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AN INVESTIGATION OF GENE REGULATORY NETWORK

STATE SPACE VARIABILITY

SARA FAYE LIESMAN

52 Pages

Genes are segments of DNA that provide a blueprint for cells and organisms to

effectively control processes and regulations within individuals. There have been many

attempts to quantify these processes, as a greater understanding of how genes operate

could have large impacts on both personalized and precision medicine. Gene interactions

are of particular interest, however, current biological methods can not easily reveal the

details of these interactions. Therefore, we infer networks of interactions from gene

expression data which we call a gene regulatory network, or GRN. Due to the robust

behavior of genes and the inherent variability within interactions, models incorporating

stochasticity are more realistic than those that are only deterministic. These methods are

designed to bypass the need for large amounts of data and extensive knowledge about a

network. In this work, we extend previous work investigating additional ways to

incorporate stochasticity into gene regulatory networks. First, we use a transition function

and investigate its inherent variation, then we use a statistical distribution for activating

and degrading the states of genes, and finally, we use a new method incorporating spectral

density to incorporate stochasticity within a GRN.

KEYWORDS: beta distribution, cell to cell variation, gene regulatory networks, Spectral

density, state transition, stochasticity
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CHAPTER I: INTRODUCTION

An understanding of organisms on the molecular level requires the knowledge of

genes and their interactions. Genes are segments of DNA that aid the regulation of

phenotypes in organisms and ultimately dictate the fitness of individuals. Cells function

properly when genes and proteins, both within and around cells, function properly [3].

Gene expression is regulated through interaction networks and a series of positive

and negative feedback loops [3, 17, 20]. Similar to interaction networks on the macro-level,

where organisms interact with each other in order to create an ecosystem, interaction

networks also exist on the microscopic level [3, 17, 20]. On the microscopic level, cells,

proteins, and molecules interact with one another.

Transcription factors dictate how and when each gene influences cellular activity

[22]. Genes help create messenger RNAs (mRNAs) which then work with ribosomes to

synthesize proteins. These proteins could then become transcription factors again and

assist in the regulation of a new gene [20, 22]. This chain reaction forms a network of gene,

protein, and regulator reactions that we call a gene regulatory network. However, current

technology and experimental methods do not exist to directly reveal the intricacies of these

networks. Therefore, the gene regulatory networks that we know today are networks that

have been inferred from gene expression data, often denoted by GRN [8]. Gene expression

data provides information about mRNAs, but not necessarily about binding information.

Thus, GRNs are used in order to infer the interactions between genes, proteins, and other

regulators [8].

An example of a regulatory network can be seen in Figure 1a. In this figure we see

the p53-Mdm2 network described in [1, 6, 15, 28, 39]. The p53 protein is a tumor

suppressing protein that is activated by damage to DNA. Here the term “p53 protein”

includes nucleic p53, cytoplasmic p53, and the gene p53. In this network, damage to DNA

represses nucleic Mdm2. The repression of Mdm2 allows for p53 proteins to increase. The

p53 proteins then help to repair DNA damage, but also decrease nucleic Mdm2 and
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increase cytoplasmic Mdm2. Cyctoplasmic Mdm2 causes an increase in nucleic Mdm2, thus

there is competition, so to speak, between the p53 protein and cytoplasmic Mdm2 for the

increase and decrease of nucleic Mdm2. Once DNA damage has been repaired, nucleic

Mdm2 will increase and p53 proteins will decrease.

Although these interactions are dictated by a network, there is still some

stochasticity involved between interactions [3, 4, 20, 27, 35]. This stochasticity may be due

to concentration levels, binding abilities, or even distances of molecules within cells. In

cells, competition between ribosomes and RNase E binding can lead to some stochasticity

[27] RNase E signals the degradation of mRNA after transcription, however, mRNA that

binds to a ribosome will undergo translation and lead to protein production [27]. Whether

mRNA degrades or leads to the production of proteins is thought to be determined by its

proximity to either RNase E or a ribosome [27]. Mathematical models have been created in

attempts to capture the details of these processes with varying degrees of success. In

general, stochasticity is not captured by all inference methods, but likely plays an

important role in the formation of GRNs since a large portion of cellular signals are from

noise [3].

In order for a cell to properly function, it depends on the coordination of thousands

of proteins in different variations interacting at the correct time, place, and in the correct

quantity [3, 20, 33]. In order to orchestrate these interactions, regulatory systems exist to

help determine when mRNA is produced, how long mRNA should last, how much protein

from mRNA should be created, how proteins are arranged and modified, and when they

are degraded [3, 20, 33]. However, large amounts of data are needed for gene network

inference [3], and limitations in experimental techniques create noisy data sets, so only

small interactions have been extracted [32]. Moreover, human interests have introduced a

bias into which networks are studied since there is a motivation to study networks related

to human diseases [32]. These biological limitations have led to the need for mathematical

models to help estimate biologically reasonable parameters such as inputs, time delays, and
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A gene regulatory network example of the Mdm2-p53 complex

Figure 1: (a) A system process with DNA (D), DNA damage (R), Nucleic Mdm2 (squares),
Cytoplasmic Mdm2 (stars) and p53 including cytoplasmic, nucleic, and gene p53 (circles).
(i) The system is shown with no DNA damage. (ii) The system is shown with DNA damage,
a decrease in nucleic Mdm2, and an increase in p53. (iii) p53 has caused an increase in
cytoplasmic Mdm2, a decrease in DNA damage, and a decrease in nucleic Mdm2. (iv)
Cytoplasmic Mdm2 causes an increase in nucleic Mdm2, while p53 causes a decrease in
nucleic Mdm2. (v) A decrease in DNA damage leads to a decrease in p53. (vi) Cytoplasmic
Mdm2 decreases and nucleic Mdm2 increases. (b) A wiring diagram for (a) recreated from
[28]. An arrow from object A to object B (A → B) indicates that A causes an increase in
B. A repression line from object A to object B (A a B) indicates that A causes a decrease
in B. This process was recreated using information from [1, 28].
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genes expressed from feedback loops [3, 17, 19, 23, 32, 33].

Networks are a natural way to model biological systems with interactions

[14, 23, 32]. A network is a set of objects that are connected through a set of rules. In the

past, networks have been used to model a variety of interactions including protein structure

networks, protein-protein interactions, transcriptional regulation, metabolism, and

neuronal synaptic connections [32]. In gene regulatory networks the objects, or nodes, in a

network graph represent a collection of genes and the edges represent the interactions

between sets of genes. Models for GRNs can be dynamical or static, discrete or continuous,

and deterministic or stochastic [3, 17]. Some models that have been studied are Bayesian

networks, rule-based algorithms, ordinary differential equations, and Boolean networks

[17, 23]. Table 1 describes some of the possible methods used to study GRNs. The

methods discussed here are not exhaustive.

Directed graphs are a common way to represent GRNs [14, 17, 23, 32]. A directed

graph consists of a collection of vertices and edges {V,E} where each edge is defined by the

vertices that it connects (vm, vn). This set of objects could then be generalized to represent

the interactions between different components in a GRN such that each vertex represents a

gene and each edge determines a rule whereby the given gene influences the next gene [17].

In Figure 1b we see a directed graph for the p53-Mdm2 complex described by [1].

Directed graphs can be simplified for further abstraction of information through the

use of Boolean networks. In a directed graph, each of the nodes or vertices of the graph

represent a gene within the network. Unlike a directed graph, each of the nodes in a

Boolean network represent the states of genes. These states indicate whether or not a gene

in a Boolean network is active (on) or non-active (off). Boolean networks are one of the

simplest dynamical models and express variables as either on (1) or off (0) [17, 19]. They

were first introduced by Stuart Kauffman in the 1960’s [3, 17, 19]. In a network with two

variables there would be four possible states and thus four vertices in the directed graph

(i.e. 00, 01, 10, or 11). An edge from 01 to 11 would indicate that when component one is
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off and component two is on, at the next time step, both components will be on. The

benefit of using a Boolean network is that it is able to capture qualitative information

about networks without needing detailed information about the parameters that are

necessary for detailed quantitative results. Boolean networks are simple enough to be used

for large networks, but may be too simple to capture important qualities in a network [17].

Like directed graphs, Boolean networks can be deterministic.

A natural extension of Boolean networks is a generalized logical network which

allows for asynchronous state changes and utilizes thresholds on concentrations to

determine when a state will change [17]. For example, a system with a variable Xi,

concentration of molecules x and a threshold at m could have the following rules:


Xi = 0 if x < m

Xi = 1 if x ≥ m

Each edge could have its own unique threshold. Also, generalized logical networks can be

extended to incorporate stochastic time delays, but still largely remain deterministic [17].

One benefit of generalized logical networks is that they are relatively robust, however, it is

difficult to find appropriate scoring functions for the possible networks developed with

generalized logical networks and thus inference is difficult [24].

Differential equations have also been used to model GRNs [3, 17]. There are a large

number of models that have been developed using differential equations that will not be

covered here exhaustively. For example, there are both linear and nonlinear differential

equations which represent gene products, mRNAs, and proteins with dynamic and

continuous variables [3, 35]. A network with N genes will have 2N equations, representing

the transcription and translation for each of the N genes [10], and thus many parameters

are needed in order to create a model. Often multiple experiments are needed in order to

measure gene levels and transcription rates can only be measured as a proportion relative

to other rates of transcription [35]. In general, differential equations often require advanced
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numerical methods which can be difficult to implement due to missing numerical

parameters in models [3].

However, deterministic systems fail to incorporate the stochasticity present in

GRNs. In cells where network noise leads to a differentiation of cellular phenotype,

incorporating noise and variance in a model will help improve the model outcomes [17, 27].

Bayesian networks incorporate stochasticity. A Bayesian network is created with a

directed acyclic graph and a series of conditional probabilities along the edges [17]. Since

Bayesian networks utilize statistical principles, they can incorporate noise into their

networks in a way that other deterministic models fail to do so [35]. Bayesian networks are

able to handle missing data and incorporate prior biological knowledge into the system

[35]. However, these Bayesian networks have not been known to arrive at globally optimum

solutions and many require large amounts of data even for small networks [3, 17].

Stochastic master equations also incorporate stochasticity and provide more

information than deterministic models and Bayesian networks [17]. However, these

networks are even more difficult to solve than the rate equations involved in differential

equations. They require detailed knowledge about the reactions and their probability

density functions, and are computationally expensive [17]. On the other hand, in short

time periods, the master equation can provide realistic results and predictions for gene

regulation [17].

In order to determine whether the models described above are efficient, a

comparison between the model results and data is used. Many of the models mentioned

create multiple variations and then the task of finding an optimal fit is important for

determining which model is appropriate for the GRN [3, 17, 24, 34, 35]. A general

comparison between the data obtained for a model and the model itself may be used to

provide an estimate about the accuracy of the model [17, 24, 35]. Least square methods

and generalized least square methods may also be used to find optimal parameters for

GRNs [24, 34, 35]. Scoring functions are also used to optimize models to best fit the data
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Table 1: Methods for Gene Regulatory Networks [3, 17, 24]

Type Qualities Pros Cons

Directed Graphs Static and Intuitive Crude
deterministic

Boolean Networks Discrete, dynamic, Simple for Crude
and deterministic large data sets

Generalized Logical Discrete, dynamic, Accommodates Inference
Networks and deterministic asynchronous is difficult

state changes
and time delays

Differential Continuous, dynamic, Flexible Computationally
Equations and deterministic expensive

Bayesian Networks Static, Stochastic Need large
stochastic, and amounts
discrete or of data
continuous

Stochastic Master Discrete, dynamic, Realistic Difficult
Equation and stochastic to use

[3, 24]. In order to use these methods large amounts of data are required. In fact, Boolean

networks, which are one of the simplest models, require data twice as large as the number

of genes in the network [3]. Differential equations can require as many experiments as there

are genes in a network [35]. This likely limits the use and comparison of models to small

networks. In yeast (Saccharomyces cerevisiae) 2355 genes have been identified contributing

to regulatory networks [22], this could imply that upwards of 2355 experiments are needed

in order to identify the structure and rates of these networks. In addition, transition rates

are not easily obtained through experimentation because estimations often rely on linear

changes which would imply that there is no natural capacity for transition rates [35].

Combined with the fact that data size is often limited by the cost of experiments [3], it is

clear that there is a need to develop more accurate GRNs that consider the effects of
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variation and noise.

Akman et al. attempt to address this concern in 2018 by investigating the variation

between state transitions in GRNs and noise within a network [2]. The authors use beta

distributions to estimate the propensity that state transitions occur in a GRN under ideal

conditions. Through their investigation, Akman et al. find that state transitions with high

variation lead to a network with high amounts of variation [2]. This is consistent with the

literature, whichfinds that short-term fluctuations in protein production can have larger

impacts on gene expression [27]. These impacts are likely due to the cascading behavior of

GRNs as well as different feedback loops within cells [4, 27]. The authors also use the

assumption that propensities among state transitions are not constant and demonstrate

how statistical distributions can be used to provide important insight about GRNs.

However, the process described in [2] also requires large amounts of data and becomes less

stable for large networks. They also assume that an ideal network will have minimum

variance among state transition propensities which may be ignoring some key ideas such as:

• Data obtained from a single cell can have large amounts of noise and variation [3]

• Noise from gene expression data can be as large as 30% [3]

• Different feedback loops can amplify or dampen variation in networks [4]

• Genetically identical cells may show cell-cell differences by more than 10% [4]

Despite some shortcomings, Akman et al. have begun to pave the way for introducing more

variability into models that will likely require stochastic properties in the near future. In

this work we attempt to extend the authors’ work and address concerns about noise by

investigating additional ways to incorporate variation and noise into future models.
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CHAPTER II: MODEL FORMATION AND RESULTS

In this study, we look at intrinsic noise in GRNs and discuss ways to incorporate

this noise into future models. During gene and protein interactions transcription factors

and chemical signals come into contact with one another and bind in order to cause a

reaction such as mRNA synthesis or protein assembly. Traditionally, these reactions and

collisions of chemicals in a system were considered deterministic, but due to quantum

indeterminacy and lack of mechanical isolation it is now argued that the processes in these

systems are more likely stochastic in nature [12]. Here, we assume that we have a

well-mixed system with a limited number of molecules per population of molecule so that

our systems will incorporate discreteness and stochasticity. In the past, this reaction rate

was determined by a set of ordinary differential equations, but when a system involves

discreteness and stochasticity, these equations are no longer appropriate [12].

Since our system is both discrete and stochastic, it is most natural to represent our

system as a Boolean network with added stochasticity; this representation is similar to the

ones described in [2, 28]. In Figure 2 we see an example of a Boolean network. Here, each

node of the directed graph represents a state of the system and each edge represents the

propensity for changing to a state. Recall, that although this graph looks like the wiring

diagram, or directed graph, that we saw in Figure 1b, the vertices of this graph are the

states of genes. Therefore, when we have a two gene system, each node will have two

entries. The first entry will represent the state of the first gene, and the second will

represent the state of the second gene. These states are either on (1) or off (0).

Biologically, genes may be operating at different rates and have more than two states, but

mathematically it is possible to abstract information by only considering genes as active or

non-active.

Let G1, G2, · · · , Gn represent n genes in a regulatory network. Let xi(t) be the state

of Gi at time t where i = 1, 2, · · · , n and t ∈ [0, T ]. The possible states of our system are 0

or 1, denoted Xi = 0, 1 for i = 1, 2, · · · , n. If G1 is on at time q, 0 ≤ q ≤ T , then x1(q) = 1.
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If G1 is off at time q, 0 ≤ q ≤ T , then x1(q) = 0. In this study we focus on a predetermined

two gene system. Therefore, the state space of this network S is the Cartesian product of

each gene’s state space, S = X1 ×X2 × . . .×Xn.

Table 2: State Update Propensities

Update x1 x2

Activation p↑1 p↑2

Degradation p↓1 p↓2

Failure to Activate 1− p↑1 1− p↑2

Failure to Degrade 1− p↓1 1− p↓2

Each edge of the directed graph represents a probability for transition to a different

state. These propensities are determined by an update function involving activation and

degradation propensities, p↑i ∈ [0, 1] and , p↓i ∈ [0, 1] respectively. Failure to activate and

failure to degrade are represented by 1− p↑i and 1− p↓i respectively. Note that

1− p↑i ∈ [0, 1] and 1− p↓i ∈ [0, 1]. These values can be seen in Table 2. Although genes are

interacting with each other in a network, the propensities for activation and deactivation of

genes are each independent. This occurs because genes activate and deactivate

independently of one another. Thus, the probability of transitioning from one state to

another can be represented as the product of two propensities. Given the independence

between gene state propensities, we obtain the value of each edge propensity by finding the

product of the appropriate gene propensities for activation, degradation, failure to activate,

and failure to degrade. For example:
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Pr(00→ 01) = (1− p↑1)× p
↑
2, P r(00→ 10) = p↑1 × (1− p↑2),

P r(00→ 11) = p↑1 × p
↑
2, P r(00→ 00) = (1− p↑1)× (1− p↑2),

P r(11→ 10) = (1− p↓1)× p
↓
2, P r(11→ 01) = p↓1 × (1− p↓2),

P r(11→ 00) = p↓1 × p
↓
2, P r(11→ 11) = (1− p↓1)× (1− p↓2),

P r(01→ 00) = (1− p↑1)× p
↓
2, P r(01→ 11) = p↑1 × (1− p↓2),

P r(01→ 10) = p↑1 × p
↓
2, P r(01→ 01) = (1− p↑1)× (1− p↓2),

P r(10→ 11) = (1− p↓1)× p
↑
2, P r(10→ 00) = p↓1 × (1− p↑2),

P r(10→ 01) = p↓1 × p
↑
2, P r(10→ 10) = (1− p↓1)× (1− p↑2),

These transitions can also be represented in a transition matrix. A general

transition matrix is shown in Table 3. A more concrete example of a Boolean network with

activation and degradation propensities is shown in Figure 3

Table 3: Transition Matrix of State Update Propensities

Input/
Output 00 01 10 11

00 (1− p↑1)(1− p
↑
2) (1− p↑1)(p

↑
2) (p↑1)(1− p

↑
2) (p↑1)(p

↑
2)

01 (1− p↑1)(p
↓
2) (1− p↑1)(1− p

↓
2) (p↑1)(p

↓
2) (p↑1)(1− p

↓
2)

10 (p↓1)(1− p
↑
2) (p↓1)(p

↑
2) (1− p↓1)(1− p

↑
2) (1− p↓1)(p

↑
2)

11 (p↓1)(p
↓
2) (p↓1)(1− p

↓
2) (1− p↓1)(p

↓
2) (1− p↓1)(1− p

↓
2)

In order to determine when a gene will transition, a transition function is used.

f(t) = a0e
−kt, t ≥ 0 (II.1)

This equation represents the concentration of molecules that are needed in order to trigger

a change in the states of genes. In tandem with equation II.1, we also use a threshold m

which occurs at time t = τ . This threshold indicates at what concentration we would

expect to see a change. For example, if gene 2 is on x2 = 1, then as soon as the

concentration of molecules activating that gene decreases below m we would expect the

11



An example of a Boolean network represented as a directed graph

Figure 2: An example of a Boolean network represented as a directed graph

An example of a Boolean network with probabilities and a transition matrix

Figure 3: An example of a Boolean network with probabilities and a transition matrix
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gene to turn off x2 = 0. Likewise, if gene 2 is off x2 = 0, then as soon as the concentration

of molecules repressing that gene decrease below m we would expect the gene to turn on

x2 = 1. In other words, given a gene in the off state,

xi =


0 if t < τ

1 if t ≥ τ

Or given a gene in the on state,

xi =


1 if t < τ

0 if t ≥ τ

Here, we use an exponential decay function which implies that transitions occur after a

decrease in the proportion of molecules. However, biologically it is possible for transitions

to occur after an increase in the proportion of molecules. Although we only use a decaying

function for the transition function, we believe that any process which involves an increase

in molecules could also be modeled with this exponential decay by changing the way you

number the y-axis such that the lim
t→∞

f(t) = κ, where κ is the natural carrying capacity of

appropriate molecules in a network’s transition. In general, we would expect genes that fall

below the threshold m to change states, but this is not always the case due to the

stochastic nature of these processes. Equation II.1 and the transition matrix together

create a system that incorporates both a time delay and stochasticity.

Murrugarra et al. (2012) and Akman et al. (2018) both utilize a model similar to

the one described here. In [28] the edge propensities are kept constant and they work

under the assumption that even if a reaction is supposed to occur, there is no guarantee

that a transition will take place or even that the correct transition will take place [28].

Akman et al. argued that the propensities discussed in [28] are not likely to remain

constant and applied a beta distribution to obtain propensities for state transitions along

the edges of a network [2]. These models generally focused on obtaining the propensities of

13



Transition function

Figure 4: (a) The transition function is shown. The plot represents the number of molecules
present in system at a time t. (b) The transition function is shown with a threshold at
m. Once the concentration of molecules dips below the threshold m we expect the gene to
transition from one state to another at time τ .
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state transitions and overall network variance, but paid little attention to capturing

variability in individual gene to gene interactions. Here, we use the same model, but focus

on gene to gene variability and propensities. First, we look at the transition function and

examine how rates of decay and thresholds impact the variation among gene transitions.

Second, we revisit the beta distribution described in Akman et al, but instead of finding

transition propensities using the statistical distribution, we use the beta distribution to

determine the activation and degradation propensities. Third, we explore the use of

spectral density to evaluate variation and propensities in a GRN. Finally, we compare these

results and discuss areas that need improvement and future directions we hope to explore.

II.1 Method 1: Transition Function

Previous studies using the transition function and a Boolean network have focused

on adding stochasticity into propensities and time delays in between interactions [2, 28].

Variation in Akman et al. [2] was found based on the beta distribution of each transition

variability. Here, we investigate the variation inherent to the transition function itself.

Recall that the transition function represents the proportion of molecules needed in order

to transition between the on and off state of a gene. Once the number of molecules reaches

a threshold m at time t = τ , i.e. X(τ) = m, a state to state transition occurs. Arbitrarily,

when X(t) ≥ m the gene is considered on and when X(t) < m the gene is considered off.

This change in state could easily be reversed without loss of generality.

In the transition function, Equation II.1, we let a0 = 1 so that the initial

concentration of molecules, f(0), can be considered as 100% and the threshold m can

represent a percentage of molecules needed in order to activate or degrade a gene. Since

the threshold m is determined by the strength of chemical bonds between the molecules

and their binding sites, as well as the locations and number of binding sites, and therefore

does not vary significantly from cell to cell [4].

In this study, we allow the rate of decay within the concentration of molecules to
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vary so that we can measure the effects on variance in a state to state transition. This

variance is biologically relevant because some stochasticity in GRNs is likely a direct result

of competition between ribosomes and RNase. Ribosomes are responsible for translating

mRNA into protein synthesis. RNase E signals the degradation of mRNA after

transcription and before translation, however, mRNA that binds to a ribosome will

undergo translation and lead to protein production [27]. Whether mRNA degrades or leads

to the production of protein is thought to be determined by its proximity to either RNase

E or a ribosome [27].

To model the behavior of the transition funciton we use the programming language

R. Let k ∼ U(0.1, 10), m = 0.4, a0 = 1, and τ = −1
k
∗ log(m

a0
). Using this information we

find when the transition function will cross the threshold for a given value of k. Then, we

replicate this process 1000 times to examine how changes in k affect τ .

After examining the behavior of the transition function, we also investigate how

stochasticity plays a role in state to state transitions. In a deterministic model, once the

concentration of molecules drops below the threshold m we would expect there to be a

transition between states. However, in a stochastic model we only expect a proportion of

these changes to happen each time. In this study we assume that only 75% of the genes

that were supposed to change states actually have changed states. The choice of 75% was

predetermined and compared to other propensities without any significant changes to

results. We then record every time 5% of the genes pass the threshold. This process was

also simulated in R. Out of the 1000 replicates, each transition function that passed the

threshold at a given time τ had a 75% probability of either changing states or remaining

the same. This process was repeated for m = {0.1, 0.4, 0.9}. For each time 5% of the genes

pass the threshold, we record how much variation is present in the interval and plot this

variation over time.
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II.2 Results 1: Transition Function

In Figure 5 we illustrate the behavior of the transition function, X(t) = x0e
−kt. The

shape of the transition function and the time that the curve passes the threshold m are

dependent on the value of the decay rate k. Higher values of k correlate with faster rates of

decay and a shorter time τ that is needed for the curve to pass the threshold. Lower values

of k correlate with slower rates of decay and a longer time period τ to cross the threshold.

Concentrations of molecules that dip below the threshold are expected to change states.

In Figure 6a the relationship between the rate of decay k and the time τ that it

takes to cross the threshold m is shown. A system that involves molecules with high decay

rates, such as k = 8, will have faster response times, τ≤0.2. In comparison, systems with

molecules that take a longer time to decay k = 1 will take longer to change from state to

state in a system, τ > 0.2. In reality, the rate at which proteins can be produced is limited

by the speed of transcription and translation as well as the capacity for ribosomes to

assemble amino acids [4].

Although the threshold for state changes to occur does not vary significantly [4], we

show how the threshold, m, can affect the time τ to change states in Figure 6b. Here, we

see that when m is approximately 90% of the molecules present τ.9, will be much smaller

than τ.1 when m is approximately 10%. Therefore, when m is high, the rate of decay k will

have a smaller impact on the network than when m is low.

Overall, Figures 5 and 6 illustrate that GRNs with the ability to change the number

of molecules quickly will have faster response times to any environmental changes. In

addition, GRNs that only require small changes in the number of molecules in order to

trigger a state change will also have faster response times. Fast response times in a system

lead to lower fluctuations and thus lower cell-cell variability [4]. These figures show what

we expect to occur in a GRN without stochastic behavior. Since it is well known that

regulatory networks have stochastic behavior [2, 4, 12, 20, 28], finding ways to incorporate

stochasticity and variation within mathematical models may prove beneficial such that
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they may be better equipped for capturing variability in the future.

In Figures 7, 8, and 9, two sets of points are shown in each graph. In these figures

we see the proportion of genes that have changed state by the indicated time step τ on the

x-axis. The genes change states at different time steps because k varies uniformly from 0.1

to 10. The light gray set of points represent the deterministic outcome of a gene transition.

The color coded sections of each of these figures represents 5% intervals of genes. The

majority of the genes transition into a new state within the first quarter of total time steps.

In Figure 7 it takes roughly 20 time steps for all of the genes to transition. This is

considerably more time steps compared to the roughly 7 time steps in Figure 8 and roughly

1 time step in Figure 9. In Figure 10 we see again that when m = 0.1 it takes much longer

for all of the genes to transition and also that there are more genes with higher variance

compared to genes with a threshold of m = 0.9.

The variation of each of these 5% intervals is plotted in Figure 11. In Figure 11a the

threshold used is m = 0.1 and in Figure 11b the threshold used is m = 0.9. This figure

shows that the longer it takes for a gene to react to its surroundings, the more variation

will exist during gene transitions.

II.3 Method 2: Beta Distributed Propensities

The second method we applied in this work was the implementation of the beta

distribution for the activation and degradation propensities. The beta distribution was

utilized by Akman et al. (2018) to find the transition propensities between the states of

genes. Here, we use the beta distribution to determine the activation and degradation

propensities for each gene. Therefore, we will have a transition matrix similar to Table 3

where,

p↑i ∼ Beta(αiA, βiA) and p↓i ∼ Beta(αiD, βiD).

Where i = 1, 2, · · · , n in general, and i = 1, 2 for this work with only two genes.

The use of the beta distribution is appropriate for a variety of reasons. First, the
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beta distribution has a co-domain ∈ [0, 1]. Second, the beta distribution is commonly used

when the set of random variables are probabilities, thus the extension to propensities is not

unreasonable. Last, the beta distribution has been used by Wright to model other

biological phenomena such as gene frequencies in population dynamics in 1937 [40]. The

beta distribution uses two parameters, a shape (α) and a rate parameter (β), but can also

be understood intuitively as a number of successes α and failures β. Thus, in a series of N

trials where we would expect α successes, we would also expect N − α = β failures.

Our calculations for the transition matrix make use of some special functions. One

of these functions is the gamma function defined by

Γ(z) =

∫ ∞
0

x(z−1)e−xdx.

When z is an integer n, the gamma function is also equivalent to

Γ(n) = (n− 1)!.

Another function we use is the beta function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt.

The beta function is also equivalent to

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

One other function we use is the Gauss hypergeometric function denoted

HypG2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)kx
k

(c)kk!
.

The transition matrix in Table 3 then has the following properties:
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1. This matrix is stochastic and thus a transition matrix.

2. (1− p↑i ) and (1− p↓i ) each have a beta distribution.

3. The probability density function of the product of two beta distributions with shape

parameters (a1, b1) and (a2, b2) for genes 1 and 2 respectively is

(xa2Γ [b1] Γ [a1 − a2] HypG2F1 [1− b2, 1− a1 − b1 + a2, 1− a1 + a2, x]

Γ [a1 + b1− c]
+

xa1Γ [b2] Γ [−a1 + a2] HypG2F1 [1− b1, 1 + a1 − b2 − a2, 1 + a1 − a2, x]

Γ [−a1 + b2 + a2]

)
∗

1

(xB [a1, b1]B [a2, b2])
.

4. The expected value of the matrix is the expected value of each entry.

5. The expected value of each entry is the product of the expected values of each beta

distributed activation or deactivation propensity, denoted Ei for Gi.

6. The variation of each transition between the states of two beta distributions with

shape parameters (a1, b1) and (a2, b2) for genes 1 and 2 respectively is

E1
2 (1 + a1)E2

2 (1 + a2)

(E1 + a1) (E2 + a2)
− (E1E2)

2 .

Justification for (1):

A stochastic matrix is an n× n matrix such that each entry is less than or equal to

1 and each row sum is equal to 1 [7]. In the Transition Matrix, 0 ≤ p↑i ≤ 1 and 0 ≤ p↓i ≤ 1.

Therefore, 0 ≤ (1− p↑i ) ≤ 1, and 0 ≤ (1− p↓i ) ≤ 1. Let x be the product of any of these

terms. Then 0 ≤ x ≤ 1. Furthermore,

• (1− p↑1)(1− p
↑
2) + (1− p↑1)p

↑
2 + p↑1(1− p

↑
2) + p↑1p

↑
2 = 1

• (1− p↑1)p
↓
2 + (1− p↑1)(1− p

↓
2) + p↑1p

↓
2 + p↑1(1− p

↓
2) = 1
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• p↓1(1− p
↑
2) + p↑1p

↓
2 + (1− p↓1)(1− p

↑
2) + (1− p↓1)p

↑
2 = 1

• p↓1p
↓
2 + p↓1(1− p

↓
2) + (1− p↓1)p

↓
2 + (1− p↓1)(1− p

↓
2) = 1

Justification for (2):

Let A ∼ Beta (aA, bA) and Z = 1− A. The probability density function of A is

fA (A) =
(A)aA−1 ∗ (1− A)bA−1

B [aA, bA]
.

The transformation of Z = 1− A creates the new pdf

fZ (Z) =
(1− Z)aA−1 ∗ (1− (1− Z))bA−1

B [aA, bA]
.

Which simplifies to

fZ (Z) =
(1− Z)aA−1 ∗ (Z)bA−1

B [aA, bA]
.

This implies that Z has a beta distribution with shape parameters bA and aA.

Z ∼ Beta (bA, aA)

Therefore the distribution of Z = 1− A , where A is a beta distribution, is also a beta

distribution.

Justification of (3):

The pdf of f (x, y) when X = A ∗B and Y = B where both A and B are beta

distributions. A ∼ Beta (aA, bA) and B ∼ Beta (aB, bB) is shown below and obtained

though a transformation of variables.

f (x, y) =

(
x
y

)aA−1
∗
(

1− x
y

)bA−1
∗ (y)aB−1 ∗ (1− y)bB−1

B [aA, bA] ∗ B [aB, bB] ∗ y
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for 0 < x ≤ y and 0 < y < 1. ∫ 1

x

f(x, y)dy =

(xa2Γ [b1] Γ [a1 − a2] HypG2F1 [1− b2, 1− a1 − b1 + a2, 1− a1 + a2, x]

Γ [a1 + b1− c]
+

xa1Γ [b2] Γ [−a1 + a2] HypG2F1 [1− b1, 1 + a1 − b2 − a2, 1 + a1 − a2, x]

Γ [−a1 + b2 + a2]

)
∗

1

(xB [a1, b1]B [a2, b2])

Justification of (4):

Expected value is a positive linear operator. Results follow.

Justification of (5):

The expected value of X is dependent on the shape parameters of A ∼ Beta (aA, bA)

and B ∼ Beta (aB, bB).

∫ 1

0

∫ y

0

x ∗ f (x, y) dx dy =
aAΓ [1 + aB] Γ [aB + bB]

(aA + bA) Γ [aB] Γ [1 + aB + bB]

The expected value of X is also the same as the product of expected values of A and B.

This follows naturally because A and B are independent, but this property can also be

motivated by the relationship between the shape parameters.

Recall that the expected value of A is aA
aA+bA

and therefore, based on a proportional

relationship between a and b , the expected value EA or EB creates the relationship:

bA = 1−EA

EA
aA and similiarly bB = 1−EB

EB
aB

Substituting this expression into the expected value of X for bA or bB leads to the

expression:

aAΓ [1 + aB] Γ
[
aB + 1−EB

EB
aB

]
(
aA + 1−EA

EA
aA

)
Γ [aB] Γ

[
1 + aB + 1−EB

EB
aB

] .
This expression can be reduced to:
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→
aAaBΓ [aB] Γ

[
aB + 1−EB

EB
aB

]
aA

(
1 + 1−EA

EA

)
Γ [aB]

(
aB + 1−EB

EB
aB

)
Γ
[
aB + 1−EB

EB
aB

]

→
aAaBΓ [aB] Γ

[
aB + 1−EB

EB
aB

]
aA

(
1 + 1−EA

EA

)
Γ [aB] aB

(
1 + 1−EB

EB

)
Γ
[
aB + 1−EB

EB
aB

]

→ 1(
1 + 1−EA

EA

)(
1 + 1−EB

EB

) → EAEB
1

→ EAEB.

Justification for (6):

The variance of X is also dependent on the shape parameters of A ∼ Beta (aA, bA)

and B ∼ Beta (aB, bB)

V ar (X) =
Γ [2 + aA] Γ [bB] Γ [bA] Γ [2 + aB]

β [aA, bA] β [aB, bB] Γ [2 + aA + bA] Γ [2 + aB + bB]
− E (X)2

As before, we substitute the expressions bA = 1−EA

EA
aA and bB = 1−EB

EB
aB into the variance

of X and we obtain the expression:

Γ [2 + aA] Γ
[
1−EB

EB
aB

]
Γ
[
1−EA

EA
aA

]
Γ [2 + aB]

β
[
aA,

1−EA

EA
aA

]
β
[
aB,

1−EB

EB
aB

]
Γ
[
2 + aA + 1−EA

EA
aA

]
Γ
[
2 + aB + 1−EB

EB
aB

] − (EAEB)2

→ (1 + aA) (1 + aB)(
1 + aA + 1−EA

EA
aA

)(
1 + 1−EA

EA

)(
1 + 1−EB

EB

)(
1 + aB + 1−EB

EB
aB

) − (EAEB)2

→ EA
2 (1 + aA)EB

2 (1 + aB)

(EA + aA) (EB + aB)
− (EAEB)2 .
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II.4 Results 2: Beta Distributed Propensities

II.4.1 Effects on Variation In the following sections we discuss how different

parameters and values effect the variation of a state transition. First we see how changing

shape parameters of the beta distribution but keeping the expected value constant effect

variation. Then we hold the shape parameters constant and see how changes in the

expected value effect variation of transitions.

Holding Expected Value Constant

We explore how the variation of transitions is affected by different shape parameters

when the expected value of an entry is held constant. In Figure 12 we see the relationship

between shape parameters and variation when the entry X has 4 different expected values

with corresponding gene transition probabilities (a), (b), (c), and (d). These figures reveal

that high variation occurs when the shape parameter of one gene is high and the other is

low. High variation also appears to be correlated with higher expected values (12c - 12d).

Since the shape of beta distributions is dependent on the shape parameters, there is no set

distribution for each of the graphs being represented. The variation for each of these

figures indicates that variation is highest when the shape parameter of gene 1 α1 is high

and the shape parameter of gene 2 α2 is low. A closer look reveals that when the expected

value of a transition is low for both genes, Figure 12a, the maximum variance is less than

0.1. However, when the expected value for both genes is high, Figure 12d, the maximum

variance is greater than 10.

Holding Shape Parameters Constant

Here we look at how the variation is affected by changes is expected value, but when

one of the shape parameters is held constant. Here, the relationship between α, β, and the

expected value allow us to look at how changes in expected value affect the variation in a

transition between gene states. In Figure 13 the x-axis is the expected value of gene 1 and

24



the y-axis is the expected value of gene 2. We see that in general, when one gene has an

expected value of approximately 0.5 and the other has an expected value close to 1 the

variance of the transition will be high.

II.4.2 Variance of the GRN Given independence between each of the gene

transitions in the network, the variance of the entire network will have a covariance of zero

and the network’s variance will equal the variance of the product of the two beta

distributions. The variance of the entire network is shown in Tables 4.

Table 4: Variation of the entire GRN

00 01 10 11

V((1− p↑1)(1− p
↑
2)) 0 0 0

0 V((1− p↑1)(1− p
↓
2)) 0 0

0 0 V((1− p↓1)(1− p
↑
2)) 0

0 0 0 V((1− p↓1)(1− p
↓
2))

Recall that the variation of each edge of two beta distributions with shape parameters

(a1, b1) and (a2, b2) for genes 1 and 2 respectively is

E1
2 (1 + a1)E2

2 (1 + a2)

(E1 + a1) (E2 + a2)
− (E1E2)

2 .

II.5 Method 3: Spectral Density

The third and final method which we used to investigate ways to incorporate

variance into gene state transitions involved using spectral density. The general idea

behind spectral density is to take a finite set of static data and estimate how the total

power is distributed across frequencies. Spectral analysis in particular has been used in a

variety of fields such as psychology for heart rates [18], medical fields for fetal heart rates

[38], geology for geological formation [5], and bioinformatics for gene prediction [25].

Let y(t) for t = 0, 1, 2, 3, · · · , T be a discrete-time data sequence from time t = 0 to
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t = T , and assume that y(t) has finite energy such that
∞∑

t=−∞

y(t) <∞. Let r(q) be the

autocovariance sequence obtained from the lag q between sampling data such that

r(q) = E[y(t) ∗ y(t− q)]. Lag is the amount of time between measuring signal output.

Then, the power spectral density (PSD) of r(q) is

φ(ω) =

∫ ∞
−∞

r(q)e−iωqdq.

Where φ(ω) is the PSD and Fourier transform of r(q), ω is the frequency of the signal, and

i =
√
−1. Then, φ(ω) is the power at different bands of frequency [36]. Therefore, the

integral of φ(ω) across all possible frequencies is the total power of the signal. Furthermore,

since r(0) = E(y(t)2), and if we assume that E(y(t)) = 0, the integral of φ(ω) across all

frequencies is also the variance [36].

Although we do not have data for the transitions of gene states, we use the

transition function to demonstrate how this process would work for variance estimation. In

this case, the transition function II.1 is equal to r(t) so that the Fourier transform of r(t)

will result in the PSD, and the integral of the PSD will be the variance of the system.

Biologically it is possible for the decay rate to vary [41]. If k varies, it should have

probability density function, g(k). This alters the transition function described in [28] and

[12] such that the rate of transcription is a∗(x) = kg(k)x. Thus, f∗(t) = a0e
−k∗t, where

k∗ = kg(k). Here, we allow the decay rate k to vary according to a specific statistical

distribution.

In order to use a distribution for k, it is necessary to determine the variation of k.

However, the decay rates of interaction molecules, like mRNA, are not well studied [41]. In

this section, we explore how the variation of interactions is affected by different

distributions of k.

To do this we will generate different values of k from different distributions and

multiply them by their probability density function, g(k), in order to obtain k∗ and f∗(t).
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The first moment of f∗(t) is given by the Fourier Transform which is also the power

spectral density in this case. The units of frequency that we use are cycles per sampling

period. Then, we will calculate the variation of these interactions by integrating the power

spectral density function.

We will include the entire time interval for these interactions, but we will only

consider frequencies ranging from 0 to 100 periods per time interval. This interval has been

chosen because it is unlikely that we will see frequencies greater than 100. For example,

cos(x) has two frequencies because it has nonzero energy at two different amplitudes.

Based on our function, it seems more likely that we only have one frequency per time

interval. Either way, the interval [0, 100] should include our frequency.

II.5.1 Uniform Distribution The uniform distribution describes scenarios where

every value of k is equally likely to be chosen. Since k is a rate of decay, we let k ∈ [0, 1].

Then, the expected value of g(k) is E(g(k)) = 1 and the power spectral density function is

φ∗(ω) =
a0

iω + k∗

Let a0 = 1 and find

∫ 100

0

1

iω + k∗
dω to find the total variance across frequencies, V ar(ω)

V ar(ω) = −i log

(
100i

k∗
+ 1

)

Using polar coordinates and Euler’s Theorem, we can rewrite V ar(ω) as the following

V ar(ω) = −i log

(√(
100

k∗

)2

+ 1

)
− arctan

(
100

k∗

)
.

At 100 random values of k∗ we obtain variations shown in Figures 17 and 18.
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II.5.2 Beta Distributions We then repeat this process for the beta distribution with

different shape parameters. The probability density function of the beta distribution is

g(k) =
kα−1e−kββα

Γ(α)
.

Here, we generate three different beta distributions with shape parameters

(α, β) = [(4, 1), (2, 2), (3, 5)]. Notice that g(k) is not a function of t, so all power spectral

density functions will be in the form of

φ∗(ω) =
a0

iω + k∗
.

Then, variation of each beta distribution, when ω ∈ (0, 100), will be of the form

−i log

(
100i+ k∗

k∗

)
.

which can be rewritten as

V ar(ω) = −i log

(√(
100

k∗

)2

+ 1

)
− arctan

(
100

k∗

)
.

using a process similar to the one described for the uniform distribution.

Case I: α = 4, β = 1

The first case for beta distributions that we investigate is when the shape and rate

parameters are α = 4 and β = 1. This distribution can be seen in Figure 14

Then, we obtain the probability density function:

g(k) =
k3e−4

6
.
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From here, we find the expected value of k, k∗, and the PSD, φ∗(ω):

k∗ =
k4e−4

6

φ∗(ω) =
6

6iω + k4e−4
.

The resulting variation can be seen in Figure 19a.

Case II: α = 2, β = 2

The second case for beta distributions that we investigate is when the shape

parameters are α = 2 and β = 2. Figure 15 shows the behavior of this distribution. The

probability density function under these parameters is

g(k) = 4ke−2k.

Then, we can find the expected value of k, E(k) = k∗, and the PSD, φ∗(ω):

k∗ = 4k2e−2k

φ∗(ω) =
1

iω + 4k2e−2k

The resulting variation can be seen in Figure 19b.

α = 3, β = 5

The third and final case that we investigated for the beta distribution was when the

shape and rate parameters were α = 3 and β = 5. From here, we obtain the probability

density function:

g(k) = 62.5k2e−5k

Then, the expected value of k, E(k) = k∗, and the PSD, φ∗(ω) are:
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k∗ = 62.5k3e−5k

and

φ∗(ω) =
1

iω + 62.5k3e−5k
.

The resulting variation can be seen in Figure 19c.

II.6 Results 3: Spectral Density

Figures 17 and 18 show the behavior of variation for different values of k∗. The real

variation is shown in Figure 17. This variation is linear and negative. The magnitude of

variation is greater for lower values of k∗. In Figure 18 variation takes on a logarithmic

shape and is also negative. The magnitude of variation decreases as k∗ increases.

Figure 19 shows the variation from three different beta distributions, α = 4 and

β = 1, α = 2 and β = 2, and α = 3 and β = 5. Similar to the uniform distribution, there is

a real and complex component to each of these distributions. The real component for each

of these distributions is also linear, and the complex component is logarithmic. All

variation shown is negative. All variation decreases as the magnitude of k∗ decreases.
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The transition function illustrated with different rates of decay

Figure 5: The transition function, X(t) = x0e
−kt, illustrated with different rates of decay, k,

and a threshold, m = 0.4
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An interaction between decay rates and the time it takes to cross the threshold

Figure 6: (a) How different decay rates, k, and time, τ , to cross the threshold, m = 0.4,
interact. Tau is the time it takes for the proportion of molecules to cross a threshold that
triggers a state change in the network. (b) How different decay rates, k, and time, τ , to
cross a threshold, m, interact. This behavior is shown for different values of m to illustrate
how m may impact each network.
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The proportion of genes that have changed states at time τ when m = 0.1

Figure 7: The proportion of genes that have changed states at time τ when m = 0.1
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The proportion of genes that have changed states at time τ when m = 0.4

Figure 8: The proportion of genes that have changed states at time τ when m = 0.4
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The proportion of genes that have changed states at time τ when m = 0.9

Figure 9: The proportion of genes that have changed states at time τ when m = 0.9
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Graphs of the variation at every fifth percentile for m = 0.1 in black, m = 0.4 in
red, and m = 0.9 in blue

Figure 10: Graphs of the variation at every fifth percentile for m = 0.1 in black, m = 0.4 in
red, and m = 0.9 in blue
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A plot of how variation is affected by the time it takes for a transition to occur

Figure 11: How variation changes with respect to the time it takes for the transition function
to cross the threshold. (a) Threshold m = 0.1 (b) Threshold m = 0.9
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Variation when the expected value of beta distributed propensities is held
constant and shape parameters vary

Figure 12: (a) E(X) = 0.02, the expected value of the transition in gene 1 is 0.2, and the
expected value of the transition in gene 2 is 0.1. (b) E(X) = 0.06, the expected value of
the transition in gene 1 is 0.3, and the expected value of the transition in gene 2 is 0.2. (c)
E(X) = 0.56, the expected value of the transition in gene 1 is 0.8, and the expected value
of the transition in gene 2 is 0.7. (d) E(X) = 0.63, the expected value of the transition in
gene 1 is 0.9, and the expected value of the transition in gene 2 is 0.7.

38



How the expected value of beta distributed propensities affects variation of
transitions

Figure 13: Three surfaces measuring variation when the expected value varies. Different
shape parameters are used for each set of figures: (a) aa = 20 and ab = 9 (b) aa = 0.5 and
ab = 0.3 (c) aa = 2 and ab = 9.
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The beta distribution with shape parameters α = 4 and β = 1

Figure 14: The beta distribution with shape parameters α = 4 and β = 1

The beta distribution with shape parameters α = 2 and β = 2

Figure 15: The beta distribution with shape parameters α = 2 and β = 2
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The beta distribution with shape parameters α = 3 and β = 5

Figure 16: The beta distribution with shape parameters α = 3 and β = 5

Real variation from spectral density is plotted when the transition rate has a
uniform distribution

Figure 17: A plot of k∗ from a uniform distribution vs. the real variation of the interaction
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Complex variation from spectral density is plotted when the transition rate has
a uniform distribution

Figure 18: A plot of k∗ from a uniform distribution vs. the complex variation of the inter-
action
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Variation from spectral densities of beta distributed transition rates

Figure 19: Variation measured from different spectral densities and beta distributions of k∗.
All distributions contain real (left) and imaginary (right) components. (a) k∗ ∼ Beta(α =
2, β = 2) (b) k∗ ∼ Beta(α = 4, β = 1) (c) k∗ ∼ Beta(α = 3, β = 5)
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CHAPTER III: DISCUSSION

III.1 Method 1: Transition Function

In Figure 5 we show how the rate of decay effects the time required for the curve to

pass the threshold m. We see that larger values of k lead to a shorter time tau for the

curve to pass the threshold. On the other hand, smaller values of k create a longer time

period to cross the threshold. We also look at the relationship between the rate of decay

and the time that it takes to cross the threshold in Figure 6. Again, higher rates of decay

indicate a faster response time for change in gene states. We also found that higher

thresholds are more responsive to change than lower thresholds and also less affected by

changes in decay rates.

Later, in Figures 7, 8, and 9, we include stochasticity while using the transition

function and by using a binomial distribution where there is a 75% probability that genes

which are supposed to change states actually do change states. Akman et al. argue that

the use of the binomial distribution to determine the outcome of genes likely overestimates

the variation of transitions [2], but this distribution was used for the sake of a preliminary

investigation and could easily be changed in the future. Overtime, we see that the number

of genes that transition has a propensity of 75%, which is the given probability of the

binomial distribution used to determine the outcome of each gene.

In Figure 11, we see that as time increases, the variation present in transitions also

increases. This is true regardless of the threshold value. This would indicate that cells with

genes that can respond quickly to their surroundings are more likely to have lower

variability between cells. This is consistent with literature that indicates that fast response

times in a system lead to lower fluctuations and thus lower cell-cell variability [4]. It has

been shown that frequent transcripts with fewer proteins per transcript lead to networks

with less variation, whereas, less frequent transcripts and larger protein yield per transcript

results in more noise [27]. Low protein yield per transcript is energy inefficient [27]. High

protein yield per transcript leads to more variation but is energy efficient [27].
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III.2 Method 2: Beta Distributed Propensities

In Figure 12 we find that large differences in shape parameters and high expected

values for transitions lead to the most variation in gene state transitions. We also find that

a mix of intermediate and high expected values leads to greater variation than low

expected values in Figure 13. There is currently no known biological explanation for this

behavior in the literature. We hypothesize that genes that are acting effectively, and thus

have a high expected value or high propensity and are working appropriately, are able to

handle more variation without a decrease in fitness compared to genes that are inefficiently

working. It may also be unlikely to see a mixture of intermediate and high propensities in a

system, since most systems were likely selected to have lower variation through evolution.

One of the benefits to using the beta distributed activation and degradation

propensity method is that no simulation of the network is needed. There is also a natural

extension to the beta distributed activation and degradation propensity method. When

shape parameter aB = aA + bA, the distribution is a bivariate beta distribution according

to a lemma discussed in Krysicki (1999) [21] and Nadarajah and Kotz (2005) [30]. Krysicki

also showed that this property extends to multiple independent beta random variables [21].

“If U1, U2, . . .Up are independent beta random variables with shape parameters (ai, bi),

i = 1, 2, . . . , p and if ai+1 = ai + bi, i = 1, 2, . . . , p− 1, then the product U1 ∗ U2 ∗ . . . Up is

also a beta random variable with shape parameters (a1, b1 + . . .+ bp)” [21].

Bivariate Beta Distribution:

f (x, y) =
Γ (a+ b+ c)

Γ (a) Γ (b) Γ (c)
xa−1yb−1 (1− x− y)c−1

Where a, b, c > 0, x ≥ 0, y ≥ 0 and x+ y ≤ 1.

Nadarajah and Kotz discuss the relationships among two independent beta

distributions using this lemma but leave the relationships created from multiple

independent beta distributions for future work [30]. Although we limit ourselves to two
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genes for the majority of our work, it is more realistic to consider cases with more than 2

genes interacting and so exploring these properties between 3 and more beta distributions

may yield interesting results. In fact, the bivariate beta distribution has been used to

model proportions of alleles in population dynamics [40]. Therefore, future use of the

bivariate beta distribution may lead to promising results and insights.

III.3 Method 3: Spectral Density

In Figures 17, 18, and 19 we see the behavior of variation for a variety of

distributions. In all cases, the real component of the PSD is linear and the complex

component logarithmic. This indicates that the distribution of k does not have a large

impact on the variation of transitions. There is some literature that agrees with the results

shown here. Stochasticity in gene expression is not strongly dependent on the statistical

distribution of transcription initiation [27]. Stochasticity will occur when there are a

limited number of promoters for gene regulation in the cell and the time interval for

transcription time is longer [27].

All of the variation represented through this method is less than zero. This is likely

due to the fact that the Fourier transform involves complex values and that i2 = −1.

Interpretation of negative variation is not common, but there is some evidence that the

magnitude of variation is more important than the sign [9]. Likewise, complex, or

imaginary, variation is also difficult to interpret. The resulting negative and complex

variation for all cases is a possible downfall to this modeling process and future

investigation is needed to see if this behavior is prevalent across all distributions.
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CHAPTER IV: CONCLUSION

Collectively, each of these modeling techniques provides different qualitative

information about gene state transitions. Integrating these models and the information

that they provide into future models could help to create more accurate models overall.

However, these models do not capture the larger picture of interwoven networks that each

impact one another. Separating networks mathematically does not provide an accurate

view of an organism’s complex system of networks each impacting one another. In the

future, integration of multiple networks will help to build more realistic models.
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