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Abstract

Proinflammatory cytokines produced by lymphocytes are required to contain tumor growth. Post-

transcriptional mechanisms that regulate this process remains unknown. Here, we identify that the 

microRNA cluster Mirc11 is a central regulator of NK cell-mediated proinflammatory responses. 
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The absence of Mirc11 only moderately reduced NK cell-mediated anti-tumor cytotoxicity. 

However, the loss of Mirc11 significantly reduced the generation of proinflammatory cytokines in 
vitro and the Interferon-γ-dependent clearance of B16F10-melanoma or Listeria monocytogenes 
in vivo by NK cells. We define Mirc11 optimizes inflammatory cytokine production by silencing 

the translation of ubiquitin modifiers A20, Cbl-b and Itch, allowing TRAF6-dependent activation 

of NF-κB and AP-1. A lack of Mirc11 caused an increased translation of A20, Cbl-b, and Itch 

proteins, resulting in the deubiquitylation of scaffolding K63 and the addition of degradative K48 

moieties on TRAF6. Our results provide a novel mechanism by which Mirc11 fine tunes NF-κB 

and AP-1-dependent cytokine gene transcriptions and anti-tumor responses.

Introduction

NK cells generate proinflammatory factors and mediate anti-tumor cytotoxicity (1, 2). Upon 

recognizing target cells expressing pathogen-derived ligands or ‘induced-self’ self-antigens 

through germline-encoded activation receptors including NCR1 and NKG2D, NK cells 

initiate an array of signaling cascades (3). Adaptor proteins such as DAP10 (4), DAP12 (5–

7), and CD3ζ (8) play central role in initiating the phosphorylation and recruitment of key 

signaling proteins including Syk (9), Fyn (10), Lck (11), PI(3)-p110δ/p85α (12–14), Grb2 

(15), PLC-γ2 (16, 17), ADAP (18, 19), PKC-θ (20), Carma1 (21), Bcl10 (22), and TAK1 

(23). E3 ligases including TRAF2 and TRAF6 promote K63-linked polyubiquitination that 

is required for the sub-cellular localization of the substrates (24), and subsequent activation 

of signaling proteins required for NF-κB (25) and AP-1-mediated gene transcriptions (26). 

Stringent regulation of these signaling events is central to promote optimal immune 

responses and to limit uncontrolled inflammation (27). One established mechanism is 

mediated by lipid (SHIP, PTEN) and protein phosphatases (CD45, SHP1, SHP2) that are 

recruited to inhibitory Ly49/KIR receptors which block or dampen an ongoing activation 

event (28–34). In addition to these phosphatases ubiquitin regulators such as A20, Itch, Cbl-

b, and Cyld synthesize and add polyubiquitin chains via lysine (K) 48 of ubiquitin molecules 

leading to the proteasomal degradation of the substrates (35–38). Ubiquitin regulators can 

alter the threshold and the activation of NF-κB and AP-1 by targeting multiple signaling 

proteins including TRAF6 (39). While these inhibitory mechanisms have been well-

characterized, the role of small non-coding microRNAs (miRNAs), which provides critical 

repressive functions in other cell types, and their temporal regulation of signaling in NK 

cells is mostly unknown.

miRNAs are small (~22 nucleotides) non-coding sequence-specific guides that direct 

Argonaute protein complex, an essential component of the RNA-induced silencing complex 

(RISC) to silence protein translation by Watson-Crick pairing to mRNA transcripts (40). 

Mature miRNAs contain a ‘seed sequence’ of 2 to 8 nucleotides that interact with a 

sequence of 6 to 8 nucleotides in the 3′ untranslated regions (3′ UTR) of the target mRNAs 

(41). Binding of miRNAs to target mRNAs results in translational inhibition or transcript 

degradation (42). The miRNAs are highly conserved among different species (43). 

Expression of miRNAs is cell-specific, and each cell expresses a different set of miRNAs at 

various stage of maturation, differentiation or activation (44). While it is clear that miRNAs 

play essential roles in lymphocyte development, activation and effector functions, the 

Nanbakhsh et al. Page 2

Cancer Immunol Res. Author manuscript; available in PMC 2020 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mechanism by which miRNA mediate these effects is poorly understood. Genes encoding 

mammalian miRNAs can be expressed as mono- or polycistronic transcripts (45). Mirc11 
cistron (miRNA-23a cluster) is a tri-miRNA cluster that is highly conserved in mouse and 

human genomes. It consists of three members, miR-23a, miR-27a, and miR-24-2, which are 

derived from a single primary mRNA transcript (46). The Mirc22 cistron (miRNA-23b 
cluster) is a paralog of Mirc11 cistron and is made up of miR-23b, miR-27b, and miR-24-1 
(46). Despite the recent advances on Mirc11 cistron in lymphocyte biology (47, 48), there 

exists minimal functional or mechanistic insight into its role on NK cell development and 

effector functions.

In this study, we define the Mirc11 cistron as an obligatory regulator of the inflammatory 

responses in NK cells. A lack of the Mirc11 cluster did not affect the development of NK 

cells. Assessment NK cell-mediated cytotoxicity showed the ex vivo and in vitro anti-tumor 

cytotoxic potentials of NK cells from Mirc11−/− mice were mostly intact; while, NK cell-

mediated in vivo rejection of donor splenocytes that lacked the surface expression of MHC 

Class I (‘missing-self’) was significantly reduced in Mirc11−/− mice. Compared to the 

cytotoxic potential, in vitro stimulation of NK cells from Mirc11−/− mice with mitogenic 

antibodies revealed a significant defect in the production of inflammatory cytokines 

including IFN-γ, GM-CSF, CCL3, CCL4, and CCL5. The link between the Mirc11 cluster 

and NK cell-mediated inflammatory responses was validated by the inability of the 

Mirc11−/− mice to mediate NK cell-dependent in vivo clearance of Listeria monocytogenes.

Moreover, lack of Mirc11 resulted in defective clearance of pulmonary pseudometastases 

following injections with B16F10 melanoma. The transcriptome-wide analyses of NK cells 

following either anti-NKG2D-mediated in vitro stimulation or in vivo Listeria-challenge 

indicated a global defect in NF-κB- and AP-1-mediated gene transcription in the absence of 

the Mirc11 cluster. Based on these findings, we hypothesized that one or more negative 

regulators of the activation of NF-κB and AP-1 are the targets of the Mirc11 cistron. We 

found that members of Mirc11 cistron targeted and silenced the transcripts encoding A20, 

Itch, and Cbl-b, and thereby reducing the TRAF6-mediated activation and nuclear 

translocation of NF-κB and AP-1 complexes. Reduced TRAF6 activity mediated by Mirc11 
resulted from increased protein translation of A20, Itch, and Cbl-b resulting in decreased 

K63 ubiquitination and increased degradation of TRAF6. Our findings provide novel 

insights into the microRNA-mediated regulation of NK cell-mediated effector functions and 

provide exciting novel targets for containing pathological inflammation.

Results

Lack of Mirc11 cluster does not alter NK cell development

Mirc11 cluster consists of miR-23a, miR-27a, and miR-24-2 (Supplemental Figure 1A) and 

acts as a switch in regulating the lineage commitment of hematopoietic stem and progenitor 

cell (HSPC) into either common lymphoid progenitors (CLPs) or common myeloid 

progenitors (CMP) (49, 50). A lack of Mirc11 increased the absolute number of CLPs 

leading to increased numbers of B cells (51). Thus, as a first step, it was necessary to define 

the role of the Mirc11 cluster in NK cell development and function. Through the utilization 

of knockout mice that globally lacked miR-23a, miR-24-2, and miR-27a (Mirc11 cluster), 
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we identified that the total cellularity of the BM and the spleen was comparable between 

WT and Mirc11−/− mice (data not shown). Earlier studies have shown that the process of NK 

cell development can be defined as distinct stages based on the expression pattern of cell 

surface markers (52). Percentages of NK cells as defined by CD3ε−NK1.1+ staining in the 

BM and other peripheral organs such as spleen, liver, lung, and blood were also comparable 

between WT and Mirc11−/− mice (Supplemental Figure 1B). Expression of CD122, the β 
chain of IL-2 and IL-15 receptors which demarcates the commitment of CLPs into NK 

precursors (NKPs) in the BM (53), and the absolute number of cells expressing CD122 were 

unaltered in the BM of Mirc11−/− mice (data not shown). Expression of NKG2D, NK1.1, 

and NCR1 that are the earliest known NK cell activating receptors, which marks the 

transition of NKPs into Stage-A immature NK cells (iNK) (54), along with NKG2A/C/E 

(Stage-B iNK), were comparable between WT and Mirc11−/− mice (data not shown).

To evaluate more mature populations of NK cells, we analyzed the expression of CD51 (αv) 

and CD49b, which defines entry of iNKs into mature NK (mNK; Stage-D) cells and 

observed little difference between Mirc11-deficient and replete mice. Populations of NK 

cells representing functional maturation, as delineated by a decrease in the expression levels 

of CD51 (Kim et al., 2002) and the expression of CD27, integrin CD11b (αMβ2), and 

eventually, loss of CD27 were also comparable between mice of the two genotypes 

(Supplementary Figure 1C, D), as were Stage-E NKs defined by the stochastic acquisition of 

distinct Ly49 receptors such as Ly49C/I, Ly49H, Ly49A, Ly49D, and Ly49G2 (52) 

(Supplementary Figure 1C, E). Terminally mature NKs (Stage-F) as defined by 

KLRG1expression (55) was also unaltered in Mirc11−/−, relative to WT, mice. Based on 

these data, we conclude lack of Mirc11 does not affect the development and maturation of 

NK cells.

Lack of Mirc11 moderately impairs NK cell-mediated cytotoxicity

Anti-tumor cytotoxicity is one of the vital effector functions of NK cells. Towards this, we 

evaluated the cytotoxic potential of naïve NK cells against B16F10 tumor cells that express 

CD155 (Induced-self), a ligand for DNAM-1; parental EL4 thymoma cells (Self); EL4 cells 

stably transfected with H60 (EL4H60), a ligand for NKG2D (Induced-self); RMA cells 

(Self); RMA/S cells which lack the normal expression of MHC Class I H-2b (Missing-self); 
and YAC1 cells that are of H-2a strain background (Allo). Naïve NK cells were not able to 

mediate detectable cytotoxicity against B16F10 cells. Cytotoxicity against EL4H60 was 

higher compared to the parental EL4; however, there were no differences between NK cells 

derived from WT and Mirc11−/− mice. Similarly, cytotoxicity against YAC1 cells was not 

affected by the lack of Mirc11 complex. However, lack of Mirc11 complex significantly 

reduced the cytotoxicity against RMA/S at all E:T ratios (Supplementary Figure 2A).

Earlier studies have shown that IL-2 plays a crucial role in the clearance of B16F10 cells in 
vivo (56). Therefore, we expanded purified splenic NK cells with IL-2 and tested their 

cytotoxic potentials on day 7. NK cells from Mirc11−/− mice were able to mediate 

cytotoxicity against B16F10 cells; however, the level was moderately reduced compared to 

the NK cells from WT mice. In comparison, cytotoxicity against any other target cells was 

comparable to that of NK cells from WT mice (Supplementary Figure 1B). Given this 
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outcome, we analyzed IL-15-cultured NK cells against these target cells. The cytotoxic 

potentials of IL-15-cultured NK cells from Mirc11−/− mice was moderately reduced against 

B16F10, EL4H60, RMA/S, and YAC1 compared to NK cells from WT mice (Supplementary 

Figure 1C). To further validate these observations, we analyzed the degranulation capacity of 

NK cells using CD107a surface localization as a marker for the release of cytotoxic granules 

in co-culture experiments. Expression of CD107a by IL-2- or IL-15-cultured NK cells was 

consistent with the direct cytotoxicity (data not shown). These findings imply that the lack of 

Mirc11 complex leads to a moderate reduction in the cytotoxic potentials of NK cells. IL-2, 

but not IL-15, helps NK cells from Mirc11−/− mice to overcome this defect. These findings 

are consistent with the role of IL-2, which is known to bypass the requirement of WASp-

dependent actin polymerization in NK cells (57).

To further define the role of the Mirc11 cluster in regulating NK cell-mediated in vivo 
cytotoxicity, we utilized a transplant rejection model. Host WT or Mirc11−/− (both H-2b, 

H2-Kb & H2-Db) mice were challenged with donor-derived splenocytes from C57BL/6 

(H-2b, H2-Kb & H2-Db; ‘self’), β2mtm1Unc/J (H-2b; but, negative for cell surface H2-Kb & 

H2-Db; ‘missing-self’) and BALB/c (H-2d, H2-Kd & H2-Dd; ‘non-self’) mice. Donor 

splenocytes along with C57BL/6 splenocytes were labeled with cell-trace vital dyes. Labeled 

cells were mixed in a 1:1:1 ratio (C57BL/6-CFSE; β2mtm1Unc/J-CFSE/CTV; and BALB/c-

CFSE/CTR) and injected into either WT or Mirc11−/− mice. Eighteen hours later the host 

spleens were harvested and analyzed by flow cytometry for remaining vital-dye positive 

donor-derived splenocytes. The number of remaining donor splenocytes represented a 

surrogate marker for the level of NK cell-mediated killing. We observed that the loss of 

Mirc11 significantly impaired the ability of NK cells to clear ‘missing-self’ cells from 

β2mtm1Unc/J mice; however, they were able to kill ‘non-self’ BALB/c-derived donor 

splenocytes comparable to WT (Supplementary Figure 1D). Along with the data collected 

from co-culture experiments, these results suggest NK cells partially rely on Mirc11 for 

regulation of cell-mediated cytotoxicity.

Mirc11 is essential for proinflammatory responses of NK cells

A second primary effector function of NK cells is to regulate both innate and adaptive 

immune cells via the production of pro-inflammatory cytokines, such as IFN-γ, GM-CSF, 

and various chemokines (58). To address whether the lack of Mirc11 complex affects the 

production of inflammatory cytokines, IL-2- or IL-15-cultured NK cells were co-cultured 

with different tumor targets to determine the percentage of IFN-γ positive NK cells (Figure 

1A & B). A lack of Mirc11 complex significantly impaired the ability of NK cells to 

produce IFN-γ with all the tumor targets tested. Although culturing NK cells from 

Mirc11−/− mice with IL-2 helped to overcome the defect in mediating anti-tumor 

cytotoxicity, it did not rescue the defect in the production of IFN-γ (Figure 1A). To further 

dissect the specific signaling pathways that are affected by the absence of Mirc11 complex, 

we stimulated NK cells with plate-bound mitogenic antibodies that target specific activation 

receptors. Splenic NK cells from WT and Mirc11−/− mice were cultured with IL-2 and 

activated with anti-NKG2D (DAP10 & DAP12), anti-NCR1 (Fc εRIγ and CD3ζ), anti-

CD137 (Lck-Fyn and TRAF2), anti-CD244 (SAP-Fyn), or anti-Ly49H (DAP10 and DAP12) 

antibodies. Culture supernatants were collected and analyzed for IFN-γ, TNF-α, GM-CSF, 
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CCL3 (MIP1α), CCL4 (MIP1β), and CCL5 (RANTES). Generation of these cytokines and 

chemokines was significantly impaired in NK cells from Mirc11−/− mice compared to those 

from WT mice (Figure 1C). In addition to stimulation through germline-encoded activation 

receptors, IL-12 and IL-18 can induce NK cells to produce proinflammatory cytokines and 

chemokines (59). IL-12 receptor consists of IL-12Rα and IL-12Rβ and mediates signaling 

via a JAK2/STAT4-mediated pathway (60, 61). IL-18 receptor (IL-18Rα and IL-18Rβ) 

mediate signals via the MyD88/IRAKs/TRAF6 complex. Given these differences in 

activation- versus cytokine receptor-mediated signaling, we speculated that the Mirc11 
complex might not function to regulate IL-12 and IL-18-mediated activation of NK cells. 

Analyses of the culture supernatants revealed that production of IFN-γ, GM-CSF, CCL3, 

CCL4, and CCL5 was comparable between Mirc11−/− and WT. These results demonstrate 

that the function of Mirc11 is required for NK cell-mediated cytokine production 

downstream of activation receptor signaling, and that lack of the Mirc11 complex did not 

render NK cells into a collective hyporesponsiveness.

To employ an unbiased approach to identify target genes regulated by the Mirc11 cluster, we 

performed transcriptome-wide RNA sequencing analyses. Purified IL-2-cultured splenic NK 

cells were activated with plate-bound anti-NKG2D mAb (A10, 5 μg/ml); total mRNA was 

isolated, transcribed, and sequenced. Single-end reads of transcripts from a NextSeq500 that 

went through base-quality trimming were used. Unsupervised analyses of transcriptional 

profiles of non-stimulated and anti-NKG2D mAb-activated NK cells using principal-

component analyses (PCA) revealed that stimulated NK cells from the WT mice possess a 

transcriptome that is distinct from that of NK cells from Mirc11−/− mice, as well as the 

unstimulated controls from either of the strains (Supplementary Figure 3A). Additionally, a 

low percent variance among three mice for each strain or condition clustered together in 

dispersion matrices indicated consistency among samples. We then used statistical filtering 

(p < 0.05 Mann–Whitney, Benjamini–Hochberg correction of stimulated versus non-

stimulated) to identify clusters of genes that corresponded to different conditions based on 

similarity of available transcripts. Among the non-stimulated controls, a set of 255 genes 

was distinctly expressed in NK cells from the WT that were low or not expressed in the NK 

cells from Mirc11−/− mice (Figure 1D). Following anti-NKG2D mAb-mediated activation, 

NK cells from WT mice differentially expressed 1074 transcripts compared to the 

unstimulated NK cells, of which 240 overlapped between WT and Mirc11−/− mice. A total 

of 834 genes were uniquely expressed in NK cells from the WT following anti-NKG2D 

mAb-mediated activation, which was either significantly low or absent in the NK cells from 

Mirc11−/− mice. Given that the NK cells from Mirc11−/− mice developed normally yet 

lacked responsiveness to anti-NKG2D stimulation, we hypothesized that Mirc11−/− likely 

regulates the inflammatory response and effector function in activated mature NK cells. 

Indeed, comparison of the differentially expressed transcripts between the anti-NKG2D 

mAb stimulated WT, and Mirc11−/− NK cells revealed a dramatic attenuation of the 

expression of proinflammatory cytokines, chemokines, and cytotoxic granule-associated 

factors in the Mirc11−/− NK cells (Figure 1E, F). Collectively, these findings reveal that the 

Mirc11 cluster plays a requisite role in positively regulating the production of multiple pro-

inflammatory factors, which was consistent with our analyses of the supernatants from co-

culture and plate-bound mitogenic antibody-mediated activations.
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Mirc11 cluster is obligatory for NK cell-mediated in vivo clearance of Listeria 
monocytogenes.

IFN-γ produced by NK cells during the early phase of infection is crucial for the clearance 

of the facultative intracellular Gram-positive bacteria Listeria monocytogenes (62, 63). To 

evaluate the role of the Mirc11 cluster in regulating proinflammatory cytokines, we 

systemically infected mice with 2 × 104 live L. monocytogenes (~0.5 LD50). We tested the 

expressions of individual members of the Mirc11 cluster in the purified splenic NK cells at 

48 hours post-infection compared to NK cells from non-infected mice. Significant changes 

in the expression were observed for the miR-27a transcript followed by the miR-24-2, and 

the miR-23a, suggesting that a regulatory function of these transcripts is active during 

Listeria infection (Figure 2A). To determine the importance of the Mirc11 cluster in the 

function of NK cells during Listeria infection, we analyzed the severity of the listeriosis by 

measuring the clearance of L. monocytogenes in the infected mice (64, 65). Compared to the 

WT mice, the number of bacteria in the livers of Mirc11−/− mice was persistently higher at 

48 hours post-infection (Figure 2B). To determine if the increased bacterial load was 

associated with defects in NK cell function, we analyzed the percentages of IFN-γ-

producing CD3ε−NK1.1+ NK cells in the spleens of the infected mice. We observed a 

significant reduction in the percentages of IFN-γ-positive CD3ε−NK1.1+ NK cells from 

Mirc11−/− compared to WT mice Figure 2C) during L. monocytogenes infection.

Because the Mirc11−/− mice are a global gene knockout model, to ensure that the 

impairment in cytokine production observed in Mirc11 NK cells is intrinsic, we generated 

mixed bone marrow chimeras. Equal numbers of BM-derived cells from WT (CD45.1+; 

B6.SJL) and Mirc11−/− (CD45.2+; C57BL/6) mice were transferred into Rag2−/−γc
−/− 

double knockout mice. Six weeks later both groups were challenged with 2 × 104 L. 
monocytogenes. Forty-eight hours post-infection, spleens were analyzed for the percent 

IFN-γ-positive CD3ε−NK1.1+ NK cells. Whereas the percentage of NK cells did not differ 

indicating comparable levels of survival between the two genotypes (Figure 2D), the IFN-γ 
production was significantly reduced in NK cells from Mirc11−/− compared to that of WT 

mice (Figure 2E).

To further assess transcriptomic changes resulting from the loss of the Mirc11 in NK cells, 

WT, and Mirc11−/− mice were challenged with 2 × 104 L. monocytogenes. Forty-eight hours 

later, CD3ε−NK1.1+ NK cells were sorted from the spleens of infected mice, and total 

mRNA from three mice for each group (unchallenged or challenged) were sequenced. 

Unsupervised analyses of transcriptomic profiles of unchallenged and L. monocytogenes-

challenged mice using PCA revealed that NK cells from the WT mice demonstrated a 

transcriptome that is distinct from NK cells from Mirc11−/− mice (Supplementary Figure 

3A). The consistency in transcript expression among samples was confirmed by the limited 

percent variance and the extent of their clustering on a dispersion matrix. Statistical filtering 

(p < 0.05 Mann–Whitney, Benjamini–Hochberg correction of stimulated versus non-

stimulated) provided clusters of genes based on similarity of available transcripts. 

Subsequent statistical analyses revealed the differentially expressed genes in the WT and 

Mirc11−/− mice. NK cells derived from WT and Mirc11−/− mice challenged with L. 
monocytogenes showed a differential expression of 6519 and 7537 genes, respectively. NK 
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cells from the spleen of the non-challenged WT and Mirc11−/− mice had a differential 

expression of 3433 and 4184 genes, respectively. In NK cells derived from non-challenged 

mice, a set of 740 genes were differentially expressed in WT compared to that of Mirc11−/− 

mice with a difference in the expression of two- or more fold change in either direction. 

(Figure 2F). Following L. monocytogenes-challenge, NK cells from WT mice expressed 

5302 transcripts, of which 1217 overlapped with the Mirc11−/− mice. After normalizing the 

level of each transcript in the NK cells from Mirc11−/− to the WT, we plotted all the genes 

using Volcano plots to determine the overall change in the transcriptomic profile (Figure 

2G). The red dots represent genes that are significantly increased, while the dark blue dots 

represent genes that are significantly decreased in NK cells from Mirc11−/− mice compared 

to WT. Analyses of a select panel of transcripts encoding pro-inflammatory factors using 

heat maps of normalized expression values (Log2) revealed the inability of NK cells from 

Mirc11−/− mice to transcribe many of these genes (Figure 2H). Consistent with our findings 

from in vitro NK cell activations and the intracellular staining of IFN-γ in NK cells derived 

from the spleens of the L. monocytogenes infected mice, transcripts that encode many 

proinflammatory cytokines (Ifng, Lif, Tnfa, csf2) chemokines (Ccl22, Ccl19, Ccl17, Ccl8, 

Ccl12, Ccl7), cytotoxic granules-associate factors (Gzmc, Gzmb, Pfr1, Gzmf, Gzma) and 

interleukins (Il10, Il17a, Il27, Il6, Il12a, Il15, Il22, Il22b, Il18, Il23a, Il7, Il2, Il4) were 

reduced by more than 50 percent in NK cells from the Mirc11−/− mice relative to the WT 

controls (Figure 2H). These findings reveal that the Mirc11 cluster plays an essential role in 

positively regulating the production of multiple pro-inflammatory factors and specifically an 

alteration but not a reduction in the transcriptome argues that the lack of Mirc11 did not lead 

to a global hyporesponsiveness of NK cells.

Mirc11 cluster is required for NK cell-mediated in vivo clearance of B16F10 melanoma

To evaluate the role of the Mirc11 cluster in regulating anti-tumor response in vivo, we used 

a B16F10 melanoma-based pulmonary pseudometastases model (66), where the host mice 

depend on NK cell-mediated IFN-γ production for tumor clearance (67). We hypothesized 

that an impairment in the ability of Mirc11−/− NK cells to produce IFN-γ and other 

inflammatory cytokines could result in a failure to clear B16F10 tumor cells. WT and 

Mirc11−/− mice were challenged intravenously with two different doses of B16F10 cells (2 × 

105 or 1 × 106). Fourteen days later, the lungs of the challenged mice were harvested, 

perfused, and the number of nodules was counted. Gross analyses and Hematoxylin & Eosin 

staining indicated a considerable number of pseudometastases in the lungs of Mirc11−/− 

mice compared to WT mice (Figure 2I). Quantification of nodules substantiated this 

observation, as lungs from the Mirc11−/− mice have a significantly higher number of nodules 

compared to the lungs from WT mice (Figure 2J). To correlate these functional impairments 

with an expression of Mirc11 cluster members, we analyzed the relative amounts of 

miR-23a, miR-27a, and miR-24-2, 48 hours following B16F10 injection in WT mice. 

Expression of miR-23a, miR-24-2, and miR-27a increased following tumor challenge 

compared to that of non-challenged mice with miR-23a and miR-27a being dominant 

(Figure 2K). These data suggest an increase in the expression of the Mirc11 cluster 

correlates with an augmented ability of NK cells to mediate clearance of B16F10 melanoma 

tumors.
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Identification of target transcripts of the Mirc11 cluster in NK cells

To define the molecular mechanism that causes the impairment in the production of 

protective pro-inflammatory factors during L. monocytogenes infections in the Mirc11−/− 

mice, we next identified the mRNA targets of the Mirc11 cluster. The mature sequences of 

all three members of the Mirc11 cluster were found in the NK cells from the WT mice 

during L. monocytogenes infection and anti-NKG2D mAb-mediated activation. Therefore, 

we speculated that the genetic ablation of the Mirc11 cluster in NK cells would augment the 

half-life and relieve the translational repression of target mRNA transcripts and that 

identifying potential targets with differential expression in WT and Mirc11 NK cells would 

define sources of NF-κB and AP-1 inhibition. Using transcriptome-wide RNA sequencing 

data, we determined the target transcripts that are differentially enriched using Fisher’s exact 

test between splenic NK cells that were derived from the non-challenged and L. 
monocytogenes-challenged WT and Mirc11−/− mice. Potential targets of miR-23a, miR-27a, 

and miR-24-2 were identified based on the presence of the unique ‘seed’ sequences present 

in the 3′ UTR of the transcripts (Figure 3A). Utilizing TargetScan 7.1-based in silico 
analyses (http://www.targetscan.org), we identified a set of target mRNAs that were present 

in the total genome-wide RNA sequence analyses of NK cells from WT and Mirc11−/− mice 

based on ‘the aggregate probability of conserved targeting’ (PCT) (68). In silico predictions 

that matched the 3′ UTR of the transcripts and their orthologs based on the UCSC whole-

genome alignments, identified a total of 6,606 genes that could be targeted by Mirc11 cluster 

(Figure 3A). Among these 5,972 were present in the RNA sequencing data obtained from 

splenic NK cells following L. monocytogenes infection (Figure 3B). Only a fraction of them 

(617) were differentially expressed between WT and the Mirc11−/− mice under non-

challenged condition (Figure 3C). However, following Listeria challenge 2073 of these 

transcripts were differentially expressed between the NK cells derived from WT and the 

Mirc11−/− mice (Figure 3D). Among the three, lack of miR-24-2 was associated with the 

most differentially expressed genes (1169) followed by miR-23a (1145) and miR-27a (394). 

A considerable number of these transcripts can be targeted by one or more of the three 

miRNAs.

Analyses of the identities of the transcripts altered by miRNA-23a, miRNA-24-2, and 

miRNA27a revealed that they fall into multiple categories including genes that control 

apoptosis and cell survival, metabolic regulators, transcriptional activators of cytokines and 

chemokines, and signaling proteins (Figure 3E, F, & G). The first group is the transcripts-

encoding transcriptional activators (Stat1, Ctnnb1p1, Zfp799, Zfp113, Zfp397, Zfp329, 
IRF4, Pparg) or repressors (ATF3, Runx2, Hic2 ) that may have direct control over the 

production of inflammatory cytokines and chemokines. Alterations in the transcript levels of 

ATF3, IRF4, and Runx2 may provide potential mechanisms. We find the transcript levels of 

ATF3 reduced in NK cells from Mirc11−/− mice compared to that of WT. Earlier work has 

described the ATF3 interacts with the cis-regulatory element and repress the transcription 

Ifng gene (69). Thus, the reduction in ATF3 does not correspond to the reduction in IFN-γ 
or other inflammatory cytokine production that we observe in Mirc11−/− mice. Following L. 
monocytogenes infection, we observed a modest increase in IRF4-encoding transcripts in the 

NK cells from the WT but not in Mirc11−/− mice. In terms of the transcriptional activators, it 

is possible changes in the activity of one of these factors could lead to differential expression 
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of several cytokines or chemokines. However, the fact that genes beyond the actual 

cytokines and chemokines were altered suggests the regulatory function of Mirc11 acts on 

targets with a broader transcriptional network. For example, IRF4 cooperates with basic 

leucine zipper transcription factor ATF-like (BATF)-Jun heterodimers and initiates 

transcription by binding to AP-1-IRF4 composite elements (AICE) (70, 71). This suggests a 

reduction in Irf4 transcript would not induce the hypo-inflammatory response observed in 

NK cells from Mirc11−/− mice in response to stimulation via activation receptors. Similarly, 

Runx2 can function both as a repressor and a transactivator of select genes in multiple cells 

types (72, 73). Runx2 was considerably reduced in NK cells from WT compared to 

Mirc11−/− mice that were infected with L. monocytogenes. Like IRF4, however, the 

specificity of the transcriptional network regulated by Runx2 suggests this alteration is 

insufficient to explain the functional defects of NK cells in Mirc11−/− mice.

Based on this line of thinking, we hypothesized that altered activity of a membrane proximal 

signaling protein immediately downstream of activation receptors could lead to the broader 

changes in transcription seen in the Mirc11−/− NK cells. Thus, we decided to focus our 

analysis on the group of potential targets that included components of activation receptor 

signaling. This group included both mediators (Itpk1, Mtss1, PLC-H1, Rictor) and 

repressors (A20/Tnfaip3, Fbxl17, RNF170, Cbl-b) of activation receptor signaling. 

Interestingly, the ubiquitin regulators (A20/Tnfaip3, Fbxl17, RNF170, Cbl-b) target multiple 

substrates including membrane proximal TRAF6, TRAF2, RIPK1, RIPK2, and TAK1, 

which function as central signal transducing modules downstream of TCR (74) and BCR 

(75) in the activation and nuclear translocation of NF-κB and AP-1. Thus, alterations in the 

translational threshold of ubiquitin modifiers provided the most plausible mechanism for the 

hypo-inflammatory responses of NK cells of the Mirc11−/− mice.

Mirc11 cluster targets NF-κB and AP-1-mediated gene transcription

Transcriptional induction of proinflammatory factors is primarily mediated by the activation 

of two major transcription factor complexes NF-κB (p50/RelA) and AP-1 (c-Fos/c-Jun) 

(76). Analyses of the activation status of Jnk1/2 that is upstream of NF-κB and AP-1 

revealed a considerable reduction in their phosphorylation following anti-NKG2D mAb-

mediated activation (Supplementary Figure 3B). Similar reductions were seen in the 

phosphorylation of Erk1/2; but not p38. Because we observed global defects in 

inflammatory factor production in NK cells from Mirc11−/− mice, we hypothesized 

activation of one or both the primary transcriptional networks was disrupted by a lack of the 

Mirc11 cluster. To define the effect of the Mirc11 cluster on NF-κB and AP-1 activation, we 

performed in silico regulatory network genome-wide analyses using DeMAND (77) and a 

precompiled Bayesian network based on the gene expression profiles of 254 B cell 

lymphoma cell preparations on U95av2 arrays. Following stimulation with anti-NKG2D 

mAb, the DeMAND analysis revealed that the Rel-A (p65, P < 10−7) and Jun (P < 10−8) 

networks were significantly altered between the WT and Mirc11−/− NK cells 

(Supplementary Figure 4A & B). Likewise, gene network analysis using the IPA software 

tool revealed that the NF-κB (p < 10−42) and AP-1 (p < 10−13) pathways were significantly 

enriched among the differentially expressed gene-sets in NK cells derived from the L. 
monocytogenes-challenged WT and Mirc11−/− mice (Figure 4). A total of 280 differentially 
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expressed genes were identified with 64 were upregulated, and 216 downregulated that are 

transcriptionally regulated by NF-κB. A total of 320 differentially expressed genes were 

identified with 132 were upregulated and 188 downregulated that are the target genes of 

AP-1 complexes. Hierarchical clustering revealed multiple distinct gene groups either up- or 

downregulated as presented in heat maps (Figure 4A & B). Functional classification and 

Fisher’s exact test further identified enriched transcripts that encode pro-inflammatory 

cytokines, chemokines, and other transcription factors. Collectively, these data further 

support that the altered response of NK cells from Mirc11−/− mice compare WT mice is 

most likely due to disruption of key transcriptional mediators of inflammatory response, 

such as NF-κB and AP-1.

To validate these in silico findings, we determined the functional status of both NF-κB and 

AP-1 in NK cells from Mirc11−/− mice. To do this, we stimulated NK cells derived from the 

WT and Mirc11−/− mice with plate-bound anti-NKG2D mAb, prepared nuclear lysates, and 

quantified the levels of binding of NF-κB and AP-1 to chromosomal DNA using 

electrophoretic mobility shift assay (EMSA). Gel-shift assays demonstrated that both NF-κB 

and AP-1 pathways are activated in NK cells derived from WT mice; however, are 

considerably reduced in NK cells from Mirc11−/− mice (Figure 5A).

Next, we combined the gene expression profiles (GEP) from both the RNA-seq libraries 

made from NK cells following anti-NKG2D mAb-mediated activation and from the ex vivo 
isolated fresh splenic NK cells from L. monocytogenes infected mice to identify shared and 

common targets. NK cells from L. monocytogenes challenged mice (WT versus Mirc11−/− 

mice) contained the 6073 genes that were differentially expressed compared to 628 genes 

that were differentially expressed in NK cells that were stimulated in vitro with anti-NKG2D 

mAb (WT versus Mirc11−/− mice). There were 446 genes that were shared between the two 

RNA-seq libraries, of which many were known to be transcriptionally regulated by NF-κB, 

AP-1, or both (Figure 5B). These shared group of genes included proinflammatory cytokines 

and chemokines. Genes that are regulated by NF-κB or AP-1 were visualized with 

Log2−fold-change scatter plot. Expression of most of the target genes in NK cells from 

Mirc11−/− mice was significantly reduced, indicating that the Mirc11 cluster functions as a 

central repressor of one or more negative regulators of NF-κB and AP-1 activation pathways 

(Figure 5C). Also, we evaluated the gene set enrichment for NF-κB and TNF-α response 

pathways. Analysis of NK cells stimulated either in vitro with anti-NKG2D mAb or derived 

from L. monocytogenes infected mice revealed these pathways were significantly impaired 

in NK cells lacking the Mirc11 cluster (FDR adjusted p < 0.05) that was stimulated either in 
vitro with anti-NKG2D mAb or derived from L. monocytogenes infected mice (Figure 5D). 

Overall, transcriptome-wide RNA sequencing analyses revealed that the primary target 

genes of the Mirc11 cluster involved transcriptional regulation by NF-κB and AP-1 

complexes. Importantly, NK cells from WT mice infected with L. monocytogenes exhibited 

proinflammatory gene-set similar to that of human chronic inflammatory bowel disease; 

however, NK cells from Mirc11−/− mice lacked this differentially-expressed gene simulation 

(Supplementary Figure 5). This correlation supports the notion that Mirc11 cluster optimizes 

pro-inflammatory responses.
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A20, Cbl-b, and Itch are direct targets of the Mirc11 cistron in mice and human

Given the significant reduction in the expression of genes that are transcriptionally regulated 

by the canonical NF-κB (RelA) and AP-1 (c-Fos/c-Jun) pathways, we hypothesized that 

deubiquitinating enzymes and E3 ligases with membrane proximal functions could be one of 

the principal targets of the Mirc11 cluster. We analyzed two deubiquitinating enzymes (A20 

and Cyld) and two E3 ligases (Cbl-b and Itch) with established roles in NF-κB and AP-1 

signaling (78) in ex vivo purified splenic NK cells 48 hours after L. monocytogenes 
infection. NK cells from non-infected WT mice contained all four proteins (Figure 6A). 

Upon L. monocytogenes infection splenic NK cells from WT mice considerably reduced the 

expression of Cbl-b, Cyld, and Itch, while the levels of A20 remained undetectable. 

Additionally, NK cells from Mirc11−/− mice contained significantly augmented levels of 

A20, Cbl-b, Cyld, and Itch regardless of the infection status. We next validated these results 

in IL-2-cultured splenic NK cells that were activated with plate-bound anti-NKG2D mAb 

for varied periods of time. NK cells from WT mice contained all four proteins; however, NK 

cells from Mirc11−/− mice contained significantly increased levels of A20, Cbl-b, Cyld, and 

Itch (Figure 6B). Though activation with anti-NKG2D mAb increased the protein levels of 

A20, Cbl-b, Cyld, and Itch in NK cells from both WT and Mirc11−/− mice, NK cells from 

Mirc11−/− mice contained significantly a higher amount of A20, Cbl-b, Cyld, and Itch under 

both conditions. Our data suggest these regulatory proteins suppress Mirc11−/− NK cells due 

to a lack of microRNA mediated-silencing.

To identify the mechanistic link between the Mirc11 cluster and these E3 ligases, we 

analyzed the 3′ UTR sequences of A20, Cbl-b, Cyld, and Itch. Using TargetScan (http://

www.targetscan.org), we found that the 3′ UTR of all four E3 ligases contained predicted 

binding sites for one or more members of the Mirc11 cluster (Figure 6C). To identify 

whether miRNA23a, miRNA24-2, or miRNA27a could directly target Tnfaip3 (A20), Cblb, 

Cyld, and Itch mRNAs, we cloned their putative interacting sequences from 3′ UTR regions 

downstream of the firefly luciferase reporter gene in a pMIR-Report vector. We identified 

and cloned one, two, three, and two 3′ UTR regions of Tnfaip3, Cblb, Cyld, and Itch, 

respectively (Figure 6C). Control mimetics (CM) were cloned into a pMIR-Report vector 

used to quantify the background luciferase activity. These cloned sequence-containing 

pMIR-Report vectors were co-transduced with vectors expressing miRNA23a, miRNA24-2, 

miRNA27a, or control mimetics-encoding vectors into HEK293T cells. After 48 hours, cells 

were lysed, and the luciferase activity was quantified. The 3′ UTR of Cblb contained two 

seed matches between 3216–3236 and 5879–5901 nts targeted by miR-27a-3p and 

miR-23a-3p, respectively. Although the proximal seed match sequence for miR-27a-3p 

contained 13 non-contiguous nucleotides (out of 21) that were complementary, it was unable 

to block the translation of luciferase. However, the distal sequence that was targeted by 

miR-23a-3p with a 7mer seed match was functional as indicated by the reduction in 

luciferase activity. The 3′ UTR of Cyld contained three sequences between 3842–3864, 

4031–4051, and 5979–6000 nts, which all targeted by miR-24-2-3p. Irrespective of the 

presence of three optimal seed matches, none of these were able to block the translation of 

luciferase. In this context, it is important to note that miR-24–1, the paralog of miR-24-2, 

contains an identical sequence (79). The 3′ UTR of Itch contained two seed matches 

between 2882–2900 and 4649–4669 nts that were targeted by miR-27a-3p and miR-23a-3p, 
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respectively. Incorporation of the target sequences in the 3′UTR of luciferase indicated that 

the miR-27a-3p was able to reduce the translation of luciferase but not the miR-23a-3p. 

Collectively, we found miRNA23a significantly reduced the luciferase activity of vector that 

contained the 3′ UTR of Tnfaip3. Similarly, miRNA27a reduced luciferase activity of 

vectors containing 3′ UTR sequences of either Cblb or Itch (Figure 6D). With three different 

3′ UTR sequences of Cyld, we did not observe any reduction of luciferase activity 

indicating that Mirc11 cluster members may not target Cyld (Figure 6D). Together, these 

data suggest the Mirc11 cluster controls the activity of A20, Cbl-b, and Itch in NK cells by 

binding to the 3′ UTR of their respective transcripts and regulating their translation.

We next determined if this regulatory mechanism was also active in human NK cells. We 

purified CD3e−CD56+ NK cells from human peripheral blood mononuclear cells (PBMC) 

and transduced them with lentiviral pLenti-TetCMV vectors encoding individual pre-miRs 

or all three pre-miRs that encode the members of the Mirc11 cluster. NK cells were activated 

with plate-bound anti-NKG2D mAb (1D11, 5 μg/ml)) for 24 hours and the percent IFN-γ-

positive cells was quantified by flow cytometry. Our data show transduction of pre-miR23a 
or pre-miR-27a increased the percent IFN-γ+ NK cells compared to that of empty vector 

(Figure 6E). Out of four individual PBMCs transduced with pre-miR24-2, only one showed 

an augmentation of percent IFN-γ+ NK cells. Collectively, these results indicate the Mirc11 
cluster reduces the protein translation of specific deubiquitinating enzymes or E3 ligases to 

allow maximum threshold of signaling strength downstream of activation receptors such as 

NKG2D.

Mirc11-mediated targeting of A20, Cbl-b, and Itch augments K63-polyubiquitination of 
TRAF6

NKG2D-mediated activation rapidly stimulates p50/RelA (NF-κB) and c-Fos/c-Jun (AP-1) 

activation and nuclear translocation (25). TRAF6 and TRAF2 are effector E3 ligases that 

synthesize lysine (K) 63-linked ubiquitin chains on themselves and other substrates resulting 

in their activation (80). Deubiquitinating enzymes A20 or Cyld and E3 ligases Cbl-b or Itch 

limit this activation by removing non-degradative K63-polyubiquitination of TRAF6 and 

TRFA2 (81). In addition to removing this activating post-translational modification, A20 

functions as a ubiquitin-editing enzyme by removing K63-polyubiquitination and adding 

K48-polyubiquitination to its substrates marking them for proteasomal degradation (82). 

Therefore, to establish the roles of A20, Cbl-b, Cyld, and Itch as suppressors of NK cell 

activation, we used their respective gene knockout mice. We first analyzed the maturation 

and development of NK cells in these mice. A total number of NK cells among the splenic 

lymphocytes between the knockout mice to their respective WT controls were comparable, 

indicating that the lack of these proteins does not alter their lineage commitment and 

development (Supplementary Figure 6A). Terminal maturation of NK cells was analyzed by 

quantifying the expression of KLRG1 and CD27/CD11b ratio. Except for a moderate 

reduction in NK cells from Cyld−/− mice, the expression of KLRG1 was intact in all the 

knockout mice, demonstrating that the terminal maturation of NK cells is not altered 

(Supplementary Figure 6B). Similarly, the ratio of CD27+, CD27+/CD11b+, CD11b+ NK 

subsets were comparable between the knockout mice and their respective WT controls, 

demonstrating that their functional maturation is intact (data not are shown). Next, we tested 
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the NK cells from the various knockout mice for their anti-tumor cytotoxic potentials and 

the ability to produce proinflammatory cytokines. Splenic NK cells from 

Tnfaip3fl/flRosaCre-ER mice were cultured with IL-15 for seven days, and on day four 

tamoxifen was added to the culture to induce the deletion of A20-encoding alleles. Splenic 

NK cells from mice lacking Cblb, Cyld, and Itch were also prepared by culturing with 

IL-15. While NK cells from three of the knockout models mediated comparable levels of 

cytotoxicity against EL4H60, RMA/S, and YAC1 compared to WT controls (Supplementary 

Figure 6C), NK cells that lacked Cbl-b exhibited an increased killing of EL4H60, RMA/S, 

and YAC1. Next, we stimulated the IL-15-cultured NK cells with plate-bound anti-NKG2D 

mAb for 18 hours, and the supernatants were collected and analyzed for IFN-γ, GM-CSF, 

CCL3, CCL4, and CCL5 (Supplementary Figure 7). The absence of Tnfaip3, Cblb, Cyld, or 

Itch significantly increased the generation of these cytokines and chemokines; thus, 

corroborating data from the Mirc11−/− mice suggesting this regulatory mechanism primarily 

affects the production of proinflammatory factors. Together, these data demonstrate that 

A20, Cbl-b, Cyld, and Itch regulate proinflammatory responses of NK cells through their 

well-defined role in repressing the activation of NF-κB and AP-1.

A lack of Mirc11 reduces K63- and increases K48-polyubiquitination of TRAF6

Long chain K63-polyubiquitination synthesized by the E3 ligase TRAF6 facilitates the 

recruitment of TAB2 and TAB3 to activate TAK1 (82). In turn, TAK1 phosphorylates and 

activate NF-κB-inhibitor kinases (IKKα and IKKβ) and eventual activation of the NF-κB 

complex (83). A20 contains both deubiquitinase and E3 ligase domains and functions as a 

ubiquitin-editing enzyme (84). A20 and Cyld can form independent complexes with Itch to 

disassemble K63 chains and to add K48 polyubiquitination (36, 85). Therefore, to confirm 

the specific mechanism by which these negative regulators function to suppress NK cell 

activation in the absence of Mirc11-mediated silencing, we next analyzed TRAF6 

ubiquitination in NK cells from WT and Mirc11−/− mice following anti-NKG2D mAb-

mediated activation. TRAF6 was immunoprecipitated from NK cell lysates and probed for 

K63 and K48 ubiquitination. We observed a ladder of high-molecular-mass of K63-

polyubiquitinated TRAF6 in NK cells from the WT mice (Figure 7A, lanes 1&2). However, 

a diffused ladder of K63-polyubiquitinated TRAF6 was absent in NK cells from Mirc11−/− 

mice (Figure 7A, lanes 3&4). Next, we analyzed the immunoprecipitated TRAF6 for K48 

polyubiquitination. At 15 minutes following anti-NKG2D mAb-mediated activation, TRAF6 

in NK cells from the WT mice did not contain any K48 polyubiquitination (Figure 7B, lanes 
1&2). In contrast, TRAF6 in NK cells from the Mirc11−/− mice contained considerable 

levels of K48 polyubiquitination (Figure 7B, lanes 3&4). Similarly, K63 ubiquitination of 

RIP1 was considerably augmented in NK cells from the WT mice, which was absent in NK 

cells from the Mirc11−/− mice (Figure 7C). We further validated TRAF2 following activation 

and did not observe any change in K63 (Figure 7D, lanes 1–4) or K48 (data not shown) 

ubiquitination, suggesting TRAF6 is the primary target of A20, Cyld, Cbl-b, and Itch-

mediated suppression of NK cell-mediated cytokine production

To validate these findings, we incubated IL-15-cultured NK cells from WT and Mirc11−/− 

mice with mutant K63 or mutant K48 ubiquitin proteins. These recombinant ubiquitin 

proteins are mutated from lysine to arginine at K63 (K63R) and K48 (K48R), respectively 
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(86). These mutated ubiquitins can form an active thioester at the C-terminus and can be 

transferred to substrate proteins; however, they will not be able to form polyubiquitin chains 

with other ubiquitin molecules. Passive diffusion of these modified ubiquitins into NK cells 

bind to substrates and limit the ubiquitylation to mono-ubiquitination (86). We co-incubated 

NK cells with either K63R or K48R ubiquitins, activated with anti-NKG2D mAb, collected 

the supernatants and quantified the amount of IFN-γ. Incubation of NK cells from WT but 

not Mirc11−/− mice with K63R significantly reduced the production of IFN-γ, TNF-α, GM-

CSF, CCL4, and CCL5 (Figure 7E). Addition of K48R to NK cells from neither WT nor 

Mirc11−/− mice augmented the production of these cytokines and chemokines. Based on 

these results, we conclude that Mirc11 cluster temporally targets and silence these E3 ligases 

during the active-phase of receptor-mediated stimulation to enable optimal NK cell-

mediated production of proinflammatory factors.

Discussion

Production of inflammatory cytokines and chemokines is a critical component of an immune 

response. However, an acute or a chronic inflammatory response is highly destructive; 

therefore, the tight regulation of genes that encode inflammatory factors is essential. In this 

study, we define the Mirc11 cluster as an essential positive regulator of inflammatory 

cytokine and chemokine production. We demonstrate that one of the primary functions of 

the Mirc11 cistron is to target and silence the translation of A20, Cbl-b, Cyld, and Itch. Lack 

of the Mirc11 cluster led to the increased translation of A20, Cbl-b, Cyld, and Itch, which 

resulted in increased deubiquitylation of K63 and augmented K48 ubiquitylation of TRAF6. 

Degradation of TRAF6 dampen the activation and nuclear translocation of NF-κB and AP-1 

complexes and therefore the transcription of pro-inflammatory genes. These findings 

provide insights into a novel immune regulatory function of miRNAs.

More than 400 and 300 miRNAs have been identified in human and mouse NK cells, 

respectively (87, 88). The Mirc11 cistron encodes three independent miRNAs, miR-23a, 

miR-24-2, and miR-27a on mouse chromosome #8 (#19 in human) (89). Mirc22 is a paralog 

of Mirc11, which encodes miR-23b, miR-24–1, and miR-27b located in mouse chromosome 

#13 (#9 in human) (79). Paralogs of miR-23 and miR-27 differ in one nucleotide, whereas 

the mature miR-24–1 and miR-24-2 are identical. Members of Mirc11 (miR-23a, miR-24-2) 

and Mirc22 (miR-23b, miR-24–1) clusters are expressed at a low but detectable levels 

compared to abundantly expressed miR-150, miR-29a, miR-16, miR-21, let-7a, let-7f, 
miR-24, miR-15b, miR-720, let-7g, miR-103, and miR-26a in mouse and human NK cells 

(90, 91). Earlier studies have shown miRNAs including miR-181 (92), miR-150 (93, 94), 

and miR-15/16 (95) regulate the development and maturation of mouse or human NK cells. 

Lack of miR-181 in in vitro human CD34+ HSC cultures (92) or in the in vivo absence of 

either miR-150 or miR-15/16 in mouse (93) significantly reduced the maturation and 

number of NK cells. However, lack of the Mirc11 cluster did not alter the development, 

maturation, or trafficking of NK cells. BM, spleen, lung, liver, and peripheral blood of 

Mirc11−/− mice contained comparable numbers of mature NK cells compared to WT. 

Expression of activation (NKG2D, NCR1, CD244, Ly49D, Ly49H, and NK1.1) or inhibitory 

(NKG2A, Ly49A, Ly49C/I, Ly49G2) receptors was comparable between NK cells derived 

from Mirc11−/− and WT mice. Functional phenotyping using CD27, CD11b, and KLRG1 
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markers implied that the maturation of NK cells proceeds normally in the absence of 

Mirc11. Compared to miR-181 that targets the mRNA encoding Nemo-like kinase (NLK), 

an inhibitor of Notch signaling (96); or miR-150 and miR-15/16, which both target the 

mRNA encoding c-Myb (93, 95) a positive regulator of Myc and Bcl2, Mirc11 does not 

appear to silence transcripts whose products are obligatory for the commitment, survival, 

and maturation of developing NK cells. One reason could be that although the members of 

the Mirc11 cluster are present in naïve NK cells, their expression levels are comparatively 

low and are increased following activation of the NK cells either in vitro with plate-bound 

anti-NKG2D mAb or in vivo with L. monocytogenes. Data collected from this study 

suggests the Mirc11 cluster has a novel role regulating NK cell-mediated cytokine 

production independent of a function in controlling NK cell lineage commitment and 

development seen in other miRNAs.

Lack of Mirc11 cluster only moderately impaired the cytotoxic potentials of naïve or IL-15-

cultured NK cells against EL4H60, RMA/S, B16F10, and YAC1 targets. Culturing NK cells 

from Mirc11−/− mice with IL-2 fully rescued the impairment in their cytotoxicity. Analyses 

of the in vivo clearance of donor-derived splenocytes that either expressed significantly 

reduced levels of MHC Class I (H-2b; β−2 microglobulin knockout C57BL/6 mice 

representing ‘missing-self’) or a mismatched MHC Class I (H-2d; BALB/c mice 

representing ‘non-self’) revealed that the lack of Mirc11 impaired only the clearance of 

splenocytes representing ‘missing-self’ and not ‘non-self’. Earlier studies have shown that 

one of the members of Mirc11 cistron, miR-27a targets transcripts encoding Perforin and 

Granzyme B and the absence of miR-27a significantly augmented the cytotoxic potentials of 

human NK cells (97). Our transcriptomic profiling of NK cells from either in vitro anti-

NKG2D mAb-stimulated or from L. monocytogenes-challenged mice revealed reductions in 

the expression levels of Perforin, Granzyme B, Granzyme A, Granzyme C, and Granzyme F 

in NK cells from Mirc11−/− mice. Irrespective of these observations; we observed neither a 

significant reduction nor an augmentation of NK cell-mediated cytotoxicity in co-culture 

experiments using the EL4-H60 model in which NK cells are activated specifically through 

NKG2D. This suggests the reduced expression of perforin and various granzymes is not 

sufficient to induce the differences in cytotoxicity seen in some of the models tested, and 

that another aspect of NK cell function is also disrupted. We hypothesized that impairments 

in other effector functions such as the production of proinflammatory cytokines might 

account for the reduction in cytotoxicity. NK cell-derived IFN-γ is known to augment both 

activating (ICAM1) and inhibitory (MHC Class I) ligands on target cells (98). Also, one of 

the mechanisms that NK cells utilize to recognize target cells via ‘missing-self’ mechanism 

is to employ LFA-1 to interact with ICAM1 on target cells (99). Thus, a significant reduction 

in the production of IFN-γ by the NK cells from Mirc11−/− mice could exclusively affect the 

lysis of splenocytes from β−2 microglobulin knockout mice. Splenocytes from BALB/c 

mice express allo MHC Class I (H2-Kd and H2-Dd) and H60, Rae-1, and MULT1 that are 

the ligands of the NKG2D receptor (100–102). This could explain why the recognition and 

the in vivo clearance of BALB/c-derived splenocytes is not impaired in Mirc11−/− mice.

To identify whether the production of IFN-γ is impaired in NK cells derived from Mirc11−/− 

mice, we co-cultured NK cells with EL4, EL4H60, RMA, RMA/S, YAC1, and B16F10. 

Levels of IFN-γ were significantly reduced in the supernatants of NK cells from Mirc11−/− 
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compared to those from WT mice in the co-culture models irrespective of the mechanism of 

target cell recognition. This revealed the inherent ability of NK cells to produce IFN-γ in the 

absence of Mirc11 cluster is severely compromised. Unlike cytotoxicity, the defects in IFN-

γ could not be rescued by culturing naïve Mirc11−/− NK cells either with IL-2 or IL-15. 

This indicated that the impairment in cytokine production is due a distinct alteration in the 

posttranscriptional mechanism that is regulated by the Mirc11 cluster. Activation of IL-2-

cultured NK cells from Mirc11−/− mice with plate-bound anti-NKG2D mAb further 

demonstrated a severe defect in the production of multiple proinflammatory cytokines (IFN-

γ, GM-CSF) and chemokines (CCL3, CCL4, CCL5). This positive correlation of Mirc11 
and the generation of inflammatory cytokines is corroborated by data collected in T cells by 

showing that the enforced overexpression of the individual members or the full-cluster of 

Mirc11 significantly elevated the production of IFN-γ, activation status (CD44HiCD62LLo), 

and cell proliferation in transgenic mice (47). In addition, this overexpression of Mirc11 
cluster resulted in the hyperactivation of T cells and differentially skewed the commitment 

of Th1, Th2, Th17, and induced T regulatory cells in a cytokine-dependent manner (47). An 

earlier study also shows that both Mirc11 and Mirc22 were involved in containing a Th2-

mediated type-2 inflammation and lung pathology in an experimental mouse model of 

asthma (48). The mechanism was primarily attributed to an IL-4-based network that is 

regulated by transcription factors Ikaros1 and Gata3 (48). In another study, exposure of 

CD8+ T cells to tumor-derived TGF-β augmented the expression of the Mirc11 cluster, 

which directly repressed the translation of BLIMP-1 (103). These data demonstrate the 

regulatory role of Mirc11 extends beyond direct regulation of specific cytokines and 

chemokines and rather is required for maintaining a level of activation that enables 

generation of multiple proinflammatory factors. Along these lines, our genome-wide 

transcriptomic analyses of anti-NKG2D mAb stimulated Mirc11−/− NK cells further validate 

this role by demonstrating loss of Mirc11−/− induces a broad inability to generate multiple 

inflammatory factors as opposed to regulating individual cytokines and chemokines.

To further validate these in vitro findings and to define the role of the Mirc11 cluster in vivo, 

we challenged WT and Mirc11−/− mice with L. monocytogenes, whose clearance depends 

on IFN-γ produced by NK cells early during infection (104). The absence of the Mirc11 
cluster impaired the clearance of L. monocytogenes and considerably reduced the number of 

NK cells that produced IFN-γ. Recent studies have shown that two members of the Mirc11 
cluster, miR-23a, and miR-27a, negatively regulate the expression of mitochondrial 

Peptidyl-prolyl cis-trans isomerase (PPIF) in T cells during an established (14 days) L. 
monocytogenes infection (105). By containing the expression levels of PPIF, miR-23a and 

miR-27a helped to maintain the mitochondrial integrity via restricting the influx of reactive 

oxygen species. This earlier study showed that the T cells lacking miR-23a and miR-27a 
were highly susceptible to TCR-mediated activation-induced cell death. Based on these data 

we may expect Mirc11−/− NK cells to exhibit increased cell death during Listeria infection. 

In contrast to these earlier studies, we neither observed an increase in the transcript levels of 

Ppif nor augmented cell death of NK cells during L. monocytogenes infections. We attribute 

two reasons for these differences. First, our study utilized the mice that lacked the entire 

Mirc11 cluster. Secondly, NK cells mediate their effector functions during the early phase of 

Listeria infection (48 hours) and do not require a period of clonal expansion to mediate 
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effector functions. Differences in the magnitude of proliferation induced by NK cell 

activation receptors as opposed to TCR stimulation could lead to different metabolic 

requirements between NK cells and T cells during Listeria infection, thus leading to 

different requirements of the Mirc11-mediated mitochondrial regulation. Additional work is 

warranted to compare the differential roles of the members of the Mirc11 cluster between 

NK and T cells.

NK cells can be primed by a number of interleukins, including IL-12, IL-15, IL-18, IL-27, 

and IL-35 that are primarily produced by dendritic cells (DCs) (106). This complex interplay 

between DCs and NK cells is critical for NK cell-mediated effector functions (107). 

Likewise, the trans-presentation of IL-15 by IL-15Rα from the cell surface of DCs to 

IL-15Rα/IL-2Rβ/IL-2Rγ complex on NK cells regulate NK cell development, proliferation 

and gene transcriptions (108, 109). Because our Mirc11−/− model is a global knockout 

model, it is possible a lack of Mirc11-mediated regulation of other immune cells, such as 

DCs, could cause the defect in NK cell-mediated cytokine production. Therefore, to 

differentiate the cell-intrinsic and -extrinsic effects of the Mirc11 cluster in NK cells, we 

generated BM chimeras of WT (CD45.1+; B6.SJL) and Mirc11−/− (CD45.2+; C57BL/6) 

mice in Rag2−/−γc
−/− mice. A comparable number of WT (CD45.1+) and Mirc11−/− 

(CD45.2+) CD3ε−NK1.1+ NK cells in the spleens of Rag2−/−γc
−/− mice further confirmed a 

negligible role of the Mirc11 cluster in the development and maturation of NK cells. We 

then infected the chimeric mice with listeria and evaluation of the NK cells ex vivo revealed 

the Mirc11-sufficient host did not rescue the defect in the production of IFN-γ, implying a 

cell-intrinsic role of Mirc11 in NK cells. The absence of the Mirc11 cistron significantly 

reduced the overall level of NK cell activation (5302 versus 740 differentially expressed 

transcripts with 1217 shared transcripts) following L. monocytogenes challenge, indicating 

activation receptor proximal regulation. Utilization of a pulmonary pseudometastasis model 

further confirmed the relationship between the Mirc11 cluster and production of IFN-γ, 

which is obligatory for the clearance of B16F10. Importantly, augmentation of the 

expressions of miR-23a, miR-24-2, and miR-27a in NK cells in vivo during L. 
monocytogenes and B16F10 challenge demonstrates a requirement of Mirc11 cluster-

mediated function over a broad range of pathological conditions.

Uncontrolled inflammation forms the basis for allergy, asthma, and multiple autoimmune 

disorders (110). Myriad signaling pathways have been implicated in initiating inflammatory 

responses. Among these, the NF-κB/Rel and AP-1 families of transcription factors play an 

indispensable role in the transcription of genes encoding inflammatory factors (111). 

Transcriptomic signature of NK cells that lack Mirc11 either obtained following anti-

NKG2D-mediated activation or from in vivo L. monocytogenes infection strongly predicted 

defects in the activation of NF-κB/Rel, AP-1, or both. A considerable decrease in the 

nuclear translocations of the NF-κB/Rel and AP-1 in NK cells lacking Mirc11 corroborates 

the significant reduction in the transcript levels of genes that are positively regulated by 

these transcription factors. Reduction in the transcripts encoding Myc, Irf4, Jun, Nfkbia, 

Cd69, Il2ra, Atf3, and Cd83 in NK cells from Mirc11−/− mice demonstrates a complete 

failure of NF-κB/Rel-mediated transcriptional regulation. Similarly, a considerable 

reduction in the transcript levels of Atf4, Ccnd2, Dusp3, Nfe2l1, Stk40, and Ztbt32 that are 

direct targets of AP-1 confirmed a significant reduction in its transcriptional activity. These 
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findings demonstrate that the Mirc11 cluster is an active repressor of signaling pathways that 

inhibit the activation and nuclear translocation of NF-κB/Rel, AP-1.

Members of the Mirc11 cistron miR-23a, miR-24-2, and miR-27a have the potentials to 

silence the translation of hundreds of mRNAs by targeting unique ‘seed’ sequences present 

in their 3′ UTR. Using TargetScan 7.1-based in silico analyses (http://www.targetscan.org) 

and by in silico predictions, we identified potential target transcripts in the total genome-

wide RNA sequencing data from NK cells from listeria-infected WT and Mirc11−/− mice 

based on ‘the aggregate probability of conserved targeting’ (PCT) (68). Based on the 

ENCODE Data Coordination Center portal-based whole-genome alignments, we identified 

transcripts that were differentially expressed in NK cells from Mirc11−/− mice compared to 

WT mice. This genomic data along with additional biochemical analyses indicated that the 

transcripts encoding A20, Cyld, Cbl-b, and Itch are the direct targets of the Mirc11 cluster. 

The 3′ UTR of Tnfaip3 contained one seed match for miRNA-23a-3p between 1664–1671 

nts. Incorporation of this sequence into the 3′UTR of luciferase-encoding sequence 

significantly reduced its translation. 3′ UTR of Cblb contained two seed matches between 

3216–3236 and 5879–5901 nts targeted by miR-27a-3p and miR-23a-3p, respectively. 

Although the proximal seed match sequence for miR-27a-3p contained a non-contiguous 13 

nucleotides (out of 21) that were complementary, it was unable to block the translation of 

luciferase. However, the distal sequence that was targeted by miR-23a-3p with a 7mer seed 

match did contribute to translational repression as indicated by the reduction in luciferase 

activity. The 3′ UTR of Cyld contained three sequences between 3842–3864, 4031–4051, 

and 5979–6000 nts, which were all targeted by miR-24-2-3p. Irrespective of the presence of 

three optimal seed matches, none of these were able to block the translation of luciferase. In 

this context, it is important to note that miR-24–1, the paralog of miR-24-2, contains an 

identical sequence (79). The 3′ UTR of Itch contained two seed matches between 2882–

2900 and 4649–4669 nts that were targeted by miR-27a-3p and miR-23a-3p, respectively. 

While no translational repression was seen from miR-23a-3p, incorporation of the target 

sequences in the 3′UTR of luciferase indicated that the miR-27a-3p was able to reduce the 

translation of luciferase.

Thus, the ability of the Mirc11 cluster to directly target the transcripts encoding A20, Cyld, 

Cbl-b, and Itch provides a plausible mechanistic explanation for the reduction in the 

production of pro-inflammatory factors. Earlier work indicating a high expression level of 

miRNA-23a in human primary macrophages and its ability to target A20 to repress NF-κB 

activation and thereby a reduction in IL-6 and TNF-α corroborate our current findings in 

murine NK cells (112). Deubiquitinating enzymes, such as A20 and Cyld, along with E3 

ligases, including Itch and Cbl-b, are the central regulators of TRAF6-NF-kB (80) and 

TRAF6-AP-1 pathways (113). TRAF6, through its TRAF domain, promotes K63-linked 

autoubiquitination to function as a scaffold protein to recruit TAB1 and TAB2 (114). 

TRAF6-mediated K63-polyubiquitination also recruits TAB2 and TAB3 to activate TAK1 

(82), which phosphorylates and activates IKKα and IKKβ leading to the nuclear 

translocation of the NF-κB complex (83). A20 and Cyld are a dual function ubiquitin-

editing enzyme that sequentially deubiquitinates the K63- or Met-1 linkages and add K48 

linked ubiquitin using their E3 ligase function (84, 115). Both A20 and Cyld can 

independently associate with Itch and Cyld interacts with Cbl-b to facilitate the removal of 
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K63 polyubiquitin chains and to add K48 polyubiquitination (36, 85, 116). Although the 

protein levels of Cyld were augmented in NK cells lacking Mirc11, we did not observe a 

reduction in the activity when its seed-match sequence was placed at the 3′ UTR of 

luciferase. The post-translational repression of both deubiquitinases and E3 ligases by 

Mirc11 is a robust mechanism to dampen the activation of inflammatory responses.

In summary, we have identified a novel post-translational regulatory mechanism of 

inflammatory responses by microRNAs. The clinical relevance of our findings is highlighted 

by the evolutionarily conserved expression of the Mirc11 cistron in human cells including 

NK cells. Indeed, we have also found that the transduction of pri-miRNAs, an RNA hairpin 

with mature miRNA, encoding either the individual or all three members of the Mirc11 
cistron was able to increase the production of IFN-γ in purified CD3ε−CD56+ human NK 

cells. Future work is warranted to define the direct role of the Mirc11 cluster as underlying 

genetic susceptibility to inflammatory autoimmune diseases and malignancies.

Contact for Reagents and Resource Sharing

As Lead Contact, Malarkannan is responsible for all reagent and resource requests. Please 

contact Subramaniam Malarkannan at Subra.Malar@BCW.edu with requests and inquiries.

Experimental Models and Subject Details

Mice and stable cell lines

C57BL/6 mice (WT) were obtained from Jackson Laboratory (Bar Harbor, ME). Mirc11−/− 

mice were generated and backcrossed with C57BL/6 mice for at least ten generations (51). 

Spleens from Cyld −/− and Itch−/− mice were a gift from Dr. K Venuprasad Poojary at Baylor 

Research Institute of Dallas. Spleens from Tnfaip3 −/− mice were a gift from Dr. Daniel 

Starczynowski at Cincinnati Children Hospital. All mice were maintained in pathogen-free 

conditions at the Biological Resource Center (BRC) at the Medical College of Wisconsin 

(MCW), Milwaukee, WI. Female and male mice between the ages of 6 to 12 weeks were 

used. All animal protocols and human PBMC usage were approved by the respective 

institutional IACUC (AUA1512) and IRB committees. EL4, RMA, RMA/S, and YAC-1 cell 

lines were purchased from ATCC (Rockville, MD) and maintained in RPMI-1640 medium 

containing 10% heat-inactivated FBS (Life Technologies, Grand Island, NY). Generation of 

H60-expressing EL4 stable cell lines has been described (117). The authenticity of RMA 

and RMA/S were tested by the levels of MHC-Class I (H2-Kb and H2-Db). EL4H60 and EL4 

were validated by the presence of cell-surface H60 protein. YAC-1 was tested by the absence 

of H-2b and the presence of H-2a markers. All these cell lines were regularly tested and were 

negative for mycoplasma.

Antibodies

Antibodies for NK1.1 (PK136), CD3ε (17A2, 145–2C11), NKG2D (A10), CD137 (17b5), 

CD137L (TKS-1), and anti-human IFN-γ (MG1.2), were obtained from e-Bioscience (San 

Diego, CA). Anti-Ly49D (4E5) and RIP1 were obtained from BD Pharmingen (San Jose, 

CA). Antibody for NCR1 (MAB2225) was obtained from R&D Systems (Minneapolis, 

MN). Antibodies for β-actin (ACTBD11B7), TRAF6 (H-274) and TRAF2 (F-2) were 
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obtained from Santa Cruz Biotechnology (Dallas, TX). K63-linkage Specific Polyubiquitin 

(D7A11), K48-linkage Specific Polyubiquitin (D9D5), A20 (#4625), Cbl-b (D3C12), Cyld 

(#4495) and Itch (D8Q6D) were purchased from Cell Signaling Technologies (Boston, MA). 

Antibodies for CD45.1 (A20), and CD45.2 (#104) were obtained from BioLegend (San 

Diego, CA).

Method Details

NK cell preparation

NK cells were purified by single cell suspensions from spleen were passed through nylon 

wool columns to deplete adherent populations consisting of B cells and macrophages. Nylon 

wool-non-adherent cells were cultured with 1000 U/ml of IL-2 (NCI-BRB-Preclinical 

Repository, Maryland, and MD) or 100 ng/ml of IL-15 (Peprotech Inc. Rocky Hill, NJ). The 

purity of the NK cultures was checked by flow cytometry, and preparations with more than 

95 % of CD3ε−NK1.1+ cells were used on day seven of IL-2 or IL-15 cultures.

Cytotoxicity assays

IL-2 or IL-15 cultured NK cells were used as effectors in 51Chromium (Cr)-release assays 

on day 7. Target cells were labeled with 50 μCi 51Cr (Perkin Elmer, Shelton, CT) in FCS for 

one hour at 37° C, washed, plated in 96-well U-bottom plates in serial dilutions with effector 

cells at corresponding ratios, and incubated at 37° C for four hours. Supernatants (100 μl) 

were then transferred to plastic tubes, and the radioactivity was measured using a 1470 

Automatic Gamma Counter (Perkin Elmer Shelton, CT). The amount of specific lysis that 

occurred in each well was calculated relative to maximum release (MR) by lysing the cells 

with hydrochloric acid and spontaneous release (SR) of the radioactivity in the media with 

target cells alone. To calculate percent specific lysis, we used the following formula: 100 × 

[(experimental counts per minutes (CPM) - SR (average CPM)/(MR (average CPM) - SR 

(average CPM)] = % specific lysis.

Quantification of cytokines and chemokines

IL-2-cultured NK cells were activated with plate-bound mitogenic antibodies (2.5 μg/ml) 

against NKG2D (A10), CD137 (17B5), or Ly49D (4E5) for 18 hours. Culture supernatants 

were collected and analyzed in a Bioplex assay (Bio-Rad, Richmond, CA). As positive 

controls, IL-2-cultured NK cells were stimulated with one ng/ml of IL-12 (R&D Systems, 

Minneapolis, MN) and ten ng/ml of IL-18 (MBL, Des Plaines, IL), and the supernatants 

were analyzed using Bioplex assay. Intracellular IFN-γ was quantified as previously 

described (118). Briefly, NK cells were activated with plate-bound mAbs in the presence of 

Brefeldin A. After six h, cells were stained for surface CD3ε and NK1.1, fixed, 

permeabilized and stained with PE-cy7-conjugated anti-IFN-γ mAb (XMG1.2). For mRNA 

quantification, NK cells were activated with anti-NKG2D mAb (2.5 μg/ml) for 6 hours, 

lysed and total RNA was purified using RNeasy Mini Kit (Qiagen, Valencia, CA). Real-time 

PCR was performed using SYBR green protocol with an ABI7900 HT thermal cycler. 

Transcript in each sample was assayed in triplicates, and the mean cycle threshold was used 

to calculate the x-fold change and control changes for each gene. Housekeeping gene 

GAPDH was used for global normalization in each experiment.
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Immunoblotting

Whole cell lysate (15–20 μg) or nuclear extracts (10 μg) isolated using NE-PER reagent 

(Pierce Inc., Rockford, IL) were resolved using 10% SDS-PAGE gels, transferred to PVDF 

membranes, and probed with indicated antibodies. Signals were detected using SuperSignal 

West Pico Chemiluminescent Substrate (Thermo Scientific, Waltham, MA). The band 

intensities of phospho-protein were normalized against the respective total protein. The fold 

changes in phosphorylation following 5 or 20 min of activation was calculated using these 

normalized values.

Immunoprecipitation

Unstimulated or plate-bound anti-NKG2D mAb mAb (2.5 μg/ml)-activated NK cells were 

lysed using IP lysis buffer-containing Tris (pH 7.5, 20 mM), NaCl (150 mM), EDTA (1 

mM), EGTA (1 mM), Triton X100 (1%), sodium pyrophosphate (2.5 mM), beta-

glycerophosphate (1 mM), Sodium orthovanadate (1 mM), leupeptin (1 ug/ml) and PMSF (1 

mM). The lysate was centrifuged at 12,000 g for 10 min to remove debris. For 

immunoprecipitation, 300–500 μg of the lysate was incubated for 1 hour with 2 μg of the 

indicated antibody at 4° C. 20 μl of Protein G Plus agarose (Santa Cruz Biotechnology, 

Dallas, TX) was added and incubated overnight at 4° C. Following centrifugation, the 

supernatant was aspirated, and the beads were washed with the IP lysis buffer. SDS-sample 

buffer (6X, reducing, BP-111R, Boston BioProducts, Boston, MA) diluted to 1X 

concentration with the IP lysis buffer was added to the bead pellet and denatured at 95° C for 

10 min. The samples were electrophoresed using 10% SDS-PAGE gel.

Electrophoretic mobility shift assay for NF-κB and AP-1

IL-2-cultured NK cells (3 × 106) from WT and Mirc11-deficient mice were stimulated with 

anti- NKG2D mAb (2.5 μg/ml) for 40 min and then prepared for nuclear extracts. Nuclear 

extracts were incubated with 32P-labeled NF-κB or AP-1 probe (NF-κB probe: 5′-

AGTTGAGGGGACTTTCCCAGGC-3′; AP-1 probe: 5′-

CGCTTGATGACTCAGCCGGAA-3; Santa Cruz Biotechnology, Dallas, TX) for 15 min at 

room temperature, resolved on a 4 % polyacrylamide gel at 4° C, and exposed to X-ray film.

Preparation of cytoplasmic and nuclear extracts

IL-2-cultured NK cells (3 × 106) from WT and Mirc11−/− mice were stimulated with anti-

NKG2D mAb (2.5 μg/ml) for 40 min. The cells were collected and suspended in 100 ml 

cold buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 0.2 mM EDTA, 1 mM DTT, 3 mg/ml 

aprotinin, 2 mg/ml Pepstatin, and 1 mg/ml leupeptin). After incubation on ice for 15 min, 

Nonidet P-40 was added to a final concentration of 0.5 %. The mixtures were vortexed for 

10 sec and spun at 16,000 g for 30 sec. The supernatants were collected as the cytoplasmic 

extracts. The pellets were washed with Buffer A once and resuspended in 50 ml Buffer B 

(20 mM HEPES pH 7.9, 400 mM NaCl, 2 mM EDTA, 1 mM DTT, 3 mg/ml aprotinin, 2 

mg/ml Pepstatin, and 1 mg/ml leupeptin), followed by incubation on ice for 15 min. The 

mixtures were spun at 16,000 g for 5 min, and the supernatants were collected as the nuclear 

extracts.
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Flow cytometry

NK cells, stable cell lines or single cell preparations from spleen, lung, liver or BM were 

stained with fluorescent-labeled monoclonal antibodies (mAbs) in 1 % FCS-PBS as 

described. One million events were analyzed for each sample. Standard flow cytometry 

analyses were performed in LSR-II or MACSQuant instruments at the Blood Center of 

Wisconsin-Flow Cytometry Core Facility and analyzed with FACS Diva software (BD, 

Franklin Lakes, NJ) or FlowJo (Ashland, OR).

RNA isolation and quantitative analyses for the members of the Mirc11 cluster

For extraction of miRNAs, TRIzol (Invitrogen, San Diego CA) was used. DNase I-treated 

total RNA (8 ng) was subjected to qRT-PCR analysis using TaqMan miR Reverse 

Transcription Kit (Applied Biosystems, Foster City CA). The miR-23a, miR-24-2, and 

miR-27a were detected and quantified by using specific miRNA primers from Ambion. 

Expression levels of mature miRNAs were evaluated using comparative Ct method (2- ΔCt). 

Transcript levels normalized with small nucleolar RNA 202.

microRNA target prediction and luciferase reporter assay

Miranda (www.microrna.org/microrna/home.do) and TargetScan (www.targetscan.org) were 

used as a first and second source to identify potential targets for miR-23a, miR-24-2, and 

miR-27a. To validate that A20, Cblb, Itch, and Cyld are the targets of the Mirc11 cluster, 

binding site sequences of these target genes were cloned into the psiCHECK vector in 

HEK293T cells. HEK293T cells were then co-transfected with the luciferase reporter 

constructs with ten nmol/L of pre-miR-23a, pre-miR-24-2, pre-miR-27a, or control 

microRNA. Transfection was done using Lipofectamine 2000 (Invitrogen) in OPTIMEM 

(Invitrogen) medium. After 48 h, the cells were harvested, and the luciferase signals were 

measured with the Luciferase Reporter Assay System (Promega, Madison WI).

Lentiviral vectors and constructs

Lenti-miR vectors (System Biosciences, Palo Alto CA) were purchased and used to produce 

mature miRNA-23a, miRNA-24-2, and miRNA −27a individually or together from CMV 

promoter with GFP reporter to monitor miRNA-expressing cells. Transduced NK cells (105) 

were co-cultured with K562 (105) for four hours and intracellular IFN-γ expression has 

been quantified by flow cytometry.

Listeria monocytogenes infection

For infection of mice, Listeria monocytogenes was grown to stationary phase, aliquoted, 

tittered, and stored at 80° C. Before injection, bacteria were thawed on ice, grown to early 

exponential phase in brain-heart infusion broth, and diluted in PBS. The LD50 of L. 
monocytogenes strain 10403S is 2 × 105 CFU in C57BL/6 mice. For infections, a dose of 

104 or 2 × 104 was suspended in 200 µl of PBS and injected through retro-orbital of 8–12 

weeks old mice. Mice were monitored daily, and 48 or 72 h later were sacrificed for further 

experiments. Spleens were processed into single-cell suspensions for staining and flow 

cytometry as well as RNA extraction for RNA-seq experiment. Livers were processed with a 

tissue homogenizer, and tissue extracts were plated for CFU calculation.
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RNA sequencing

Total RNA was extracted from splenic CD3ε−NK1.1+ NK cells from WT and Mirc11−/− 

mice using Trizol before and after challenging them with 2 × 104 CFU of L. monocytogenes 
(n = 3/group), followed by poly-A-purification, transcription, and chemical fragmentation 

using Illumina’s TruSeq RNA library kit using the manufacturer’s protocol (Illumina Inc., 

San Diego, CA). Individual libraries were prepared for each NK cell preparation, indexed for 

multiplexing, and then sequenced either on NextSeq500 (Anti-NKG2D mAb activation) or 

an Illumina HiSeq2500 (NK cells derived following L. monocytogenes infections. The Trim 

Galore program (v0.4.1) was used to trim bases with a Phred quality score <20 [https://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/<https://

urldefense.proofpoint.com/v2/url?

u=https3A__www.bioinformatics.babraham.ac.uk_projects_trim5Fgalore_&d=DwQFAw&c

=aFamLAsxMIDYjNglYHTMV0iqFn3z4pVFYPQkjgspw4Y&r=S5gLYQA2eD6OkaEXHZ

Bgag&m=SrvltlssjduHvUOw7wzDOJA5YPyFgFxSh5PXKzAWTLQ&s=A49CtYVs5efaJJu

FDrNg3dKMJgiCPn-xEgLbqk_ZYiE&e=>] and only reads with a Phred quality score equal 

or higher than 20 were taken for analyses. The RSEM program function “rsem-prepare-

reference” (v1.3.0) was used to extract the transcript sequences from the mouse genome 

(Build GRCm38) (119) and to generate Bowtie2 indices (Bowtie2 v2.2.8) (120), followed by 

reading alignment using the “RSEM-calculate-expression” function. Differential expression 

analysis was performed using the Bioconductor package DESeq2 version 1.12.4 (121) to 

compute Log2 fold changes and false discovery rate-adjusted p-values. Statistical 

significance was determined at a false discovery rate threshold of 0.05. Data were analyzed 

for molecular and functional pathway enrichment using Ingenuity Pathway Analysis (IPA; 

Qiagen, Redwood City, CA, USA). IPA Informatics software tool was used by classifying 

the data set into gene ontology (GO) categories with a false discovery rate (FDR) of 0.01% 

based on biological process (BP) and molecular function (MF) categories with a minimum 

of two-fold change restriction. We interrogated a B-cell regulatory networks (http://

califano.c2b2.columbia.edu/networks/) with the gene expression profiles among stimulated 

WT and Mirc11−/− NK cells samples, to identify the regulon of each gene-of-interest. This 

network analysis was carried out using the R Bioconductor package DeMAND (https://

bioconductor.org/packages/release/bioc/html/DeMAND.html). The network analysis was 

carried out as the following: (1) estimation of the dysregulation of an edge in the human B-

cell regulatory network and (2) the estimation of the dysregulation of a gene.

B16F10 lung metastasis

B16F10 melanoma cells growing in log phase were harvested and suspended in PBS. 2 × 

105, or 106 cells were injected into mice through the retro-orbital or tail vein. Fourteen days 

later post-injection, the recipient mice were euthanized, 10 ml PBS was used for a right 

ventricular flush, and the lungs were excised. Each set of lungs were photographed, and the 

lung nodules were counted. For early B16F10 metastasis formation, 106 cells were injected, 

and the lungs were analyzed on day 7 of post-injection. For optimal metastasis, 2 × 105 

B16F10 cells were injected, and the lungs were analyzed on day 14 of post-injection. Tumor 

nodules in the lung were counted in a blinded manner. Lungs were fixed in 10% (v/v) 

neutral buffered formalin for 24–72 h. After fixing, tissues were dehydrated through graded 

ethanol, cleared with xylene, paraffin infiltrated (Sakura VIP5 automated tissue processor) 
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and embedded into tissue blocks. Tissue blocks were cut at 4 μm and mounted on poly-L-

lysine coated slides. Sections were deparaffinized with xylene, rehydrated, and stained with 

Hematoxylin and Eosin on an automated staining platform (Sakura Prisma). Stained slides 

were scanned using a Hamamatsu Slide scanner and viewed using NDPiView software.

Experimental data and statistical analysis

Total sample numbers were determined based on previous studies that used similar 

transgenic mouse models with comparable functional defects. Statistical analyses were 

performed using paired, two sample equal or unequal variance. Student’s t-test depending on 

the type of data. P values of ≤ 0.05 were considered significant. Normal distribution of 

sample variance was assumed on the basis of earlier studies with data sets similar to the 

current study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lack of Mirc11 significantly reduces NK cell-mediated cytokine production in vitro
(A and B) Intracellular IFN-γ is measured in IL-2 or IL-15-cultured NK cells from WT 

(n=3) and Mirc11−/− (n=3) mice after co-cultured with indicated target cell lines in E: T ratio 

of 1: 1.

(C) Quantitative analyses of cytokines and chemokines produced by WT (□, n=6)) or 

Mirc11−/− (■, n=6)) NK cells following activation with plate-bound antibodies to NKG2D, 

NCR1, CD137, CD244, and Ly49H receptors and in response to IL-12 and IL-18.

(D) Venn diagram demonstrating the number of genes that are differentially expressed (FDR 

< 0.05) in non-stimulated and anti-NKG2D mAb activated Mirc11−/− (n=3) NK cells 

compared to their corresponding WT (n=3) and the overlapping between those two gene sets 

from total RNA-seq analyses.

(E) Volcano plot demonstrating the overall alterations in the transcriptome of NK cells from 

Mirc11−/− (n=3) compared to WT (n=3) mice. The orange/red dots represent genes that are 

significantly increased, while the aqua/dark blue dots represent genes that are significantly 

decreased in Mirc11−/− NK cells compared to the corresponding WT counterparts. We 

plotted all the genes with –Log10 (p values) greater than 80 at the Y-axis equal to 80.

(F) Heatmap derived from RNA-seq of IL-2-cultured NK cells from WT (n=3) and 

Mirc11−/− (n=3) that were stimulated with anti-NKG2D mAb. Shown are genes of 

chemokines and cytokines derived from NK cells.

Bar graphs represent the mean with the standard deviations. We analyzed the data using 

unpaired t-test (p-value<0.05 = *, < 0.01 = **, <0.001 =***).
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Figure 2. Mirc11 cluster is obligatory for NK cell-mediated in vivo clearance of Listeria 
monocytogenes
(A) Relative expression of members of the Mirc11−/− cluster (miR-23a, miR-27a, and 

miR-24-2) expression in NK cells from the WT mice (n=3) following L. monocytogenes 
infection.

(B) WT (n=9) and Mirc11−/− (n=9) mice were infected with 2 × 104 CFU of L. 
monocytogenes, and 96 hours later spleens were harvested to quantify IFN-γ production in 

NK cells using flow cytometry.

(C) Quantification of bacterial burden in the liver indicates an inability of Mirc11−/− mice 

(n=9) to clear L. monocytogenes compared to WT mice (n=9). Bacterial burden from 

individual mice is shown.

(D and E) Mixed bone marrow chimerism demonstrates a cell-intrinsic role for the Mirc11 
cluster. Bone marrow cells from WT (CD45.1+) and Mirc11−/− (CD45.2+) mice were mixed 

in equal ratio and injected into irradiated Rag2−/−γc
−/− mice (n=5). Five weeks later, mice 

were infected with 2 × 104 CFU of L. monocytogenes. 48 h later spleens were harvested and 

analyzed for total NK cells number (D) and percent IFN-γ+ NK cells (E) by flow cytometry 

among NK cells from WT (NK1.1+CD3− CD45.1+) or Mirc11−/− mice (NK1.1+CD3− 

CD45.2+).
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(F) Venn diagram demonstrating the number of genes that are differentially expressed (FDR 

< 0.05) in freshly isolated NK cells from Mirc11−/− mice (n=3) with or without L. 
monocytogenes infection compared to fresh NK cells from infected and non-infected WT 

mice (n=3).

(G) Volcano plot demonstrating the overall alterations in the transcriptomic profiles of NK 

cells from Mirc11−/− (n=3) compared to that of WT mice (n=3). The orange/red dots 

represent genes that are significantly increased, while the aqua/dark blue dots represent 

genes that are significantly decreased in NK cells from Mirc11−/− compared to the 

corresponding WT mice. We plotted all the genes with –Log10 (p values) greater than 80 at 

the Y-axis equal to 80.

(H) RNA-seq heat map analyses of freshly isolated NK cells from Mirc11−/− mice with 

(n=3) or without (n=3) L. monocytogenes infection compared to their corresponding WT 

controls (n=3,3). Shown are transcripts of cytokines and chemokines either produced by or 

relevant to NK cells functions.

(I) Pulmonary pseudometastases in the lungs following the intravenous injection of 2 × 105 

B16F10 melanoma cells in the recipient mice. Left panels, freshly isolated, one 

representative lung of WT (n=4) and Mirc11−/− (n=4) mice, isolated 11 days following 

tumor challenge. Middle panels, Hematoxylin and Eosin-stained lung sections from WT and 

Mirc11−/− mice. Right panels, magnified portions of lung sections shown in the middle 

panels (magnification, 100×).

(J) Quantification of lung nodules in tumor-challenged mice. WT (n=6) and Mirc11−/− (n=8) 

mice were injected intravenously with either 2 × 105 or 106 B16F10 cells, and the lungs 

were harvested 14 or 7 days, respectively. Double-blinded counting was employed to 

quantify the total number of tumor nodules in the lung lobes of each mouse, which are 

shown.

(K) Relative expression of members of the Mirc11 cluster (miR-23a, miR-27a, and 

miR-24-2) in NK cells isolated from lungs of WT mice (n=3) challenged with 2 × 105 

B16F10 melanoma cells.

The data presented is a compilation of three independent experiments showing the mean 

with standard error. Data were analyzed using unpaired t-test (p-value < 0.05 = *, < 0.01 = 

**, < 0.001 =***). Mann-Whitney U-test was used for statistical analyses of bone marrow 

chimerism.
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Figure 3. Qualitative alterations in the potential target transcripts of Mirc11 cluster
(A) Venn diagram demonstrating the number of total target input that can be modulated by 

miR-23a, miR-27a and miR-24-2 and the overlapping targets.

(B) Venn diagram demonstrating the number of total target genes that are expressed in NK 

cells and modulated by miR-23a, miR-27a and miR-24-2 and the overlapping targets.

(C, D) Venn diagram demonstrating the number of total target genes in freshly isolated or L. 
monocytogenes challenged NK cells which can be modulated by miR-23a, miR-27a and 

miR-24-2 and, the overlapping targets.

(E, F, G) Hierarchical clustering of all potential target genes of miR-23a, miR-27a and 

miR-24-2 in NK cells from L. monocytogenes challenged mice.

TargetScan 7.1-based in silico analyses was used to identify the set of target mRNAs that are 

present in the total genome-wide RNA sequence analyses of NK cells from WT and 

Mirc11−/− mice that were non-challenged or challenged with L. monocytogenes. The 

algorithm to identify the targets were based on ‘the aggregate probability of conserved 

targeting’ (PCT). In silico predictions that matched the 3′ UTR of the transcripts and their 

orthologs based on the UCSC whole-genome alignments were identified.
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Figure 4. Mirc11 cluster targets NF-κB and AP-1-mediated gene transcriptions
(E) Hierarchical clustering of NF-κB target genes that are differentially expressed between 

NK cells derived from the WT and Mirc11−/− mice using an unpaired t-test following L. 
monocytogenes infection.

(F) Hierarchical clustering of AP-1 target genes that are differentially expressed between 

NK cells derived from the WT and Mirc11−/− mice using an unpaired t-test following L. 
monocytogenes infection.

Gene sets were identified using IPA Informatics software through classification into gene 

ontology (GO) categories with a false discovery rate (FDR) of 0.01% based on biological 

process (BP) and molecular function (MF) categories with a minimum of two-fold change 

restriction. RNA-seq data from WT (n=3,3) and Mirc11−/− (n=3,3) are compared and shown.
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Figure 5. Mirc11 cluster targets NF-κB and AP-1-mediated gene transcriptions
(A) Nuclear translocation of NF-κB and AP-1 were compared in NK cells derived from WT 

(n=3) and Mirc11−/− (n=3) mice following activation with plate-bound anti-NKG2D mAb 

(A10, 2.5 μg/ml). Gel-shift data presented is a representative of three independent 

experiments.

(B) The gene expression profiles of NK cells from in vivo L. monocytogenes-challenged 

mice (n=3,3) and in vitro anti-NKG2D mAb-activated (n=3,3) were compared and the 

number of differentially expressed (FDR < 0.05) and shared transcripts are shown in Venn 

diagrams.

(C) Differentially expressed known target transcripts of NF-κB and AP-1 in the absence of 

Mirc11 that are shared between NK cells from in vivo L. monocytogenes-challenged mice 

(n=3,3) and in NK cells that were activated in vitro with anti-NKG2D mAb (n=3,3). Data is 

presented in a Log2–Log2 plot to identify shared common target transcripts. The orange/red 
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dots represent genes that are significantly increased, while the aqua/dark blue dots represent 

genes that are significantly decreased in Mirc11−/− NK cells compared to the corresponding 

WT counterparts. Circles with black border represent genes targeted by NF-κB and circles 

with red border represent genes that are targeted by AP-1.

(D) Gene Set Enrichment Analysis (GSEA) was used to show and compare the set of gene 

targets that are regulated downstream of NF-κB and TNF-α in NK cells that were anti-

NKG2D mAb-activated (n=3,3) or NK cells derived from L. monocytogenes-challenged WT 

(n=3) and Mirc11−/− (n=3) mice.

The data presented is a compilation of three independent experiments showing the mean 

with standard error. Data was analyzed using an unpaired t-test (p-value < 0.05 = *, < 0.01 = 

**, < 0.001 =***).
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Figure 6. Mirc11 targets members of E3 ligases in NK cells from mice and human
(A) Expression of E3 ligases A20, Cbl-b, Itch, Cyld in freshly isolated NK cells from WT 

(n=2) and Mirc11−/− (n=2) mice following L. monocytogenes infection.

(B) Expression of A20, Cbl-b, Itch, Cyld E3 ligases in IL-2-cultured NK cells from WT 

(n=3) and Mirc11−/− (n=3) mice following activation with plate-bound anti-NKG2D mAb at 

indicated time points.

(C) Predicted interactions between the 3′ UTR of transcripts encoding A20, Cbl-b, Itch, 

Cyld containing target sequences and the members of the Mirc11 cluster. Sequences of 

target mRNA and miRNA were aligned using ‘force-directed RNA’, FORNA program 

available at http://rna.tbi.univie.ac.at/forna/.

(D) Dual luciferase assay measuring the activity miR-23a, miR-24-2, miR-27a, or control 

mimetics (CM) as a ratio of Renilla to Firefly luciferase on the 3’ UTR of select target genes 

in HEK293T cells two days after transfection. Data are normalized to the control 3’ UTR 

plus no miRNA condition. Transfection was done in triplicates, and the average with 

standard deviation is shown.

(E) Forced expression of the members of the Mirc11 cluster in human NK cells enhances 

IFN-γ production. IFN-γ production by primary human NK cells transduced with pre-miR 

lentiviral vectors for human miR-23a, miR-24-2, miR-27a or CM. 48 hours following 

transduction NK cells were co-cultured with K562 cells, and the percent intracellular IFN-γ
+ CD3ε−CD56+ NK cells were enumerated. NK cells from a total of four normal healthy 

individuals were used.

The data presented is a compilation of three independent experiments showing the mean 

with standard error. Data was analyzed using unpaired t-test (p-value < 0.05 = *, < 0.01 = 

**, < 0.001 =***).
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Figure 7. Lack of Mirc11 reduces K63- and increases K48-polyubiquitination of TRAF6
(A) IL-2-cultured NK cells from WT (n=2) or Mirc11−/− (n=2) mice were activated with 

plate-bound anti-NKG2D mAb for 15 min, lysed, TRAF6 was immunoprecipitated, and the 

extent of K63 polyubiquitination was analyzed by immunoblotting.

(B) Immunoprecipitated TRAF6 was analyzed for the extent of K48 polyubiquitination was 

analyzed by immunoblotting (n=2).

(C) IL-2-cultured NK cells from WT (n=2) or Mirc11−/− (n=2) mice were activated with 

plate-bound anti-NKG2D mAb for 15 min, lysed, RIP1 was immunoprecipitated, and the 

extent of K63 polyubiquitination was analyzed by immunoblotting.

(D) IL-2-cultured NK cells from WT (n=2) or Mirc11−/− (n=2) mice were activated with 

plate-bound anti-NKG2D mAb for 15 min, lysed, TRAF2 was immunoprecipitated, and the 

extent of K63 polyubiquitination was analyzed by immunoblotting.

(E) IL-2-cultured NK cells from WT (n=2) and Mirc11−/− (n=2) mice were co-incubated 

with activated with anti-NKG2D mAb in the presence of either recombinant mutant K63 or 

mutant K48 ubiquitin proteins. 18 hours following activation, supernatants were analyzed 

for the production of indicated cytokines and chemokines.

The data is a compilation of three independent experiments plotting the mean with the error 

bars representing the standard error of the mean analyzing the results using unpaired t-test 

(p-value<0.05 = *, < 0.01 = **, <0.001 =***).
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