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Abstract 

Mechanical interactions between muscle and bone have long been recognized as integral to bone 

integrity. However, few studies have directly measured these interactions within the context of 

musculoskeletal disease. In this study, the osteogenesis imperfecta murine model (oim/oim) was 

utilized because it has both reduced bone and muscle properties, allowing direct assessment of 

whether weakened muscle is able to engender strain on weakened bone. To do so, a strain gauge 

was attached to the tibia of healthy and oim/oim mice, muscles within the posterior quadrant of 

the lower hind limb were stimulated, and bone strain during muscle contraction was measured. 

Results indicated that the relationship between maximum muscle torque and maximum 

engendered strain is altered in oim/oim bone, with less torque required to engender strain 

compare to wild-type and heterozygous mice. Maximum muscle torque at 150 Hz stimulation 

frequency was able to engender ~1500 µɛ in oim/oim animals. However, even though the strain 

engendered in the oim/oim mice was high relative to historical bone formation thresholds, the 

maximum strain values were still significantly lower than that of the wild-type mice. These 

results are promising in that they suggest that muscle stimulation may be a viable means of 

inducing bone formation in oim/oim and potentially other disease models where muscle 

weakness/atrophy exist. 

 

Keywords: Bone-muscle interactions, Biomechanics, Exercise, Osteogenesis imperfecta, 

Sarcopenia 
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1. Introduction 
Muscle and bone are intricately linked, both physically and chemically. From a strictly 

mechanical perspective, muscles attach to bone and use these bone attachment sites as the lever 

arms by which they enable movement. In fact, the relatively small distance between the muscle 

attachment site and the joint creates an unfavorable lever arm, implying that during movement, 

the muscle must exert a much larger force on bone compared to ground reaction forces. Lu et al. 

found that less than 30% of the forces transmitted through the femur during normal gait were 

derived from the ground reaction force, with a much higher 70% driven from muscle 

contraction.(1) Similarly, Wehner et al. calculated the internal loads in the human tibia during gait 

and found that the forces were up to 4.7 times the body weight.(2) For this reason, some have 

suggested that muscle may be a primary means of mechanically stimulating bone.(3) 

Mechanical loading has been well-established as integral to maintaining bone integrity. 

Below a strain threshold, bone loss will occur while above a different strain threshold, bone 

formation will occur.(4,5) Given the importance of mechanical loading to bone health, and 

considering the ability of muscle to engender significant forces on bone, it follows that muscle 

health is likely also critical to bone health. Indeed, correlative relationships between muscle and 

bone have been well-documented.(6,7) For example, in situations of long-term bedrest, low bone 

mass and poor muscle tone occur together.(8) Similarly, osteoporosis is often associated with 

sarcopenia.(9,10) A number of studies have even shown that skeletal muscle mass can be a 

predictor of bone mass(11) or bending stiffness.(12) Interestingly, these correlations also occur with 

genetic diseases that primarily impact only one aspect of the musculoskeletal system (i.e. directly 

impacting only bone or only muscle).  

Osteogenesis Imperfecta (OI) is a bone disease driven by a mutation to the genes 

involved in the Type I collagen synthesis pathway.(13) Patients with OI show skeletal weakness, 
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ranging from mild to severe to perinatal lethal.(14) Despite OI being considered a “bone disease,” 

muscle is often also impacted in OI patients,(15-18) with the degree of impact dependent on the 

severity of the disease.(19) In the preclinical realm, one commonly used mouse model of OI is the 

Osteogenesis Imperfecta Murine (oim/oim) model. Oim/oim results from a single G nucleotide 

deletion in the COL1A2 gene. This change causes a frameshift in the final 48 amino acids at the 

C terminus, resulting in an extra amino acid which renders the α2 chain non-functional. The end 

result is the accumulation of homotrimeric collagen instead of the normal heterotrimeric 

molecule.(20) In its homozygous form, oim/oim mice show significant skeletal weakness and 

spontaneous fractures, while the heterozygous form is milder.(20-24) Also similar to the human 

condition, oim/oim mice have muscular weakness.(25) In the homozygous mice, muscle size and 

strength are significantly reduced, while the heterozygous mice show a milder, non-significant 

reduction.(25) 

Given that muscle and bone are both impacted by OI, it is unclear how efficiently 

weakened muscle is able to engender strain on the bone. In other words, if only muscle were 

affected, then weaker muscle would imply lower forces (and thereby lower strain) on bone. In 

contrast, if only bone were affected, then the muscle force would remain the same, but the bone 

strain would presumed to be increased because the bone is weaker. To address this uncertainty, 

we attached a strain gauge to the anteromedial mid-diaphysis of the tibia of both wild-type and 

oim/oim mice and then conducted in vivo muscle stimulation to induce plantar flexion. This 

setup enabled us to collect muscle ankle torque and bone strain simultaneously. In addition, ex 

vivo morphological analyses of bone and muscle by micro-computed tomography (CT) were 

used to assess bone mass and muscle area. Our hypothesis was that the muscle-bone unit would 

find an equilibrium such that engendered bone strain would be conserved across mouse strains. 
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2. Methods 

2.1 Experimental Overview 

Wild-type (WT), heterozygous (Het), and homozygous (oim/oim) oim mice were bred in-

house and maintained on a C57BL/6J background.(26) Mice were group housed in a facility with 

12-hour light/dark cycles and access to food and water ad libitum. At 16 weeks of age, male 

mice (n= 7-9/group; Table 1) from each genotype underwent surgery to attach a strain gauge to 

the anteromedial portion of the mid-diaphysis of the right tibia. After attachment of the gauge, 

but while still under anesthesia, the mouse was moved to a muscle testing machine and the tibial 

nerve was stimulated to induce plantarflexion. After collection of torque and strain data, the 

mouse was euthanized. The strain gauge was manually checked to ensure firm attachment, and 

then the right limb was dissected out, wrapped in saline, and stored at -20 °C until imaging by 

micro-computed tomography (micro-CT). This initial imaging session was used to assess any 

obvious bone abnormalities (broken or bent bones, etc.) and to estimate muscle cross-sectional 

area. Soft tissue was then dissected away, and the tibia was imaged again by micro-CT for bone 

structural information. All procedures were conducted with prior approval from Indiana 

University School of Medicine IACUC. 

2.2 Strain Gauge Attachment 

Mice were anesthetized with 1-3% isoflurane and chemical depilatory cream was applied 

to the lower right hind limb to remove hair. An incision was then made through the skin and 

fascia, exposing the anteromedial portion of the midshaft tibia. The surface of the bone was 

degreased, and a single-element strain gauge with gauge dimensions of 2.54 mm L x 0.51 mm W 

(EA-06-015DJ-120, Vishay Precision Group, Shelton, CT) was aligned with the long axis of the 

tibia and attached using a cyanoacrylate-based adhesive (Loctite Super Glue, Henkel-Adhesives, 
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Düsseldorf, Germany). During strain measurement, the gauge was attached to a strain gauge 

conditioner (2100 Signal Conditioning Amplifier System, Micro-Measurements, Vishay 

Precision Group, Shelton, CT) via a quarter-bridge completion. Calibration to ensure accurate 

conversion from volts to strain was performed by adjusting the signal gain based on the gauge 

factor, per manufacturer instructions. 

2.3 Muscle Stimulation 

Isometric muscle stimulation was performed using an in vivo setup (Aurora Scientific 

Inc., Ontario, Canada). The mouse’s foot was taped to the machine’s footplate (a torque 

transducer) which was used to measure ankle torque during plantarflexion. Two sterile shielded 

monopolar needle electrodes were inserted on either side of the tibial nerve, slightly proximal to 

the mid-calf level, and were adjusted to ensure maximum twitch response. This setup of the 

electrodes primarily stimulates the gastrocnemius and soleus muscles to induce plantarflexion, 

but also has some contributions from the plantaris, flexor hallucis longus, flexor digitorium 

longus, and tibialis posterior. The muscles were then stimulated (0.5 msec pulse width), 

beginning at 25 Hz and extending to 300 Hz in 25-Hz increments. The muscles were stimulated 

at each frequency for 200 msec, followed by 45 seconds of rest before moving to the next 

frequency. During stimulation, both muscle torque and bone strain were recorded (Figure 1). 

Data were analyzed using a custom Matlab script to determine maximum torque and strain at 

each stimulation frequency. In addition, the torque-time slope at each stimulation frequency was 

calculated by fitting a linear regression to the maximum rising slope of each torque-time graph. 

2.4 Micro-Computed Tomography (micro-CT) 

Whole right limbs were scanned by high resolution micro-CT (Skyscan 1176; Bruker, 

Kontich, Belgium) at an 8.4 µm resolution (V = 50 kV; I = 500 µA; Step size = 0.9°; no 
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averaging).(27) Projection images were used to assess the presence of broken bones and/or 

calcified tendon. After reconstruction and rotation, a 1-mm region of interest at the tibial mid-

diaphysis was used to estimate total soft-tissue volume and bone volume. These volumes were 

converted to averaged areas by dividing the volume by the length of the region of interest (1 

mm). Muscle area was then calculated as the difference between the total soft-tissue area and the 

area of the bone and marrow. 

The soft tissue was then removed in order to acquire a more crisp image set, and the tibia 

was scanned again by high resolution micro-CT (Skyscan 1172; Bruker, Kontich, Belgium) 

using the following parameters: 10 µm resolution, 60 kV tube voltage, 167 μA current, 0.7-

degree increment angle, and 2-frame averaging. To convert gray-scale images to mineral content, 

hydroxyapatite calibration phantoms (0.25 and 0.75 g/cm3 CaHA) were also scanned. After 

reconstruction and rotation (nRecon and DataViewer, Bruker), 1-mm regions of interest were 

selected in the proximal metaphysis (Supplemental Text and Figure 1) and mid-diaphysis for 

analysis.  In the mid-diaphysis, the cortical shaft was analyzed using a custom Matlab script 

(MathWorks, Inc. Natick, MA) to determine areas (total cross sectional area and marrow area), 

periosteal and endocortical bone surface, maximum principal moment of inertia, and tissue 

mineral density. 

2.5 Statistical Analysis 

All statistics were performed in Prism (Graphpad Software, San Diego, CA). For torque 

and strain data, a two-way ANOVA was performed to assess the main effects of stimulation 

frequency and genotype. A post-hoc Tukey HSD test was then performed at each stimulation 

frequency to assess individual differences between genotypes (p<0.05). For CT data, we used a 

one-way ANOVA with a post-hoc Tukey HSD test to determine effects of genotype (p<0.05). 
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For the strain-torque regression, a linear regression was used to assess correlations between 

variables. Comparison of the linear regression slopes was assessed by ANCOVA with post-hoc 

Tukey HSD test (p<0.05). All data are presented as mean ± standard deviation. 

3. Results  

3.1 General Animal Information 

Animal numbers for each group are shown in Table 1. One oim/oim mouse had a broken 

right tibia at the time of surgery and one Het mouse showed a large area of woven bone. Both 

were excluded from all analysis. In addition, difficulties with strain gauge attachment such as a 

non-secure gauge, off-axis placement, or a break in the wire or gauge precluded some mice from 

strain analysis (Table 1). Note that the mice with strain gauge attachment errors were still 

included in other analyses (micro-CT and muscle torque). 

 
Table 1: Number of animals per group 

 WT HET OIM 
Initial Group Numbers 8 9 7 
Broken Tibia or Woven 
Bone 
(excluded from all analysis) 

0 1 1 

Poor Strain Gauge Placement 
(excluded from strain) 3 2 2 

 
A significant difference in body weight was noted for oim/oim (18.7±2.6 g) compared to 

both Het (28.4±2.1 g; p<0.001) and WT (28.4±1.7 g; p<0.001) mice. Tibial length was also 

significantly lower in oim/oim (16.2±0.8 mm) compared to Het (17.8±0.4 mm; p<0.001) and WT 

(18.1±0.2 mm; p<0.001). There were no significant differences in weight or tibial length 

between WT and Het.  

3.2 Muscle Contractile Force and Cross Sectional Area  
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Measurements of maximum torque at each stimulation frequency showed significant 

muscle weakness in oim/oim in all but the lowest stimulation frequency (Figure 2A). To further 

explore maximum torque during tetanic contraction, data was plotted at the 150 Hz stimulation 

frequency (Figure 2B-C). Maximum torque was significantly lower in oim/oim by 77% 

(p<0.001) and 74% (p<0.001) compared to the WT and Het, respectively (Figure 2B). There was 

also a marked suppression in the rising slope of the torque-time curves in the Het compared to 

the WT (p=0.03) and in the oim/oim compared to both the WT (p<0.001) and Het (p<0.001) 

(Figure 2C). Similar to the functional muscle assessment, muscle cross-sectional area estimated 

by micro-CT indicated that oim/oim had 46% (p<0.001) and 49% (p<0.001) less muscle area 

compared to WT and Het (Figure 2D). No significant differences were noted between WT and 

Het for any muscle parameters. 

3.3 Cortical Bone Structural Parameters 

Oim/oim mice also had significantly smaller bones compared to both WT and Het 

(Figure 3A-C). Oim/oim showed a 24% lower cross-sectional area compared to both WT and 

Het (both p<0.01; Figure 3D). A similar difference was observed in marrow area (-22% vs WT, -

19% vs Het; both p<0.01; Figure 3E). Measurements of periosteal and endocortical perimeters 

corroborated these results, with both showing significantly smaller values in oim/oim mice 

(Figure 3G-H). This smaller geometry led to 43% and 46% lower maximum moment of inertia in 

oim/oim compared to WT (p<0.05) and Het (p<0.01), respectively (Figure 3F). Similarly, 

minimum moment of inertia was 45% and 43% lower in oim/oim compared to WT (p<0.01) and 

Het (p<0.01), respectively. Interestingly, oim/oim had significantly higher tissue mineral density 

than WT (p<0.01) and Het (p<0.05), suggesting increased mineralization (Figure 3I). No 

significant differences were noted between WT and Het for any cortical parameters. 
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3.4 Bone Strain and Torque-Strain Interaction 

Despite the significant muscle weakness noted in the oim/oim mice, the engendered 

tensile strain during maximum tetanic contraction at the 150 Hz stimulation frequency was 

1488±416 µɛ, which is within the range of strains shown to induce a bone formation response in 

this age of mouse.(4,5) This value was 41% lower compared to WT (p=0.03). Het values of strain 

induced at 150 Hz were intermediate and not significantly different from either WT or oim/oim 

(Figure 4B). Similar results were observed at the other frequencies, with all but the lowest two 

frequencies showing significantly lower strain in the oim/oim mice compared to wild-type mice 

at a matched frequency (Figure 4A). 

To further demonstrate the relationship between bone and muscle, bone strain per unit of 

muscle torque was calculated. Oim/oim had significantly higher strain per torque compared to 

both WT and Het at all frequencies (Figure 4C). At 150 Hz stimulation frequency, oim/oim had a 

441% greater ratio than WT and a 558% greater ratio than Het (both p<0.001; Figure 4D). 

Similarly, when all stimulation frequencies and mice were plotted to examine correlations 

between strain and torque (Figure 4E), oim/oim had a significantly steeper slope than either WT 

or Het (both p<0.001). 

3.5 Tendon Calcification and Broken Calcaneus 

As assessed by CT (Figure 5), oim/oim had the greatest number of mice with 

calcification of the Achilles tendon, though calcification was also observed in some Het. In 

addition, over half of the oim/oim had a broken right calcaneus, with large callus formation 

indicating a fracture that had occurred before the muscle stimulation and that had started to heal. 

These mice (n=4) had 76% lower maximum muscle torque than oim/oim with intact calcaneus 

(n=2). Given that the transmission of force from the muscle goes through the tendon and 
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calcaneus, the tendon and calcaneus are likely important contributors to muscle-bone 

interactions. 

4. Discussion 

Mechanical interactions between muscle and bone have long been recognized as integral 

to bone integrity. However, few studies have directly measured these interactions within the 

context of musculoskeletal disease. In this study, we attached a strain gauge to the tibia of 

healthy and OI mice and measured bone strain during muscle contraction. Our primary results 

showed that oim/oim muscle was able to engender an average of ~1500 µɛ on bone despite 

muscle weakness. Even so, this strain value was significantly lower than the ~2500 µɛ 

engendered by WT mice. 

The first finding was that the oim/oim mice required less muscle torque to engender a 

given bone strain, as may be expected given the  reduction in bone properties observed in this 

model. Previous studies have shown that oim/oim have reduced bone mass and bone mechanical 

properties, including stiffness.(24,28-30) Although we did not measure mechanical properties in the 

current study, measurements of cortical and cancellous bone geometry and density 

(Supplemental Text and Figure 1) indicated that oim/oim animals had significantly smaller bones 

with a drastically lower cross sectional moment of inertia. Moment of inertia is a measure of a 

bone’s structural ability to resist bending. Therefore, although moment of inertia is not a direct 

mechanical measurement, a lower moment of inertia would indicate that a bone can more easily 

deform under a given load, similar to what has been reported previously.  

The reduction in bone properties was paired with reductions in estimated muscle cross-

sectional area and function. Muscle weakness is often observed clinically,(16-18,31) and can even 

be considered the presenting sign of OI.(32,33) A study by Veilleux et. al showed that OI Type I 
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patients had lower average peak force, even after normalizing to muscle cross-sectional area. 

Similar results were noted in the pre-clinical realm, with Gentry et al. showing that the 

maximum contractile force and specific contractile force were lower in the plantaris, 

gastrocnemius, and tibialis anterior of oim/oim mice.(25) In the current study, oim/oim mice had 

reduced maximum muscle torque during plantarflexion and lower estimated muscle cross-

sectional area.  

Despite the significant muscle weakness, and presumably due to oim/oim bone’s 

increased propensity to bending, the strain engendered on the oim/oim bone during maximum 

muscle contraction was above historical osteogenic strain thresholds,(4,5) suggesting at least 

partial conservation in the muscle-bone relationship, even in disease. The implication of this is 

that muscle stimulation, although lower than normal, may be able to mechanically induce bone 

formation in OI. This idea—using muscle to improve OI bone—has been previously explored. In 

a study by Oestreich et al., myostatin deficiency in Het mice resulted in improved bone 

strength.(34) Similarly, administration of a soluble activin receptor 2B to increase muscle mass in 

Het also increased bone mass.(35) Our study suggests that the improvements to bone may be 

driven—at least partially—by the mechanical loading of the bone during muscle contraction.  

Although strain levels in the oim/oim were high relative to historical osteogenic strain 

thresholds, they were still lower than WT, suggesting that even at maximum muscle contraction, 

oim/oim would likely have a reduced bone formation effect. In other words, as Sugiyama et al. 

demonstrated, the bone’s response to mechanical stimulation is linear within the anabolic strain 

region.(4) Thus, even though the strain level is anabolic in WT, Het, and oim/oim, the bone 

formation effects would likely be diminished in oim/oim. Similarly, oim/oim may have to exert 

greater forces relative to their maximum contractile force in order to have a desired effect. This 
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finding suggests that it may require more “effort” to induce a bone formation response in 

oim/oim than in WT. For example, if we consider ~1000 µɛ as the threshold for bone 

formation,(4,5) then a WT mouse—which engenders a maximum of ~2500 µɛ on bone—may only 

have to exert ~40% of its maximum muscle force in order to be above the strain threshold for 

bone formation. In contrast, an oim/oim mouse—which only engenders a maximum of ~1500 µɛ 

on bone—may need to exert nearly 70% of its maximum muscle force to have the same effect. 

Thus, even though oim/oim had both weaker muscle and weaker bone, the relationship between 

muscle and bone was not fully conserved in this model in that the oim/oim have to exert more 

“effort” to obtain the same strain response. 

It is also important to note that, during standard locomotion, a person rarely exerts 

maximum muscle force. We chose muscle stimulation in the current experiment because it 

afforded greater control over muscle contraction properties, but care must be taken in the 

interpretation of our data. Maximum contraction during muscle stimulation is much higher than 

observed during normal activity. For example, strain values during walking in healthy mice have 

been reported as approximately 200 µɛ of tension,(36) which is much lower than the ~2500 µɛ 

engendered in the WT mice during maximum muscle contraction. Despite these differences, the 

fact that maximum muscle stimulation can cause ~1500 µɛ of tensile strain in oim/oim is 

encouraging, and would suggest an interesting avenue for further exploration. 

One important observation in this study was that the Achilles tendon had some 

calcification in most of the oim/oim and half of the Het animals. Previous work have also noted 

Achilles tendon calcification in oim/oim,(37,38) and studies of oim/oim tail tendon have indicated 

that oim/oim had reduced mechanical integrity(39) and altered structure.(40,41) In our study, Het 

mice with calcification of the tendon as determined by the bright streak in the micro-CT had a 
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non-significant reduction in maximum muscle torque. In addition, the calcaneus in nearly half of 

the oim/oim was broken, but the presence of a callus indicates that the break occurred prior to 

muscle stimulation. As might be expected, the mice with a broken calcaneus had a much lower 

maximum muscle torque compared to oim/oim with intact bone. Clearly, the tendon and 

calcaneus are important to force transmission from muscle to bone. Although we did not explore 

this further, additional research into the role of the tendon and calcaneus are warranted.  

A few limitations should be noted. First, this study only assessed mechanical interactions 

of muscle and bone, and did not explore chemical interactions, even though those are likely 

impacted as well. A growing body of literature has indicated the importance of muscle-bone 

molecular and biochemical interactions, as demonstrated by an increased number of reviews on 

the topic.(42-44) However, we have limited our scope to purely mechanical interactions, as could 

be assessed by strain gauging. Second, we also used imaging to estimate muscle cross-sectional 

area, which does not allow us to differentiate skeletal muscle, connective tissue, and adipose. 

Our estimates show differences among groups that are consistent with previous literature using 

more traditional histological measures. Lastly, the OI murine model used in this study has an α2 

chain mutation, which is less common in humans. In addition, presence of spontaneous fractures 

in the long bones limits the mice available for studies. Despite these limitations in the mouse 

model, oim/oim does show both muscle and bone weakness as is common in human patients and 

is the primary reason this model was chosen. 

In summary, we have demonstrated that oim/oim mice require less muscle torque to 

engender strain on bone. As a result, although the oim/oim have extreme muscle weakness, 

maximum muscle contraction was still able to engender ~1500 µɛ. This engendered strain was 
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still lower in oim/oim than in the WT. Even so, these results are promising in that they show that 

muscle stimulation induces strains above historical bone formation thresholds in oim/oim. 
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Figure Legends: 

Figure 1: Example torque (A-C) and strain (D-F) curves during muscle stimulation of WT, Het, 

and oim/oim at 25 Hz (A,D), 50 Hz (B,E), and 150 Hz (C,F) stimulation frequency. Note tetanic 

muscle contraction occurred by 150 Hz. 

Figure 2: Functional and area-based muscle analysis indicated significant muscle weakness in 

oim/oim, but not Het. A) Frequency-based analysis showed reduced maximum torque in oim/oim 

at all but the lowest stimulation frequency (25 Hz). B) Maximum torque at a single frequency 

(150 Hz) further demonstrates this reduction. C) Interestingly, we also noticed that the rising 

torque-time slope was reduced, with oim/oim having the shallowest slope and Het having an 

intermediate slope. D) CT analysis of muscle area also indicated muscle weakness in oim/oim. In 

panel A, “&” indicates comparison between WT and oim/oim and “#’ between Het and oim/oim 

(p<0.001 for both). In panels B-D, *p<0.05, **p<0.01, ***p<0.001 with the bars showing 

comparisons. 

Figure 3: Example cortical micro-CT images at the mid-diaphysis of A) WT, B) Het, and C) 

oim/oim. Oim/oim had smaller bones as indicated by D) reduced cross-sectional area, E) marrow 

area, G) periosteal bone surface and H) endocortical bone surface. F) Together, these resulted in 

a reduced cross-sectional maximum moment of inertia, suggesting that oim/oim bones have 

reduced resistance to bending. I) Tissue mineral density was increased in oim/oim. White scale 

bars: 0.5 mm. *p<0.05, **p<0.01, ***p<0.001 with the bars showing comparisons. 

Figure 4: A) Maximum strain was reduced in oim/oim at stimulation frequencies greater than 50 

Hz. B) Maximum strain at a single frequency (150 Hz) further demonstrates this reduction. C) 

After normalizing strain to torque, oim/oim showed higher strain relative to toque at all 

frequency, and D) further demonstrated at 150 Hz. E) Similarly, grouping all frequencies and all 
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mice of a genotype together also demonstrates a higher strain vs torque slope in oim/oim. In 

panels A and C, “&” indicates comparison between WT and oim/oim and “#” between Het and 

oim/oim. In panels B and D, *p<0.05, **p<0.01, ***p<0.001 with the bars showing 

comparisons. 

Figure 5: Micro-CT image showing calcified tendon and broken calcaneus. The percentage of 

each genotype with either a calcified tendon or broken calcaneus are also shown. 
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