
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Neurology Faculty Papers Department of Neurology 

11-1-2020 

Contribution of left supramarginal and angular gyri to episodic Contribution of left supramarginal and angular gyri to episodic 

memory encoding: An intracranial EEG study. memory encoding: An intracranial EEG study. 

Daniel Y. Rubinstein 
Thomas Jefferson University 

Liliana Camarillo-Rodriguez 
Thomas Jefferson University 

Mijail D. Serruya 
Thomas Jefferson University 

Nora A. Herweg 
University of Pennsylvania 

Zachary J. Waldman 
Thomas Jefferson University 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/neurologyfp 

 Part of the Neurology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 

Rubinstein, Daniel Y.; Camarillo-Rodriguez, Liliana; Serruya, Mijail D.; Herweg, Nora A.; Waldman, 

Zachary J.; Wanda, Paul A.; Sharan, Ashwini D.; Weiss, Shennan A.; and Sperling, Michael R., 

"Contribution of left supramarginal and angular gyri to episodic memory encoding: An 

intracranial EEG study." (2020). Department of Neurology Faculty Papers. Paper 227. 

https://jdc.jefferson.edu/neurologyfp/227 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Neurology Faculty Papers by an authorized administrator of the Jefferson 
Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jefferson Digital Commons

https://core.ac.uk/display/361276876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://jdc.jefferson.edu/
https://jdc.jefferson.edu/neurologyfp
https://jdc.jefferson.edu/neurology
https://jdc.jefferson.edu/neurologyfp?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/692?utm_source=jdc.jefferson.edu%2Fneurologyfp%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://jeffline.jefferson.edu/Education/surveys/jdc.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Daniel Y. Rubinstein, Liliana Camarillo-Rodriguez, Mijail D. Serruya, Nora A. Herweg, Zachary J. Waldman, 
Paul A. Wanda, Ashwini D. Sharan, Shennan A. Weiss, and Michael R. Sperling 

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/neurologyfp/227 

https://jdc.jefferson.edu/neurologyfp/227


NeuroImage 225 (2021) 117514 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Contribution of left supramarginal and angular gyri to episodic memory 

encoding: An intracranial EEG study 

Daniel Y. Rubinstein 

a , ∗ , Liliana Camarillo-Rodriguez a , Mijail D. Serruya 

b , Nora A. Herweg 

c , 
Zachary J. Waldman 

a , Paul A. Wanda 

c , Ashwini D. Sharan 

d , Shennan A. Weiss e , f , g , 1 , 
Michael R. Sperling 

a , 1 

a Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States 
b Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States 
c Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States 
d Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States 
e Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, United States 
f Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States 
g Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, United States 

a r t i c l e i n f o 

Keywords: 

Episodic memory 

Ventral parietal cortex 

Subsequent memory effect 

Spectral tilt 

iEEG 

a b s t r a c t 

The role of the left ventral lateral parietal cortex (VPC) in episodic memory is hypothesized to include bottom-up 

attentional orienting to recalled items, according to the dual-attention model (Cabeza et al., 2008). However, its 

role in memory encoding could be further clarified, with studies showing both positive and negative subsequent 

memory effects (SMEs). Furthermore, few studies have compared the relative contributions of sub-regions in this 

functionally heterogeneous area, specifically the anterior VPC (supramarginal gyrus/BA40) and the posterior 

VPC (angular gyrus/BA39), on a within-subject basis. To elucidate the role of the VPC in episodic encoding, we 

compared SMEs in the intracranial EEG across multiple frequency bands in the supramarginal gyrus (SmG) and 

angular gyrus (AnG), as twenty-four epilepsy patients with indwelling electrodes performed a free recall task. 

We found a significant SME of decreased theta power and increased high gamma power in the VPC overall, and 

specifically in the SmG. Furthermore, SmG exhibited significantly greater spectral tilt SME from 0.5 to 1.6 s post- 

stimulus, in which power spectra slope differences between recalled and unrecalled words were greater than in 

the AnG ( p = 0.04). These results affirm the contribution of VPC to episodic memory encoding, and suggest an 

anterior-posterior dissociation within VPC with respect to its electrophysiological underpinnings. 

1. Introduction 

The ventral parietal cortex (VPC) is well recognized to be involved 
in episodic memory, in addition to the classically associated functions 
of spatial cognition and attention ( Sestieri et al., 2017 ; Berryhill et al., 
2007 ). While individuals with lesions in the VPC do not exhibit gross 
memory deficits, and performance on cued recall is normal, performance 
on free recall is characterized by reduced detail ( Berryhill et al., 2007 ). 
Imaging studies have similarly found that activation of the VPC (specif- 
ically in the angular gyrus) during encoding relates to subsequent con- 
fidence in memory retrieval, both at the level of fMRI BOLD networks 
( Gilmore et al., 2015 ) and single neurons ( Rutishauser et al., 2018 ). 

Abbreviations: AnG, angular gyrus; DMN, default mode network; LFA, low frequency activity; HFA, high frequency activity; SME, subsequent memory effect; SmG, 

supramarginal gyrus; VAN, ventral attention network; VPC, ventral parietal cortex. 
∗ Corresponding author. 

E-mail address: daniel.rubinstein@jefferson.edu (D.Y. Rubinstein). 
1 These authors share senior authorship. 

Disruption of the angular gyrus has also been found to affect memory 
confidence, without altering memory accuracy ( Koen et al., 2018 ). In 
addition to subjective feelings of memory quality, other studies have 
found memory success to relate to VPC activation ( Dickerson et al., 
2007 ; Heinze et al., 2006 ; Uncapher and Wagner, 2009 ; Gilmore et al., 
2015 ). For example, in a free recall task of visual images, Dickerson 
et al. found that fMRI activation of the left posterior VPC during en- 
coding was significantly greater for subsequently recalled images than 
unrecalled ( Dickerson et al., 2007 ). Similarly, another fMRI study found 
greater activation of left anterior VPC during encoding of subsequently 
freely recalled visually displayed words, especially in high performers 
( Heinze et al., 2006 ). The range of memory-related functions ascribed to 
the VPC, as well as the possibility for significant sub-regional variation 
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( Uncapher and Wagner, 2009 ), suggests that more can be learned about 
the contribution of the VPC to episodic memory encoding. 

One dimension of VPC activity during encoding relates to the direc- 
tion of the subsequent memory effect (SME), which refers to the dif- 
ference in neural activation during encoding between items that are 
later recalled and those that are not recalled. Many studies have shown 
that increased fMRI BOLD activation in the VPC and its related net- 
works during encoding predicts future recall failure (i.e., negative SME) 
( Uncapher and Wagner, 2009 ; Kim, 2011 ; Gilmore et al., 2015 ), how- 
ever, these negative SME studies have mostly utilized recognition mem- 
ory paradigms as opposed to free recall paradigms. This difference may 
be crucial, as recognition memory relies on different circuitry compared 
to free recall ( Staresina and Davachi, 2006 ) and success in these differ- 
ent types of tests may reflect different encoding processes ( Rugg et al., 
2008 ; Hanslmayr and Staudigl, 2014 ). Indeed, in free recall, there is 
evidence for positive SMEs, i.e. increased activation in VPC during en- 
coding of later-remembered items. While in fMRI this manifests as in- 
creased BOLD activation ( Staresina and Davachi, 2006 ; Heinze et al., 
2006 ; Dickerson et al., 2007 ), activation of the VPC in intracranial EEG 

(iEEG) studies manifests as concurrent decreased low-frequency and in- 
creased high-frequency power ( Burke et al., 2014 ), a phenomenon doc- 
umented as “spectral tilt ” ( Ezzyat et al., 2017 ). 

An additional relevant dimension to the role of the VPC in episodic 
memory is its sub-regional heterogeneity. In the context of the attention- 
to-memory model ( Cabeza et al., 2008 ), the VPC is distinguished from 

the dorsal parietal cortex, which is hypothesized to direct top-down 
goal-driven attention, in contrast to the bottom-up sensory-driven pro- 
cessing controlled by the VPC. The VPC itself may be divided into its 
anterior and posterior part, which respectively consist of the supra- 
marginal gyrus (SmG)/BA40, and the angular gyrus (AnG)/BA39. The 
SmG of the anterior VPC has been hypothesized to mediate attention 
to external stimuli, while the AnG of the posterior VPC has been hy- 
pothesized to mediate attention to internal stimuli ( Corbetta and Shul- 
man, 2002 ; Cabeza et al., 2008 ; Buckner et al., 2008 ; Daselaar et al., 
2013 ). This hypothetical distinction is further supported by their re- 
spective belonging to different networks, namely the SmG to the ven- 
tral attention network (VAN) and the AnG to the default mode network 
(DMN) ( Yeo et al., 2011 ). How this distinction plays out during encoding 
though, remains an open question and the focus of our study. 

To shed further light on the specific electrophysiology of the VPC 

during encoding and the potentially different roles of the SmG and 
AnG during encoding, we utilized iEEG recordings from patients with 
epilepsy performing a free recall task. Due to the verbal nature of the 
task and the preponderance of memory-related VPC findings in the left 
hemisphere compared to right hemisphere ( Vilberg and Rugg, 2008 ), 
we focused on the left VPC. We specifically compared SMEs in the left 
SmG and left AnG within individual patients. In the VPC overall, we 
predicted a positive SME, characterized by increased spectral tilt, or in- 
creased high frequency and decreased low frequency spectral power. 
While we did not explicitly test externally-versus-internally oriented at- 
tention, we hypothesized that if the SmG mediates externally-oriented 
attention ( Cabeza et al., 2008 ), then its activation would promote subse- 
quent retrieval. We thus predicted more positive SMEs in the SmG com- 
pared to the AnG. Conversely, we speculated that if the AnG mediates 
internally-oriented attention, then the conflicting demands of contex- 
tual binding and suppression of internal attention might result in weakly 
negative SMEs in this region. 

2. Methods 

2.1. Patients 

For this study we utilized a dataset of 274 patients with medication- 
resistant epilepsy enrolled in the Defense Advanced Research Projects 
Agency (DARPA) Restoring Active Memory (RAM) project who pro- 
vided informed consent. Data were collected at 8 participating hos- 

pitals, and the protocol was approved by their Institutional Review 

Boards, of: Columbia University Hospital (New York, NY), Dartmouth- 
Hitchcock Medical Center (Lebanon, NH), Emory University Hospital 
(Atlanta, GA), Hospital of the University of Pennsylvania (Philadel- 
phia, PA), Mayo Clinic (Rochester, MN), National Institutes of Health 
(Bethesda, MD), Thomas Jefferson University Hospital (Philadelphia, 
PA), and University of Texas Southwestern Medical Center (Dallas, TX). 
Patients underwent surgery for implantation of subdural and depth elec- 
trode recording contacts, which were placed in order to identify and ex- 
clude epileptic areas (seizure onset and irritative zones). Patients were 
monitored for epileptic activity over the course of their hospital stay, 
during which they also performed a variety of cognitive tasks. 

2.2. Behavioral task 

Patients completed a verbal free recall task of randomly selected 
words from a list of commonly used nouns ( http://memory.psych. 
upenn.edu/WordPools ) used previously ( Solomon et al., 2019 ). Patients 
viewed up to twenty-five twelve-word lists in an experimental session. 
The words in each session were drawn from the same 300-word pool, in 
different random orders. In each list, words were displayed sequentially 
over 30 s, with each word on screen for 1.6 s, and an inter-stimulus 
interval of 0.75–1 s. Patients were instructed to visualize each word as 
vividly as possible, and to focus only on the word being presented, and 
not on other words in the list. Word list presentation was followed by a 
20 s arithmetic distractor task, in which patients completed simple ad- 
dition problems. Patients were then given 30 s to recall as many words 
as possible ( Fig. 1 a). This block of encoding-distractor-recall epochs was 
repeated at most 25 times per session. Patients completed as many ses- 
sions as comfort allowed. 

2.3. Intracranial EEG recordings 

Intracranial recordings included those from depth, strip, and grid 
electrodes (AdTech Inc., PMT Inc.), which were implanted based on 
patient-specific needs and selection by clinical teams at each hospital. 
Recordings were collected with Nihon-Kohden EEG-1200, Natus XLTek 
EMU 128, or Grass Aura-LTM64 systems, depending on the site of data 
collection. Sampling rates ranged from 500 to 2000 Hz depending on 
site. During recording, data were referenced to common intracranial, 
scalp, or mastoid contacts. Electrodes were excluded from analyses if 
they were located in the seizure onset zone or displayed spikes, as as- 
sessed by clinical neurophysiologists. Data were referenced using a bipo- 
lar referencing scheme; the resulting bipolar virtual contacts are here 
referred to as “contacts ”. These bipolar contacts were constructed from 

the difference signals of spatially adjacent electrodes. Grid electrodes 
were considered to have at most 4 (excluding diagonal adjacencies) ad- 
jacent contacts, with which to pair for a bipolar contact. To be precise, 
this leads to N – 1 bipolar contacts for depth and strip arrays of length 
N , and M × (2 N – 1) – N contacts for grid contact arrays of length N and 
width M electrodes. 

2.4. Electrode localization 

Prior to electrode implantation, T1- and T2-weighted MRIs were 
obtained for each patient. FreeSurfer ( http://surfer.nmr.mgh.harvard. 
edu/ ) was used to construct individual subject brain surfaces and corti- 
cal parcellations according to the Desikan–Killiany atlas ( Desikan et al., 
2006 ), based on the T1-weighted MRIs. Post-implantation CT scans were 
then co-registered with the pre-implantation MRIs using Advanced Neu- 
roimaging Tools (ANTs) ( Avants et al., 2008 ) with neuroradiologist su- 
pervision, to enable regional localization of electrode contacts within 
the Desikan-Killiany atlas. An in-house pipeline ( https://github.com/ 
pennmem/neurorad _ pipeline ) was used to transform individual-space 
coordinates into average FreeSurfer space (defined by the fsaverage 

http://memory.psych.upenn.edu/WordPools
http://surfer.nmr.mgh.harvard.edu/
https://github.com/pennmem/neurorad_pipeline
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Fig. 1. Overview of study design . A) Illustration of free recall verbal episodic memory task. For each list, words were displayed on screen for 1.6 s each with 

jittered inter-stimulus intervals between 0.75 and 1 s, followed by a 20 s arithmetic distractor task, ending with a 30 s window to recall as many words as possible. 

B) Localization of electrode contacts in regions of interest (blue: supramarginal gyrus [SmG]; orange: angular gyrus [AnG]) for an example subject. C) Subsequent 

memory effect (SME) averaged over all contacts in ventral parietal cortex (VPC) of a single representative subject. Orange indicates greater power during encoding 

of words that were later recalled compared to unrecalled; blue indicates less power. Word onset is at 0 ms. D) Difference in SME at each time-frequency bin between 

sub-regions of ventral parietal cortex in the same subject as shown in (C). Orange indicates more positive SME in the supramarginal gyrus (SmG) compared to angular 

gyrus (AnG), and blue indicates more negative SME in SmG. Note the similarity to the overall VPC plot (C). Time-frequency plots are smoothed for visualization. E) 

Histograms showing z -score of tilt SME for example contacts in SmG (top) and AnG (bottom), based on tilt differences between recalled and unrecalled trails, and a 

null distribution constructed from randomly permuting recalled word labels. 

brain) for each electrode contact, utilizing previously published meth- 
ods ( Groppe et al., 2017 ). Finally, locations for strip and grid contacts 
were projected to the cortical surface to correct for post-operative brain 
shift ( Dykstra et al., 2012 ). This procedure was performed for contacts in 
both the individual FreeSurfer space as well as the average FreeSurfer 
space. Only electrode contacts within the left “supramarginal ” or left 
“inferior parietal ” (i.e., AnG) regions were used in the present anal- 
ysis. To perform group-level analyses of contact locations, we used 
coordinates in average FreeSurfer space. Otherwise, we used coordi- 
nates in individual FreeSurfer space. Visual representations of contact 
localizations were generated using BrainNet Viewer ( Xia et al., 2013 , 
http://www.nitrc.org/projects/bnv/ ). 

2.5. Electrode and patient selection 

Of the 274 patients in the initial pool, patients were included in sub- 
sequent analyses only if they had at least 2 physical electrode contacts 
(resulting in at least 1 bipolar depth or surface contact) within both the 
left SmG, and left AnG, as defined in individual space (see Fig. 1b, S3 
for examples). Electrode contacts that were located in the seizure onset 
or irritative zone were excluded. Twenty-five patients met this criteria, 
and comprised the initial analysis set. 

2.6. Spectral power analysis 

Our analysis focused on the electrophysiological power during the 
1.6 s encoding period, during which the word was displayed. We used 
MNE-Python ( Gramfort et al., 2013 ) to divide the data into epochs in- 
cluding a 1 s buffer period on either side of the encoding period, re- 
sulting in epochs from 1 s prior, to 2.6 s following word presentations. 
The data were then notch filtered, using a 4 Hz width filter, at 60 Hz, 
120 Hz, and 180 Hz to reduce power line noise. Using Morlet wavelets 

(number of cycles = 6), we then extracted power at 24 log-spaced fre- 
quencies from 3 to 200 Hz and removed the buffer period. Power values 
were log-transformed (base 10) and averaged over 16 non-overlapping 
100 ms time bins for each frequency. We then z -scored the resulting 
power values on a session-by-session basis, by subtracting the mean and 
standard deviation of 500 ms pre-stimulus power on a frequency-wise 
basis. We further excluded the first 200 ms following word presentation, 
resulting finally in a 0.2–1.6 s epoch of interest, a time period previously 
used in analyses of this task ( Manning et al., 2012 ). 

2.7. Subsequent memory effect 

We tested for subsequent memory effects (SME) by using indepen- 
dent t -tests to compare power during subsequently recalled, to unre- 
called words. This SME was computed independently for each bipolar 
contact, for each frequency and time bin, to produce a time-frequency 
map of t -statistics. The resulting t -statistics were then averaged over con- 
tacts to produce one time-frequency map for the VPC overall, one for 
the SmG, and one for the AnG, for each patient. Computing t -statistics 
on a per-contact basis and then averaging the statistics over contacts, 
helps to mitigate the potential effect of varying numbers of contacts 
in each patient. Finally, these individual patient-level time-frequency 
maps were aggregated in group-level statistical analyses, in which false 
discovery rate (FDR) ( Benjamini-Hochberg, 1995 ) was used to adjust p - 
values for multiple comparisons. For statistical tests that were performed 
on a time-frequency-wise basis, FDR (Benjamini-Hochberg)-adjusted p - 
values were computed to account for multiple comparisons. 

2.8. Spectral tilt 

To compute the spectral tilt between recalled and unrecalled trials 
for a given subject and contact, we computed the average power spec- 
trum for all recalled, and unrecalled trials separately, using the MNE- 

http://www.nitrc.org/projects/bnv/
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Table 1 

Behavioral summary. 

Mean (SD) Range 

Number of sessions 2.1 (0.9) 1–4 

Lists per session 19.3 (5.7) 8–25 

Recall performance 24.0% (11.5) 8.8–53.9% 

Math distractor performance 91.8% (8.7) 65.0–100% 

Python ( Gramfort et al., 2013 ) implementation of Welch’s method. We 
then log-transformed the power spectrum, calculated a linear fit of the 
log-transformed power spectra using linear regression, and subtracted 
the slopes of the recalled and unrecalled fits. A null distribution of slope 
differences was constructed by randomly permuting the recalled and 
unrecalled trials 1000 times. Finally, the real difference between the 
recalled and unrecalled slopes was converted into a z -score using this 
null distribution (see Fig. 1 e for example). The z -scores were averaged 
across contacts in a given region, for each subject, except when imple- 
menting linear mixed effects (LME) models, where the z -scores of each 
individual contact were used. To test the effects of serial position on 
spectral tilt we followed prior work that has reported differences in spec- 
tral power based on serial position ( Serruya et al., 2014 ), and calculated 
spectral tilt for early (serial positions 1–4), middle (positions 5–8), and 
late (positions 9–12), which we coded as 1, 2, and 3, respectively, in the 
model. The LME model was implemented in Python version 3.7.7, using 
the “statsmodels ” package version 0.10.0 ( Lindstrom and Bates, 1988 ; 
Seabold and Perktold, 2010 ). Model comparisons were performed using 
likelihood ratio tests. 

2.9. Functional heterogeneity 

To test for differences in functional heterogeneity between the SmG 

and AnG we compared proportions of positive and negative SMEs be- 
tween the SmG and AnG using Fisher’s exact test. This was performed 
including all SMEs, as well as only SMEs that were significant (| z | > 

1.96). 
To test for anatomical clustering of positive and negative SMEs, we 

computed the centroids of the contacts that showed positive SMEs and 
those that showed negative SMEs, and computed the Euclidean distance 
between these two centroids. We then performed a permutation test 
where the SME values of all contacts were randomly shuffled, and the 
distance between the positive SME centroid and negative SME centroid 
was recomputed. This procedure was performed 10,000 times to gener- 
ate a null distribution of centroid distances. The real distance between 
the two centroids was thus converted into a z -score. 

3. Results 

3.1. Behavioral results 

Among the initial subset of 25 patients, math distractor performance 
was 0% for one patient, who was therefore excluded from all analyses. 
The remaining 24 patients represent the main analysis set. Behavioral 
performance measures are listed in Table 1 . Serial position effects on re- 
call performance were observed, in particular a primacy effect wherein 
items displayed earlier in the encoding list were recalled with greater 
probability (Fig. S1). 

To assess the possibility of practice effects of familiarity with the 
same words being presented across sessions, we examined the differ- 
ence in performance between the first and last sessions performed by 
patients who completed more than one session. The difference in perfor- 
mance was not significantly different than 0 ( M = − 0.9%; t (23) = − 0.45, 
p = 0.66). 

Among these 24 patients, there totaled 303 bipolar contacts in the 
left VPC: 172 in the SmG, and 131 in the AnG after excluding contacts 
in the SOZ or irritative zone (39 in the SmG and 33 in the AnG). The 

average number of contacts in the left VPC per patient was 12.6 ± 5 (in 
SmG: 7.2, range: 3–14; in AnG: 5.5, range: 1–14). All but two patients 
were right-handed; results did not change substantially upon excluding 
these two patients. 

3.2. VPC subsequent memory effect: increased spectral tilt 

We first asked whether there were SMEs over the spectral range in 
the VPC overall (see Fig. 1 c for example subject). We observed signifi- 
cant SMEs in theta and high gamma ranges in the VPC ( Fig. 2 a). Neg- 
ative SMEs (reduced power for words that were subsequently recalled) 
predominated in frequencies below the gamma range, and peaked at 
4 Hz at 1.5 s ( M = − 0.56; t (23) = 5.55, FDR-adjusted p = 0.002). Pos- 
itive SMEs (increased power for later-recalled words) predominated in 
gamma frequencies and above, peaking at 116 Hz at 0.7 s ( M = 0.25; 
t (23) = 4.38, FDR-adjusted p = 0.003). 

The observed broad-band effect, with negative SMEs in lower fre- 
quencies and positive SMEs in higher frequencies, has been well- 
replicated in memory studies ( Burke et al., 2014 ; Greenberg et al., 
2015 ). The pattern can be conceptualized as a “spectral tilt ”
( Ezzyat et al., 2017 ), and has been related to general neural activation 
measures such as neural firing and BOLD activity ( Burke et al., 2015 ; 
Winawer et al., 2013 ). Here, the power spectrum during encoding of 
later-recalled words is tilted relative to the power spectrum during un- 
recalled words, usually with ~30 Hz as the ‘fulcrum’ of this tilt. This 
phenomenon is reflected in Fig. 2 a, as a stark line at ~30 Hz separat- 
ing positive SMEs from negative SMEs. Based on the observation of sig- 
nificant power modulations starting ~0.5 s post stimulus ( Fig. 2 a), we 
specifically compared the spectral tilt between recalled and unrecalled 
words from 0.5 to 1.6 s post stimulus, and found significantly increased 
tilt ( t (23) = 3.54; p = 0.0017). As illustrated in Figs. 1 d and 2 b, a positive 
tilt corresponds to reduced low-frequency power (negative SMEs) and 
increased high-frequency power (positive SMEs) during subsequently 
recalled words. 

3.3. Sub-regional analysis: SmG vs. AnG 

Having established a robust subsequent memory effect in VPC, we 
asked if there was a difference in the spectral tilt SME between the SmG 

and AnG. A paired t -test revealed significantly greater tilt in the SmG 

( M = 0.52; SD = 0.13) compared to the AnG ( M = 0.12; SD = 0.17) 
( t (23) = 2.17, p = 0.040; Fig. 3 b). The more positive tilt SME in the 
SmG indicates greater difference in slopes between power spectra of 
recalled and unrecalled words. This is also reflected in the greater nega- 
tive SMEs at lower frequencies and greater positive SMEs at higher fre- 
quencies ( Fig. 3 a). We additionally asked if the AnG exhibited reduced 
SMEs partly due to a greater number of negative SMEs. We therefore 
compared the proportions of contacts with positive and negative SMEs 
in each region, over all subjects and contacts combined. Contacts in the 
AnG were significantly more likely to be negative, compared to the SmG 

(Fisher’s exact test, p = 0.048) with 48/172 (27.9%) of contacts in the 
SmG being negative, and 51/131 (38.9%) of contacts in the AnG being 
negative. Among contacts showing significant SMEs (| z | > 1.96), 3/17 
(17.6%) in the SmG were negative, and 3/6 (50%) in the AnG were neg- 
ative. However, this difference was not statistically significant (Fisher’s 
exact test, p = 0.28). 

Given previous reports of the effect of serial position on HFA and 
LFA ( Serruya et al., 2014 ), we used a linear mixed effects model to 
test whether the spectral tilt SME was related to serial position (de- 
fined by early, middle, or late serial positions). We first modeled the 
SME with a fixed effect of region and random effect (intercept) of sub- 
ject. In this model there was a significant effect of region ( p = 0.005; 
Table S1), whereby the SmG exhibited greater spectral tilt SME. We 
then implemented a model with fixed effects of region, serial position, 
and their interaction, and the same random effect of subject as the first 
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A. B.

Fig. 2. Subsequent memory effects in VPC. A) Time-frequency representation of significant subsequent memory effects across subjects in all VPC contacts, blue 

showing negative SMEs and orange showing positive SMEs. Time-frequency bins with FDR-adjusted p < 0.05 are highlighted with rectangular overlays. Word is 

displayed from 0 to 1.6 s. B) Illustration of overall spectral tilt of SME in VPC, from 0.5 to 1.6 s, showing greater negative SME in lower frequencies and greater 

positive SME in higher frequencies. Shaded region indicates ± 1 SEM. 

Fig. 3. Subsequent memory effects in SmG and AnG. A) Illustration of overall spectral tilt of SME in SmG (blue) and AnG (orange), showing greater negative 

SME in lower frequencies and greater positive SME in higher frequencies. Shaded region indicates ± 1 SEM. B) Spectral tilt SME over encoding time period from 0.5 

to 1.6 s, in VPC (black), SmG (blue), AnG (orange), and difference (gray), illustrating the more negative SME at lower frequencies and more positive SME at higher 

frequencies in SmG compared to AnG. Error bars indicates ± 1 SEM. Asterisks indicate p < 0.05 ( ∗ ) and p < 0.001 ( ∗ ∗ ∗ ). 

model. In this second model there was again a significant effect of re- 
gion ( p = 0.029; Table S1), whereas neither the effect of serial position 
nor the interaction of region serial position were significant ( p = 0.48, 
p = 0.25 respectively). As the log likelihood of the simpler first model 
( − 1127.5) was greater than for the second model ( − 1131.0), there was 
no evidence that including serial position as a predictor of SME im- 
proved the model. Taken together, this suggests that the spectral tilt 
SME in SmG was larger than in AnG regardless of serial position. 

We then asked whether there was a difference at the individual 
time-frequency level between the two regions (see Fig. 1 d for exam- 
ple subject). We statistically assessed this question at a within-subject 
level, with a paired t -test of the time-frequency maps from both regions 
( Fig. 5 a). The difference between SmG and AnG followed a pattern sim- 
ilar to the VPC overall: greater negative SMEs in the SmG at lower fre- 
quencies, and greater positive SMEs in the SmG at higher frequencies. 
However, differences between SmG and AnG reached significance after 
FDR adjustment at only one isolated time-frequency bin: 19 Hz at 0.8 s 
( M = − 0.65; t (23) = − 4.89; FDR-adjusted p = 0.02). 

We examined the time-frequency plots of SME for the SmG and AnG 

separately as well. In the SmG we observed significant SMEs ( Fig. 5 b) 
at similar times and frequencies to the VPC overall: the peak negative 
SME was observed at 5 Hz at 1.0 s ( M = − 0.78; t (23) = − 6.6; FDR- 
adjusted p = 0.0002) and peak positive SME at 67 Hz at 1.3 s ( M = 0.40; 
t (23) = 3.67; FDR-adjusted p = 0.008). However, SMEs were much 
weaker in the AnG ( Fig. 5 c), where we observed no time-frequency bins 
with p < 0.05 after adjusting for multiple comparisons. The peak nega- 
tive SME in the AnG occurred at 9 Hz at 1 s ( M = − 0.49; t (23) = − 4.04; 
FDR-adjusted p = 0.3), and the peak positive SME occurred at 39 Hz at 
0.2 s ( M = 0.24; t (23) = 2.84; FDR-adjusted p = 0.3). 

Finally, we examined the anatomical clustering of positive and neg- 
ative SMEs irrespective of regional localization. Across all subjects, the 
clusters of contacts showing positive and negative SMEs were largely 
overlapping ( Fig. 4 a,b), but were separated by a distance of 5.0 mm be- 
tween the centroids of the two clusters ( Fig. 4 c). While small, this dis- 
tance was statistically significant ( p = 0.017; Fig. 4 d), and was oriented 
such that positive SMEs were more anterior/dorsal, and negative SMEs 
were more posterior/ventral, consistent with the relative orientations of 
the SmG and AnG. 

4. Discussion 

Here we used a free recall paradigm to assess the electrophysiolog- 
ical underpinning of the VPC’s role in episodic encoding. More specif- 
ically, this is the first study to test the differential contribution of its 
anterior and posterior sub-regions – the SmG and AnG. We found an 
SME in the VPC with decreased low frequency activity (LFA) ( < 30 Hz) 
and increased high frequency activity (HFA) ( > 30 Hz) in spectral power 
throughout the encoding epoch, which is consistent with previous iEEG 

reports using separate datasets ( Burke et al., 2014 ). Moreover, this pat- 
tern of decreased LFA and increased HFA, or spectral tilt, was signifi- 
cantly greater in the SmG compared to the AnG. 

4.1. VPC subsequent memory effect 

The main finding of significant SME in the VPC replicates previous 
studies that demonstrate a role for this region in episodic memory encod- 
ing, and complements other studies that have demonstrated the VPC’s 
role in retrieval ( Wagner et al., 2005 ; Rugg and King, 2018 ). Using a 
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Fig. 4. Sub-regional heterogeneity of SMEs. A) Channels with significant SMEs (| z | > 1.96; left), or B) trending (| z | > 1; right) are plotted on an average brain. 

C) Centroids of all positive (blue) and negative (red) SMEs. D) Null distribution of centroid distances. Red dashed line indicates the actual distance between the two 

centroids. 

Fig. 5. Time-frequency comparison of subsequent memory effects. A) Time-frequency representation of difference in SME across subjects between SmG and 

AnG contacts, with blue showing more negative, and orange showing more positive SME in SmG compared to AnG. Time-frequency bins with FDR-adjusted p < 0.05 

are highlighted with rectangular overlays. Word is displayed from 0 to 1.6 s. B, C) Time-frequency representation of SME across subjects in SmG (B) and AnG (C) 

contacts, with blue showing negative SMEs and orange showing positive SMEs. Note the significant time-frequency bins in the theta band (~5 Hz) at 1.0 s and high 

gamma band (~60–150 Hz) at 1.3 s, in the SmG (B). Vertical dashed lines indicate stimulus presentation at time 0. 

verbal free recall task similar to ours, Burke et al. (2014) also found an 
SME of increased HFA in the left posterior parietal cortex during en- 
coding. There, the temporal profile of the SME showed a peak around 
1 s post-stimulus, and was relatively sustained compared to the highly 
peaked profile of other regions such as the visual and medial temporal 
cortices. This late-peaking sustained response supports the notion that 
the VPC mediates associative processes related to memory formation, 
possibly in addition to stimulus-specific information. While we did not 
test for stimulus-specific semantic information in our study, previous re- 
ports show category-specific information encoded by BOLD activation 
of the AnG ( Lee et al., 2017 ), and semantic information is known to be 
processed by a widespread cortical network that includes the SmG and 
AnG ( Binder et al., 2009 ). 

4.2. Differential roles of SmG and AnG 

The specific focus of our study addresses a more nuanced 
question of a potential anterior-posterior dissociation of function 
within the VPC. This fMRI-supported hypothesis posits that the SmG 

processes external/perceptual information, whereas the AnG pro- 
cesses internal/conceptual information ( Corbetta and Shulman, 2002 ; 
Buckner et al., 2008 ; Cabeza et al., 2008 ; Binder et al., 2009 ; 
Daselaar et al., 2013 ). This distinction is consistent with the difference in 
resting state networks to which each region belongs, namely the ventral 
attention network for the SmG, and the default mode network for the 
AnG ( Yeo et al., 2011 ; Table 2 ). Indeed, previous studies have hypothe- 
sized that the network associations of the AnG explain its predominantly 
negative SMEs ( Daselaar et al., 2004 ; Shrager et al., 2008 ; for review, 
see Kim, 2011 ). Although it should also be noted that the AnG may be- 
long to a “Parietal Memory Network ” that is separate from the DMN 

( Gilmore et al., 2015 ). While fMRI studies may easily compare the SmG 

to AnG, to our knowledge this is the first within-subject iEEG compari- 
son of these two regions during episodic encoding. We hypothesized that 
externally-oriented processing would be more advantageous for episodic 
encoding (conversely, evidence of VPC contribution to episodic retrieval 

has converged on the AnG, Rugg and King, 2018 ). Together, along with 
the tendency for BOLD activation to correlate with increased high fre- 
quency power ( Conner et al., 2011 ), we predicted greater SME in the 
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Table 2 

Neuroanatomy of supramarginal and angular gyri. 

Anterior VPC Posterior VPC 

Gyrus Supramarginal gyrus (SmG) Angular gyrus (AnG) 

Brodmann area BA40 BA39 

Location Ventral to intraparietal sulcus, anterior area around end of Sylvian 

fissure bordered anteriorly by postcentral sulcus, and ventrally by 

superior temporal gyrus. Includes temporoparietal junction. 

Ventral to intraparietal sulcus, posterior to Sylvian fissure, 

bounded posteriorly by occipital cortex, and ventrally by lateral 

temporal gyri 

Functional network Ventral Attention Network ( Yeo et al., 2011 ) Default Mode Network ( Yeo et al., 2011 ) 

White matter connectivity AnG, superior parietal lobule, and primary sensory cortices via local 

association fibers; middle and superior temporal gyri via arcuate 

fasciculus and middle longitudinal fasciculus; inferior and middle 

frontal gyri via superior longitudinal fasciculus ( Burks et al., 2017 ) 

SmG and superior parietal lobule via local association fibers; 

primary sensory cortices via superior longitudinal fasciculus; 

middle temporal gyrus via arcuate fasciculus; lateral occipital 

cortex via inferior longitudinal fasciculus ( Burks et al., 2017 ) 

SmG compared to the AnG. We confirmed this prediction: the spectral 
tilt SME, characterized by decreased LFA and increased HFA, was sig- 
nificantly greater in the SmG. 

In addition to observing a difference in SMEs between the SmG and 
AnG, we also observed differences in anatomical locations of positive 
and negative SMEs regardless of region, whereby more anterior/dorsal 
contacts exhibited more positive SMEs compared to posterior/ventral 
contacts ( Fig. 4 d). This supports the notion of an anterior-posterior gra- 
dient of function within the VPC ( Cabeza et al., 2008 ). Consistent with 
these prior hypotheses, we also found that contacts in the AnG were 
more likely to exhibit negative SMEs than those in the SmG. Together, 
these results are also consistent with prior fMRI studies showing that 
activation of the AnG during encoding is detrimental to future recall 
( Kim, 2011 ), and support our initial hypothesis of weakly negative SMEs 
in the AnG. In other words, successful encoding is supported not only 
by greater activation of the SmG compared to the AnG, but also by de - 
activation of parts of the AnG. 

One natural question this raises is whether the two regions com- 
pete for cognitive and physiological resources. If it is behaviorally use- 
ful for them to exhibit complementary patterns of activation, it may 
be physiologically beneficial to share resources as well. While this idea 
is most likely an oversimplification, evidence from resting-state fMRI 
studies showing anti-correlations between anterior and posterior ventral 
parietal cortex, does support a competitive relationship to some extent 
( Buckner et al., 2008 ). 

While our results are consistent with the hypothesis that the SmG me- 
diates externally-oriented attention, and the AnG mediates internally- 
oriented attention, one may speculate a necessary balance between these 
two attentional processes, especially for free recall tests. Since free re- 
call relies on internally-generated cues, the binding of external stimuli 
to internal context during encoding is necessary for successful recall 
( Staresina and Davachi, 2006 ; Lee et al., 2017 ). We hypothesize that 
without sufficient internally-oriented attention, this binding will not oc- 
cur. Specifically, when one observes a new word during encoding, the 
SmG enhances attention to the external stimulus from 0 to 1 s post- 
stimulus, and then AnG activity highlights the internal context, and fa- 
cilitates the binding of the incoming stimulus to the ongoing context rep- 
resentation. The balance between internal and external attention may 
manifest in the weakly positive SME observed in the AnG. We note, how- 
ever, that this study was not designed to test the relative external-versus- 
internal allocation of attention, and we recognize the highly speculative 
nature of our interpretation of AnG activation patterns. 

4.3. Positive vs. negative SME 

The question of positive or negative SME has found discrepant an- 
swers in different studies. Large meta-analyses of fMRI studies have con- 
cluded that a negative SME predominates in the VPC ( Uncapher and 
Wagner, 2009 ; Kim, 2011 ). However, when restricting to free recall 
as opposed to recognition paradigms, the majority of evidence points 
instead to positive BOLD SMEs (e.g. Staresina and Davachi, 2006 ; 
Heinze et al., 2006 ; Dickerson et al., 2007 ). As briefly discussed above, 

we argue that since successful free recall relies solely on internal cues, it 
necessitates contextual binding between the (external) stimulus and in- 
ternal associational structures. In contrast, recognition memory can take 
greater advantage of external cues and thus may rely on at least partially 
distinct encoding processes, including greater suppression of the DMN. 
Previous reports support such a relationship between retrieval tests and 
encoding processes ( Rugg et al., 2008 ). While speculative, the negative 
SMEs observed in recognition tasks may thus reflect the decreased need 
for external-internal associations. For example, a recent fMRI study ex- 
amining subsequent memory effects for free recall and recognition found 
that default network regions including the medial prefrontal, posterior 
cingulate, and right angular gyrus exhibited negative subsequent mem- 
ory effects only for recognition tests, but not for free recall ( Hill et al., 
2020 ). Further evidence for the distinction between free recall and 
recognition tests was directly tested by Staresina and Davachi (2006) , 
who combined a free recall and recognition paradigm: words (nouns) 
were presented visually on screen, but additionally included a color 
background, and subjects assessed the plausibility of the noun existing 
in that color. After a distractor period, a period of recall was provided 
before the subsequent recognition memory test. There they found that 
BOLD activation in the left SmG was specific to successful encoding of 
freely recalled items, and was not observed during encoding of correctly 
recognized items. Similarly, in a study by Dickerson et al. (2007) , in 
which subjects were shown images of common objects and asked to 
recall them after a distractor period, a significant SME in left inferior 
parietal cortex was found. While there is not a direct correspondence be- 
tween iEEG spectral power patterns and fMRI BOLD activation, the lat- 
ter is generally associated with increased high frequency power. Thus, 
we conclude that our findings and those of Burke et al. (2014) sup- 
port the positive SME shown by Staresina and Davachi (2006) and 
other select fMRI studies ( Heinze et al., 2006 ; Dickerson et al., 
2007 ). 

However, some evidence also suggests a more nuanced landscape 
of cortical oscillatory contributions to memory. In a study combining 
EEG and fMRI, Hanslmayr et al. (2011) also used free recall to inves- 
tigate SMEs in different frequency ranges across the brain and the po- 
tentially differential relationships between EEG and fMRI. While they 
also found that decreased beta (17–20 Hz) power predicted later re- 
membering (albeit in inferior prefrontal regions), they found that in- 

creased theta in temporoparietal electrodes predicted recall. A direct 
comparison between our studies is difficult: there are likely differences 
in the signals detected from scalp EEG compared to iEEG, as well as 
in the analysis procedures (e.g. using bipolar referencing) that would 
specifically lead to observing increased theta in scalp EEG but not in 
iEEG ( Herweg et al., 2020 ). Subtle differences in the task paradigm may 
also contribute in unknown ways ( Hanslmayr et al., 2009 ). For exam- 
ple, Hanslmayr et al. (2011) utilized a directed forgetting paradigm in 
which subjects were instructed to only recall the second half of some 
lists. While this did not affect the fMRI results, other studies have demon- 
strated robust effects of list serial position on oscillatory power and SME 
( Serruya et al., 2014 ). More research is needed to clarify the effects of 
these and yet other task variations on SME. 



D.Y. Rubinstein, L. Camarillo-Rodriguez, M.D. Serruya et al. NeuroImage 225 (2021) 117514 

4.4. Spectral tilt and oscillations 

The electrophysiological differences between the two regions mir- 
ror the main effects, which can be summarized as a spectral “tilt ” phe- 
nomenon ( Ezzyat et al., 2017 ), with concurrently decreased LFA and 
increased HFA. While this spectral tilt is not specific to memory pro- 
cessing, and HFA especially is regarded as a general signal of cortical 
activation rather than being specific to memory formation ( Crone et al., 
2006 ), the same pattern of results has been found in other memory stud- 
ies across much of the cortex ( Burke et al., 2014 ; Ezzyat et al., 2017 ). In 
contrast to broad spectral changes, theta oscillations occupy a privileged 
position in models of memory function and contextual processing pri- 
marily in the medial temporal lobe ( Solomon et al., 2019 ). Here we char- 
acterize our findings as a spectral tilt rather than decreased theta, due 
to the gradual nature of the SME changes from low to high frequency, 
and the stark distinction at ~30 Hz between negative and positive SME. 
Nevertheless, it is possible that in addition to spectral tilt-related pro- 
cesses, there is also a specific theta (or other) oscillatory component, 
especially considering that the strongest low-frequency component of 
the SME observed here occurred in the theta band ( Fig. 2 a). Indeed, 
previous evidence highlights the point that both phenomena contribute 
to this pattern, as individual frequency effects are dissociable in space 
and time, and sometimes by task condition ( Fellner et al., 2019 ). 

4.5. Limitations and future directions 

One limitation of the present study relates to the variable placement 
of electrode contacts in the VPC, due to patients’ individual clinical 
demands. Relatedly, we here used an anatomically-based parcellation 
(Desikan-Killiany) for technical considerations and for ease of compar- 
ison with other studies. If there were a functional segregation of VPC 

finer than broadly distinguishing between the SmG and AnG, as might 
be inferred from cytoarchitectural and functional studies ( Caspers et al., 
2006 ; Igelström and Graziano, 2017 ), then those differences may af- 
fect our results in unknown ways. Specifically, the SmG and AnG are 
believed to be composed of 5 and 2 distinct sub-regions, respectively, 
which roughly progress from the anterior to posterior end of the VPC 

( Caspers et al., 2006 ). An examination of these more spatially-resolved, 
and functionally-defined differences in episodic processing might pro- 
vide further insights. Furthermore, we did not establish the DMN or 
VAN in this study, so discussion of the SmG and AnG with respect to 
their putative network associations are somewhat speculative. 

While previous studies have examined the effects of inhibitory elec- 
trical stimulation of the AnG on retrieval success ( Sestieri et al., 2013 ), 
future studies may likewise utilize rTMS or other stimulation methods 
to more directly and causally probe the roles of these regions during 
encoding. We would predict that rTMS-mediated suppression of activ- 
ity in the SmG would impair performance on memory tasks relying on 
externally-oriented attention, whereas suppression of activity in the AnG 

would impair memory relying on internally-oriented attention, for ex- 
ample when a greater degree of contextual binding is required. Interest- 
ingly, one study has tested the effect of TMS on left AnG during encoding 
of a paired associative memory task, finding that while memory accu- 
racy was unaffected, memory confidence was adversely affected by TMS 
( Koen et al., 2018 ). 

A further limitation of this study is the use of a bipolar referencing 
scheme, which may impact our ability to observe positive theta SME. As 
has been previously discussed ( Herweg et al., 2020 ), positive theta SMEs 
may be obscured by the spatial filtering inherent in bipolar referencing. 
In this case, only the edges of the regions of interest would show the 
positive theta SME. Future studies could examine the impact of different 
referencing schemes on theta band SMEs, to confirm this hypothesis. 

Finally, but importantly, the subjects of this analysis were patients 
with epilepsy, which may constrain the generalizability of the find- 
ings to healthy controls due to pathological activity or potential net- 
work reconfigurations. However, we note that previous studies have not 
found significant differences in neural SMEs between these two groups 
( Long et al., 2014 ; Hill et al., 2020 ). 

5. Conclusions 

To conclude, we provide evidence for distinct roles in episodic en- 
coding in left SmG and AnG, as the anterior and posterior left VPC, 
respectively. Previous work has demonstrated a role for the VPC in 
episodic retrieval ( Rugg and King, 2018 ) and encoding ( Kim, 2011 ), 
with further suggestions that the SmG and AnG differ along the lines of 
externally-oriented and internally-oriented processing ( Daselaar et al., 
2013 ). This difference is also potentially reflected in the different net- 
works to which each sub-region belongs, namely the VAN (for the SmG) 
and DMN (for the AnG). We further extend this hypothesis to episodic 
encoding. By directly comparing SmG and AnG, we show that the SmG 

has a preferential role in encoding, based in part on increased spectral 
tilt of reduced LFA and increased HFA. 
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