3

4k

(
η̃2k̃2

4
+

1

η̃2k̃2

)
, (49)

τ(ϑ,2) =

√
3

k

(
32
5

(
1 +

5

2k̃2
+

9k̃2

40

)
(1 + η̃)−6

− (10 − 3k̃2)
50

(1 + η̃)−1 +

(
k̃

40

)2

(1 + η̃)4

 · (50)

Unlike the density spectrum, the spectrum of the expansion
rate monotonically increases in the radiation dominated uni-
verse (49, see also the behaviour of modes uk(ϑ,1) – 46). This is
so, because the decrease in peculiar velocities is less than the
decrease in homogeneous Hubble flow. Increase of the expan-
sion contrast Θ with time does not invalidate the acoustic ap-
proximation, as long as the gas velocities are small when com-
pare with the sound velocity (Whitham 1974). In our case the
acoustic approximation is valid when the contribution of terms
quadratic in δϑ(η) to δϑ′(t) Eq. (2) is negligible. For large val-
ues of time this is assured by Eq. (44). Therefore, a perturbation
initiated as an acoustic perturbation remains acoustic during the
entire radiation era, even though δϑ/ϑ increases.

To express the perturbation enhancement relative to its
initial amplitude we introduce the ratio

Tε(η̃, η̃i, k̃) =
pk(η̃)
pk(η̃i)

=
τε (η̃, k̃)

τε(η̃i, k̃)
· (51)

The so called transfer function δ/δi is often used in a simi-
lar context. Fitting to this traditional name we will call T (η, k)
the spectrum transfer function. Contrary to δ/δi the spectrum
transfer function T is real and invariant under unitary transfor-
mations of Fourier bases. Plotted on a logarithmic scale (Figs. 1
and 2) it shows that the perturbations evolution is highly sen-
sitive to k̃. In both Figs. 1 and 2 we start from ηi = 0.1 ηΣ
(η̃i = 0.1) to evaluate perturbation up to η = 3 ηΣ (η̃ = 3).

As already mentioned, the large scale inhomogeneities
(those, which are larger than the local sound horizon k̃ 	 1)
decay in the radiation era (η̃ < 1). In this case, the term 1

k̃2η̃2

is dominant in the time factor τ(ε,1)(η̃, k̃) and strongly decreases

Fig. 1. The spectrum transfer function Tε for the density perturbations
(log scale) as a function of conformal time η̃. The family of solu-
tions covers the wave numbers range log(k̃) ∈ [−1, 5] i.e. the lowest
curve on the diagram refers to the perturbation scale ten times larger
than the sound horizon distance, while the top one to a perturbation
scale 10−5 times smaller. Point η̃ = 1 represents the transition from
the radiation to the matter dominated universe.

Fig. 2. The density spectrum transfer function Tε as a function of both
the conformal time η̃ and the wave number k̃ (η̃ = 1 – the transition
from the radiation to the matter dominated universe).

with time. Decay of the large scale component is a generic fea-
ture of acoustic noise on the expanding radiation dominated
homogeneous background. In other words, the homogeneity
of the radiation filled universe is a stable property at least as
long as the generic perturbations are taken into account. Similar
phenomenon of large-scale wave extinction is observed in
scalar field theory (Stebbins & Veerarghavan 1993). Although
the large-scale inhomogeneities change substantially during the
radiation era, their response to the change in the equation of
state is very weak. Their wave character vanishes at ηΣ, but
the spatial spectrum itself is insensitive to the transition (see
Fig. 2).

The low scale perturbations produce a different scenario.
Their amplitudes kept constant during the radiation dominated-
epoch to increase by several orders of magnitude at the transi-
tion. For inhomogeneities of galactic scale (M = 1011 Ms) the
time factor τ is of 108, which means a 104 times amplitude en-
hancement. The pressure discontinuity excites low-scale per-
turbations and their contribution to the spatial-spectrum be-
comes dominant shortly after the transition.

As opposed to the density perturbations, the velocity
magnitude does not change significantly at the transition. An
analogue of the transfer function Tϑ(η̃, k̃) = τϑ(η̃, k̃)/τϑ(η̃i, k̃)
constructed for the expansion spectrum is shown in Fig. 3.
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Fig. 3. The expansion spectrum transfer Tϑ as a function of the
conformal time η̃ and the wave number k̃.

Fig. 4. Phases of perturbations.

The expansion contrast increases systematically during the ra-
diation era and smoothly enters the matter era, keeping nearly
the same growth rate before and after the transition. A substan-
tial change in the velocity field relates to its phase. Figure 4
shows the difference in arguments of the density and expan-
sion modes δφ = arg(uk(ε)) − arg(uk(ϑ)). In the radiation era
large frequency modes, (both uk(ε) and uk(ϑ)) are shifted to
each other by π/2 (compare also Eqs. (46) and (27)). This ef-
fect is the generic perturbation property in the radiation domi-
nated fluid (Ellis et al. 1990), and is an artefact of their acous-
tic character. Similar relation of phases can be also obtained
on the ground of binding energy analysis (Liang 1977). After
the transition the arguments of the density and velocity modes
differ by π so their maxima are anti-correlated. Smallest expan-
sion occurs in the regions of highest density. Decreasing modes
have decayed and fluid flow becomes potential (Peebles 1980).
(Slightly more complex is the behaviour of the low frequency
modes. Solutions like that hardly achieve the phase of potential
flow (the argument shift is different from π).)

From the hydrodynamic point of view, the transition from
the radiation to the matter-dominated epoch breaks down the
acoustic approximation. The sound velocity instantly falls from
v = 1/

√
3 to zero, and in consequence, the fluid velocity for-

mally becomes greater than the sound velocity at each point
in space. (In this way the structure formation has some as-
pects characteristic for formation of acoustic shocks – com-
pare Montenegro et al. 1999; Khoperskov & Khrapov 1999).
The growth of inhomogeneities is based on acoustic instability
– the self-gravitation processes do not switch on until the linear
regime fails. In both cases – the density and expansion fields
– the spectrum transfer function monotonically increases with
the wave number k. In particular the phenomenon of acoustic

peaks is absent7. The absence of peaks is characteristic feature
of the random field composed of the statistically independent
moving waves (Grishchuk 1995). The spectrum transfer func-
tion may substantially change in the small k-regime when the
universes undergoes more than one phase transition (some clas-
sical ones, like the change in the sound velocity, or semiclassi-
cal like the transition from inflationary to radiation dominated
universe). In these cases the squeezed states in the acoustic field
appear on large scales, which are an alternative explanation of
the CMBR temperature spectrum (Bose & Grishchuk 2002).

5. Growing modes versus complete solutions

When considering instantaneous transition to the matter domi-
nated universe authors limit themselves to the large scale per-
turbation regime. In this regime the growing mode amplitude
after the phase transition is entirely dominated by that be-
fore the phase transition and there is no chance of gener-
ating a growing mode out of a decaying mode (Kodama &
Sasaki 1984). Although the short perturbations do not produce
the same scenario8 the decaying modes of any length-scale
are commonly neglected at the beginning of the matter dom-
inated era.

By abandoning all the decaying terms in the formula (43)
one obtains τε ∝ (1 + η̃)4, and consequently, the spatial spec-
trum of the density contrast

pk(η̃) = Tε(η̃, η̃i)pk(η̃i) (52)

divides into time dependent

Tε(η̃, η̃i) =

(
1 + η̃
1 + η̃i

)4

(53)

and the scale dependent pk(η̃i) (given at some η̃i > 1). The
spectrum transfer function Tε drawn in the logarithmic scale is
presented in Fig. 5. Tε does not depend on k, therefore the per-
turbation is amplified in the scale-independent way. This scale-
independence is commonly attributed to the dust-filled universe
(p = 0), but actually it requires more restrictive conditions: the
perturbation must be solely composed of growing modes.

While the pure growing modes increase ten times in the in-
terval η̃ ∈ (1, 3), the mixture of growing and decaying low scale
modes is enhanced by several orders of magnitude (compare
Figs. 1 and 5). The enhancement of this mixture depends on
the wave number k. Substantial magnification of the low scale
modes (Fig. 1) means that the low-scale structures may enter
the nonlinear regime first.

7 The same effect appears in more sophisticated transition mod-
els investigated numerically (Press & Vishniac 1980), if they include
the complete basis of solutions. On the other hand, as shown in
(Voglis 1986), peaks may appear in a pure radiation–filled universe
model without evoking complicated recombination processes, if one
limits to growing modes (standing waves) with specific phase correla-
tion. These phenomena have also been discussed in (Fang & Wu 1996;
Riazuelo & Deruelle 2000).

8 (...) the general relation among the amplitudes (...) would be too
complicated to extract any physical information out of it (Kodama &
Sasaki 1984).
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Fig. 5. The density spectrum transfer function for perturbations com-
posed of pure growing modes.

When the decaying modes are taken into account the scale-
independence breaks down. Decaying modes “remember” per-
turbations’ past. In our case the admixture of decaying modes
defined by the joining conditions (23), (24) is an imprint of
the acoustic (travelling wave) character of the density pertur-
bations in the radiational era. Consequently, the radiational era
affects the structure formation processes occurring latter on,
when matter dominates. Instability of perturbations is the gen-
uine feature of the entire cosmological evolution rather than the
property of separate cosmological epochs.

6. Observables and observational constraints

Although our primary goal is to discuss the role of decaying so-
lutions in the formation of the small-scale structures, it is worth
checking the models consistence with data presently available
for larger scales.

Data coming from the large galaxy surveys (SDSS,
2dFGRS and others) probe the large-scale mass distribution at
late epochs, while the WMAP experiment reports the density
fluctuations at the last scattering surface. These two categories
of data potentially allow reconstruction of the spectrum trans-
fer function i.e. the scale of inhomogeneity enhancement after
decoupling.

To examine the spectrum transfer function (51) we focus
on the LSS spectral estimations, with the scale range of some
100 Mpc, that at the same time overlaps the right end of the
range (k ∼ few 10−1 Mpc−1) probed by WMAP experiment.
As an example we take two close length-scales, k ∼ 0.1 Mpc−1

and k ∼ 0.05 Mpc−1, for which the values of δ contrast (Fig. 3
in Wu et al. 1999) are respectively, ∼10−2 and ∼10−3. These
scales correspond to l ∼ 1800, 700 in the CMB spectrum and
may be considered as the intermediate length-scales. The spec-
trum transfer function Tε in this scales is given in Fig. 6. The
curves are drawn for the constant η-surfaces between η ∼ 2
(the lowest) and η – 31 – corresponding roughly to redshift ∼0.
The increase of the model spectrum transfer function (51) are
roughly of the order of 103 and 102 at the scales under dis-
cussion, and reproduce the current density contrast, from the
initial density contrast of the order ∼10−5. In spite of the high
idealization, we obtain rough agreement with observations in
the k ≤ 1 Mpc−1 regime.

Fig. 6. The spectrum transfer function Tε as a function of k̃ for diffrent
η ∈ (2, 31).

Spectrum transfer function is substantially more difficult
view in the context of extremely low, or extremely large
scales. In the large scale limit the spectrum transfer func-
tion (51) becomes insensitive to changes in the equation of
state. This confirms that the large scale perturbations are “fos-
sils” of the past, which is interesting in the context of their
quantum or semiclassical origin. The recently reported (e.g.
Oliveira-Costa et al. 2003; Hannestad 2003) discrepancy be-
tween the WMAP observational spectrum and that coming
from the inflationary paradigm for scales k ≤ 0.001 Mpc−1

challenges some revisions of the initial perturbation spectrum
theory. On the other hand the interpretation of measurements
also deserves careful examination. The perturbations and the
resulting temperature fluctuations are commonly related to
each other by means of the Sachs-Wolfe formula – an integral
over gravitational potential performed along the photon path
(Sachs & Wolfe 1967; Peebles 1980). The formula is true in
the absence or neglect of the decaying modes at the last scat-
tering surface (Sachs & Wolfe 1967). For the density perturba-
tion matched to the acoustic field the decaying modes cannot
be neglected, particularly the low multipoles, where discrep-
ancies become substantial9. To understand properly the mea-
sured Cl coefficients at low-l limit we need the exact formula
for the temperature fluctuation. (In the discussed model the ex-
act formula can be found, but is beyond the scope of this paper.)

Violent formation of fine scale structures in the transient
epoch, the characteristic feature of the model, enables inho-
mogeneities to enter the nonlinear regime soon after decou-
pling. The model qualitatively supports observations of highly
developed structures at high redshifts z. However, the WMAP
angular resolution limit rules out any quantitative estimations
for the structures less than 104 Mgal. Expecting more relevant
data from the forthcoming Planck mission we anticipate, on the
strength of the spectrum transfer function (51), that the CMBR
temperature fluctuations in the fine-scale regime may have
relatively low amplitude.

9 To neglect decaying modes one needs (b2)2 	 (a2)2. After em-
ploying (30) this condition is 1 + 40/(3k2ηΣ

2) + 100/(k4ηΣ
4) 	 1,

and is false for any k. Particularly, in the k → 0 the error becomes
arbitrarily large.
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7. Summary

Generic density perturbations in the radiation-dominated uni-
verse propagate in the same way as sounds propagate in air
or electromagnetic waves in vacuum. As shown by Sachs &
Wolfe (1967) and White (1973) perturbations form waves trav-
elling with the same speed v = 1√

3
independently of their scales

or profiles, hence gravitationally bound structures cannot form.
Perturbations do not self-gravitate in the linear regime, so grav-
ity may affect their evolution merely by affecting the dynam-
ics of the homogeneous background. The wave character of
the density perturbations (independent of their scales) is con-
firmed in the Hamiltonian formalism (Lukash 1980; Chibisov
& Mukhanov 1982).

The hyperbolic type of propagation equation requires ap-
propriate perturbation statistics, where acoustic waves travel-
ling in different directions are statistically independent. This
kind of statistics form a classical limit for quantum theories
(Lukash 1980; Chibisov & Mukhanov 1982; Grishchuk 1995)
and is compatible with the gravitational waves theory
(Abbott & Harari 1986; Allen 1996; Allen & Romano 1999;
Maggiore 2000). Probability and appropriate expectation val-
ues may depend on the wave frequency, but not on the di-
rection of propagation, neither the wave phase at any time
or position. A random choice of plane waves guarantees that
the perturbations and their canonical momenta are statisti-
cally independent and uncorrelated quantities at any time.
This finally results in the stability of homogeneous expand-
ing environment. Perturbations larger than the sound horizon
decay during the radiation era, while those well inside the
horizon keep their magnitude constant in time. This prop-
erty, although contradicting Jeans conjecture, confirms re-
sults obtained in other gauges: synchronous (Grishchuk 1994;
Golda & Woszczyna 2001), longitudinal (Mukhanov et al.
1992 Part III) and in Hamiltonian formalism (Chibisov &
Mukhanov 1982). Similar decrease in amplitude occurs for
the large scale component of the scalar field (Stebbins &
Veerarghavan 1993).

Cosmic structure formation naturally occurs at the transi-
tion from the radiational to matter domination era. To match
the acoustic field at the decoupling, the growing and decay-
ing modes contribute in the short wave limit with nearly oppo-
site phases, and therefore, compensate each other at Σ. After
the transition both modes “decouple” and the resulting super-
position grows explosively. Physically it means that the pres-
sure decay from p = ε/3 to p = 0 excite perturbations much
lower than horizon scale, while leave untouched the amplitude
of those, which substantially exceed horizon10. For growth of
inhomogeneities the break down of the acoustic approximation
is responsible, i.e. the same group of physical phenomena that
may excite shock waves in the interstellar medium. This kind
of instabilities cannot be described by any formalism, which
a priori neglects the role of decaying modes, no matter how

10 This behaviour is opposite to that of tensor perturbations. A simi-
lar transition in the equation of state will amplify large scale gravita-
tional waves not affecting the small scale ones.

realistic are the models for physics of recombination and
decoupling, which are used.

This is obvious that the sharp transition between cosmolog-
ical eras is not a realistic model for decoupling or recombina-
tion. In reality these phenomena are continuous, take some cos-
mologically substantial time, and involve a number of complex
physical processes. The recombination and decoupling do not
coincide. One can hardly expect that the realistic situation can
be described by simple analytical solutions as presented in this
paper. Eventually one have to apply numerical codes involving
multi fluid hydrodynamics or magnetohydodynamics. Still, the
problem of the initial state remains. The physical meaning of
the obtained numerical results strongly depends on their sta-
bility against initial condition and on the physical relevance of
the initial state assumed at early epochs. Most of hydrodynam-
ical codes are ready to work with travelling waves, therefore,
the complete numerical analysis of random acoustic fields in
the expanding universe – without neglecting a priori the role of
“decaying modes” – is basically possible. On the other hand,
simple but nontrivial analytic solutions presented in this paper
may easily be used to verify numeric procedures.
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