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Abstract 

Background: Apolipoprotein E (APOE) ε2, ε4 and brain-derived neurotrophic factor (BDNF) Val66Met 

alleles have been associated with cognition. Associations of these alleles with cognition in heart failure 

(HF) and influences of HF across the cognitive spectrum (i.e., cognitively normal to Alzheimer’s dementia 

[AD]) remain unexplored.  

Objectives: To investigate influences of APOE ε2, ε4, BDNF Met and HF on cognition among 

participants across the cognitive spectrum. 

Methods: Genetic association study using national databases (N=7,166).  

Results: APOE ε2 frequencies were similar across the cognitive spectrum among participants with HF. 

APOE ε4 frequency was lower among participants with HF and AD than non-HF participants with AD. 

BDNF Met frequencies did not differ across the spectrum. HF was associated with worse attention and 

language. In the HF subsample, ε4 was associated with worse memory.  

Conclusion: Associations between APOE and cognition may differ in HF but need to be tested in a larger 

sample.  
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Abbreviations list  

AD = Alzheimer’s dementia 

APOE = apolipoprotein E  

BDNF = brain-derived neurotrophic factor 

CN = cognitively normal 

HF = heart failure 

MCI = mild cognitive impairment 

NACC = National Alzheimer’s Coordinating Center 

 
  



 
 

Introduction  

Heart failure (HF) is a highly prevalent life-threatening condition affecting over 6.5 

million adults in the U.S.1 In past studies,  23-50% of patients with HF had cognitive 

dysfunction2-4  in the domains of memory, attention, and executive function.2-6 Cognitive 

dysfunction was an independent predictor of 12-month mortality in HF.2,3 The etiology of 

cognitive dysfunction in HF has most often been attributed to decreased cerebral blood 

flow and increased cerebral microemboli.4-9 Structural and functional alterations in the 

brain were detected among patients with HF.10-13 The areas of impacted by HF were 

included prefrontal cortex, hippocampus, and anterior cingulate cortex which are 

consistent with the deficits in memory, attention, and executive function found among 

patients with HF. 10-13   

Risk factors associated with cognitive dysfunction in HF were HF symptom 

severity (e.g., left ventricular ejection fraction, New York Heart Association Class), 

comorbid medical conditions (e.g., depression, diabetes), and older age.4,5,14-18 

Although these factors have been supported as predictors of cognitive dysfunction, they 

do not fully account for the variability of cognitive dysfunction found among patients with 

HF. Other factors, particularly genes known to increase or decrease the risk of cognitive 

dysfunction in other groups such as apolipoprotein E (APOE), may improve 

understanding and prediction of cognitive dysfunction among these vulnerable patients 

with HF. However, few studies have been conducted that include genes known to 

increase or decrease risk of cognitive impairment in HF.19,20  

 



 
 

To date, genomics researchers have identified genetic biomarkers for cognitive 

dysfunction including the risk for developing Alzheimer’s dementia (AD).21,22 

Apolipoprotein E (APOE) ε4 allele is associated with increased risk of developing AD23-

26 and MCI.27,28 The results of a meta-analysis showed that people who carried one 

copy of ε4 (ε3/ε4 heterozygotes) had 4.3 times greater odds of developing late-onset 

AD compared with people who had APOE ε3/ε3 genotype among people with reported 

White race.29 A longitudinal study among 607 elderly adults (93% White race) from the 

Religious Order Study in the U.S. showed that the people who carried at least one 

APOE ε4 had 1.4-fold increased risk of developing MCI.28 The frequency of having at 

least one APOE ε4 allele is 33% in the general U.S. population but increases to 58% in 

the U.S. older adult population with AD (> 60 years).24 The frequency of APOE ε4 varies 

widely by ancestry, ranging from 8% to 41%.30,31 For example, in a literature review 

study investigating APOE allele distributions in the world, the frequency of APOE ε4 

was 15% in White race and 25% in African American race.30,31 

In contrast to APOE ε4, the presence of the APOE ε2 allele appears to have a 

protective effect on cognitive function and may delay the development of AD.23,26,32 The 

results of a meta-analysis showed that people who had one copy of ε2 (ε2/ε3 

heterozygotes) were less likely to develop late-onset AD (OR = 0.6) compared with 

people who had APOE ε3/ε3 genotype among people with reported White.29 In a study 

among 115 people with autopsy-confirmed late-onset AD and 243 control participants 

without AD, APOE ε2/ε3 genotype was the least frequent allele (1% of the AD and 16% 

of the controls) and having one ε2 allele was protective from developing AD (OR = 

0.25).32 The estimated prevalence of APOE ε2 allele is 14% in the U.S. population, but it 



 
 

is only about 4% in the AD population among adults over 60 years old.24 The frequency 

of APOE ε2 varies by ancestry, ranging from 0% in Native American people to 14.5% in 

Papuans people.29-31  

Another possible genetic biomarker of cognitive dysfunction is brain-derived 

neurotrophic factor (BDNF) Val66Met polymorphism. BDNF is associated with the 

promotion of survival and growth of neurons.33 The BDNF Met allele (rs6265) has been 

associated with poor memory and learning among healthy individuals, older adults who 

reported race as White, patients with bipolar disease and schizophrenia, and persons 

with preclinical AD.34-36 However, the results of research on these associations are 

mixed. In a study using Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, no 

significant differences were found in hippocampal volumes and memory function 

between people with and without Met allele.37 Another study conducted in Scotland 

(N=904) found that people with Met/Met genotype had better cognition than those with 

Val/Met and Val/Val genotypes.38 The frequency of BDNF Met allele varies across 

different populations, ranging from 0% to 72%.39 For instance, frequencies are very low 

among people from Sub-Saharan Africa (e.g., Mbuti Pygmies, Yoruba) and people who 

are American Indians (e.g., Piacoco, Karitiana) but high among Asian populations (e.g., 

Chinese, Japanese).39 In a U.S. sample of healthy adults (N=133) the frequency of 

BDNF Met allele was 32%.33  

 Despite the advances in genomics research related to cognitive dysfunction, two 

studies have been reported in the HF literature in which the allelic frequencies were 

studied of APOE ε4 and ε2, and BDNF Val66Met. In a small sample of 29 patients with 

HF (76% White), 24% had at least one APOE ε4 allele,19 21% had one APOE ε2 allele, 



 
 

19 and 32% had at least one BDNF Met allele.40 In a sample of 62 patients with HF in 

Netherlands, 33% had at least one APOE ε4 allele and having ε4 allele was associated 

with poorer cognitive function as measured by a neuropsychological battery examining 

5 cognitive domains of memory, executive function, visuospatial function, language, and 

mental speed/attention.20 In summary, little is known about APOE ε2 and BDNF Met 

alleles in relation to cognitive dysfunction in HF. The frequencies of APOE ε4 allele 

were different between the two HF study samples. Presence of ε4 allele may have the 

same negative influences in cognition in HF. However, the small sample sizes of these 

studies limit the conclusions that can be drawn and our understanding of the genetic 

risk factors for cognitive dysfunction in patients with HF.  

 Another limitation of past research about HF and cognitive dysfunction is the 

exclusion of HF patients with known MCI and AD, 2,20,40,41 which may have led to an 

incomplete understanding of cognitive dysfunction in HF. For example, the genomic 

biomarkers associated with cognitive dysfunction may be uncovered only in part by 

excluding patients with MCI and AD who had more serious cognitive dysfunction. 

Another limitation to be considered is lack of references groups of AD and MCI without 

HF to compare cognitive dysfunction. Previous studies in HF, healthy adults without HF 

and without AD or MCI were recruited as a reference group to compare cognitive 

dysfunction.4,15,20 Although AD people without HF would be a good reference group in 

the other end of cognitive spectrum, people with AD or MCI but without HF may not 

have been designed as reference groups in HF studies. These limitations are missed 

opportunities to better understand cognitive dysfunction in HF and learn from genomics 

developments in AD research.  



 
 

To address these limitations, this study was conducted to investigate influences 

of HF and genetic factors (i.e., APOE ε2 and ε4, and BDNF Met) on cognitive function 

among adults with and without HF and with and without symptomatic cognitive 

impairment (i.e., MCI and AD). The specific aims were to: 1) compare differences in the 

frequencies of APOE ε2 and ε4 and BDNF Met alleles among six groups of participants 

with and without HF who have normal cognition, MCI, or AD; 2) evaluate the 

relationships between HF and cognitive function (i.e., memory, attention, executive 

function, and language) after controlling for APOE ε2 and ε4, BDNF Met, and covariates 

(i.e., age, gender, education, comorbidities); and 3) examine the association between 

APOE ε2 and ε4 and BDNF Met and cognitive function in the HF subsample.  

Methods 

This study was a genetic association study using secondary data analysis.  

Source Data 

Baseline cognitive and APOE genotype data were obtained from the National 

Alzheimer’s Coordinating Center (NACC) database42,43 and BDNF Val66Met genotype 

data were retrieved from Alzheimer’s Disease Genetic Consortium database in 

September 2017. All participants in the database were included if they had documented 

history of HF (either yes or no), clinical diagnosis of cognitively normal (CN), MCI or AD, 

available neuropsychological tests, and genetic information. A total of 7,328 

participants’ data were identified. Data from participants with reported White race were 

included. Data from participants with reported non-White race were not included 

because the sample size was small and would not be informative for analyses because 



 
 

of differences in genetic population structure.30,31,39 The final sample consisted of 7,166 

participants.   

History of HF was obtained from the NACC Uniform Data Set.42,44 HF diagnosis 

was self-reported. Age, years of education, and gender were included to describe the 

sample and adjust performance on neuropsychological tests. Comorbidities (e.g., 

depression, stroke, transient ischemic attack, atrial fibrillation) were included as possible 

covariates. 

Clinical diagnosis of cognitive impairment (i.e., CN, MCI, and AD) and 

neuropsychological test scores were retrieved from the NACC Uniform Data Set.42 The 

following cognitive domains and measures were included in the analyses: verbal 

memory as measured by Logical Memory Test delayed recall; attention as measured by 

Digit Span Forward and Trail Making Test A; executive function as measured by Trail 

Making B and Digit Symbol Test; and language as measured by Category Fluency Test 

(Animals and Vegetables) and Boston Naming Test. The domains were chosen 

because they are the most common deficits among those with HF and AD.2-6  

Age, education, and gender-corrected z scores of neuropsychological tests were 

used as measures of cognitive function in the analysis. Higher z scores indicate better 

cognitive function. For each cognitive domain score, composite z scores were 

calculated by averaging the z scores when there were two and more tests used to 

examine one cognitive domain. 

Statistical Analysis 



 
 

 Descriptive statistics (e.g., frequencies and percentages for nominal; mean and 

standard deviation for quantitative variables) and logistic regression analyses were used 

to describe the sample and study variables and compare HF and non-HF groups. 

 For aim 1, absolute and relative frequencies of the alleles (APOE ε2 and ε4 and 

BDNF Met) were calculated61 among the six groups of participants with and without HF 

who have normal cognition, MCI, and AD. Pearson’s chi-squared tests were computed 

to make comparisons of the categorical variables. Bonferroni correction was applied for 

pairwise comparisons, resulting in different statistically significant thresholds for different 

analyses as referenced in the results section. Post hoc analysis of BDNF Met allelic 

frequencies was completed after controlling for the presence of depression, which has 

shown relationships with BDNF genotypes in the literature.45,46  

The analysis for aim 2, investigating the relationship between HF and cognitive 

function, was completed using simultaneous multiple linear regressions controlling for 

APOE ε2 and ε4 and BDNF Met carrier status in the full sample. Comorbid conditions of 

atrial fibrillation, depression, and stroke or transient ischemic attack were included as 

covariates.  

The analysis for aim 3, investigating the relationships between the genetic factors 

(i.e., APOE ε2, ε4, and BDNF Met) and cognitive function in HF, was completed using 

simultaneous multiple linear regressions (see Aim 2 analysis) in the HF subsample. 

Analyses were completed using SAS version 9.4. The significance level was set at p < 

.05. 

Results 



 
 

 Data from 7,166 participants were included in this study. Of these participants, 

174 (2.4%) had HF. Participants’ characteristics are presented in Table 1. Compared 

with participants without HF, those with HF were older (p < .0001) and had fewer years 

of education (p < .0001), lower diastolic blood pressure (p < .0001), and more comorbid 

conditions (p = .003 ~ <.0001). HF and non-HF participants also differed in terms of 

their level of cognitive impairment (i.e., CN, MCI, and AD) (p = .0191). Specifically, 

compared to non-HF participants, participants with HF were more likely to have 

cognitive impairment; they were almost twice as likely to have MCI (OR = 1.82; 95% CI 

= 1.14 – 2.91) and 1.39 times more likely to have AD (OR = 1.39, 95% CI = 1.01 - 1.93).  

Aim 1. Frequencies of APOE ε2, ε4, and BDNF Met alleles  

 The frequencies of the three alleles across our six comparison groups 

determined by presence or absence of HF and cognitive impairment (CN, MCI and AD) 

are shown in Figure 1. The percent of participants having at least one APOE ε2 allele 

ranged from 7.8% to 14.9%. The frequencies differed across the groups (x2 = 79.12, p = 

<.0001). The Bonferroni-corrected significance threshold for between group 

comparisons for these analyses was p < 0.0033. Among non-HF participants, the 

frequency of APOE ε2 was significantly higher in the CN group compared with the MCI 

group (14.9% vs. 9.6%, x2 = 13.02, p = 0.0003) and AD group (14.9% vs. 7.8%, x2 = 

74.65, p = < 0.0001). However, HF participants had similar ε2 frequencies regardless of 

cognitive impairment status (13.3% in CN group vs. 12.5% in MCI group, p = 0.9162; 

13.3% in CN group vs. 12.0% in AD group, p = 0.8061).  

The frequencies of APOE ε4 ranged from 14.7% to 58.8% (Figure 1). Compared 

with non-HF participants with AD, HF participants with AD had a significantly lower ε4 



 
 

frequency (58.8% vs. 38.7%, respectively; x2 = 12.12, p = 0.0005). There was no 

statistically significant difference in ε4 frequencies between MCI and CN participants 

with and without HF (HF with MCI = 37.5% vs. non-HF with MCI = 45.5%, x2 = 0.59, p= 

0.4419; HF with CN = 14.7% vs. non-HF with CN = 27.8%, x2 = 6.32, p = 0.0119) at the 

p value of 0.0033 with the Bonferroni correction.  

Although the frequency of ε4 allele appeared higher among HF participants with 

MCI compared with HF participants with CN, it was not statistically significant (x2 = 5.88, 

p = 0.0153) at the p value of 0.0033. Among non-HF participants with MCI, ε4 frequency 

was significantly higher than the ε4 frequency among non-HF participants with CN. In 

both the HF and non-HF groups higher ε4 frequencies were reported among 

participants with AD than among those who are CN. 

BDNF Met frequencies were similar across all groups, ranging from 33.1% to 

35.1% (x2 = 2.72, p = 0.7423). Post hoc analysis showed no statistically significant 

difference across the groups after controlling for depression.  

Aim 2. Relationships between HF and cognitive function in the pooled 

sample  

 The cognitive function among participants with and without HF and with and 

without cognitive impairment is presented in Table 2. In multiple linear regressions (N = 

7,166), having history of HF was predictive of worse performance on cognitive function 

in the domains of attention (β = -0.24, p = 0.0378) and language (β = -0.25, p = 0.0238) 

after controlling for age, gender, education, history of atrial fibrillation, stroke or transient 

ischemic attack, depression, and genetic factors (i.e., APOE ε2, ε4, and BDNF Met) 

(Table 3). In our post hoc analysis, HF remained predictive of worse cognitive function, 



 
 

even after controlling for the clinical diagnosis of cognitive impairment (i.e., MCI and 

AD) on attention (β = -0.21, p = 0.0305) and language (β = -0.19, p = 0.0191). In 

addition, HF was predictive of worse executive function (β = -0.28, p = 0.0063), but not 

verbal memory (β = 0.10, p = 0.2297).  

The presence of APOE ε2 was predictive of better cognitive function, while the 

presence of APOE ε4 was predictive of worse cognitive function in all domains of verbal 

memory, attention, executive function, and language in the pooled sample (Table 3). 

The presence of BNDF Met was not predictive of cognitive function.  

Aim 3. Relationships between genetic factors and cognitive function in HF 

In the HF subsample (n = 174), the presence of APOE ε4 predicted worse verbal 

memory (β = -0.56, p = 0.0324), but did not predict attention (p = 0.5332), executive 

function (p = 0.0770), or language (p = 0.0872) (Table 4) after controlling for age, 

gender, education, history of atrial fibrillation, stroke or transient ischemic attack, and 

depression. The presence of APOE ε2 and BDNF Met were not predictive of cognitive 

function among participants with HF.  

Discussion  

In this study, the frequencies of APOE ε2, ε4, and BDNF Met were first 

investigated using data from national repositories and well-characterized groups with 

and without HF and with and without cognitive impairment. Two different trends in 

APOE ε2 frequencies were found for non-HF and HF participants. Specifically, non-HF 

participants with CN had a higher frequency of ε2 than did those with MCI and AD, 

which is consistent with the previously reported protective effect of ε2 on 

cognition.23,26,32 However, HF participants with MCI or AD in this study had similar ε2 



 
 

frequencies with HF participants with CN. One possible explanation for this observation 

may be the known effect of ε2 on increasing the number of atherogenic lipoproteins and 

accelerating atherogenesis in atherosclerosis.47,48 This suggests that ε2 may be 

associated with developing more cardiovascular diseases and subsequent cognitive 

dysfunction.  

Interestingly, APOE ε4 frequency was distinctly lower among HF participants with 

AD (38.7%) than non-HF participants with AD (58.8%) in this study. In addition, HF 

participants with MCI and AD had similar frequencies of APOE ε4 (37.5% and 38.7%, 

respectively) unlike the significantly different frequencies between non-HF participants 

with MCI and AD. In previous studies, ε4 frequencies among patients with HF who did 

not have diagnosis of AD or MCI were 24% and 33%.19,20 However, in this study, only 

14.7% of the HF participants with normal cognition had ε4 allele. Based on the results, it 

appears that irrespective of their APOE ε4 and ε2 carrier status, participants with HF in 

this sample were more likely to have AD than those without HF. However, these results 

need to be confirmed in a larger study with more diverse sample. 

In our comprehensive national data across the full cognitive spectrum (i.e., CN, 

MCI, and AD), the presence of HF was predictive of worse cognitive function after 

controlling for age, education, gender, comorbid conditions, and genetic factors (i.e., 

APOE ε4 and ε2 and BDNF Met). The specific domains affected were attention and 

language. Interestingly, however, verbal memory and executive function were not 

associated with the presence of HF in this pooled sample. This result somewhat 

contradicts previous literature that reported verbal memory was one of the most 

commonly impaired cognitive domains in HF.4,41 The difference in our findings may be 



 
 

due to the small HF sample and the disproportionate distribution of CN, MCI, and AD in 

this national database.    

HF is a serious chronic condition that frequently occurs with the other serious 

conditions such as atrial fibrillation, stroke, and depression. For example, atrial 

fibrillation and HF often co-exist as shown that 57% of HF patients had atrial fibrillation 

and 37% of patients with atrial fibrillation had HF from Framingham study.49 HF 

commonly co-exists with stroke, especially among older adults.50 Patients with HF had 

increased risks of developing both ischemic and hemorrhagic stroke in a 30-year follow-

up study using Danish population-based medical registries.51 Depression is a common 

comorbid condition present over 20% of patients with HF52,53 and the prevalence 

increases up to 42% in advanced HF.53 Each of these serious conditions is associated 

with decreased cognitive function. In the current study, these conditions were significant 

explanatory variables of cognitive function as well. In future studies, investigators need 

to consider the interaction of these comorbid conditions and their combined influence on 

cognitive function and interventions to minimize patients' risk of poor cognition.   

Although the influences of APOE ε2 and ε4 in the pooled sample were consistent 

with previous literature,21-23,26,32 in this HF subsample the analysis did not align with the 

previous literature. First, in this study APOE ε2 was predictive of better cognitive 

function in the pooled sample of 7,166. However, among the 174 participants with HF, 

ε2 was not predictive of better cognitive function. This may be because APOE ε2 has 

been known to influence vascular atherosclerotic changes that might lead to cognitive 

dysfunction.47,48 Due to the low frequency of APOE ε2 in the HF subsample, however, 

this conclusion should be interpreted with caution.  



 
 

Second, participants who had at least one ε4 allele performed worse on the 

cognitive domains of memory, attention, executive function, and language in the pooled 

sample of this study. In our HF subsample, however, HF participants who had at least 

one ε4 allele had worse memory, but no statistically significant worse cognitive function 

of attention, executive function, and language. This might suggest a more direct impact 

of APOE ε4 on memory function among participants with HF. These findings, however, 

should be interpreted with caution due to the limitations of relying on a single memory 

measure (i.e., Logical Memory Delayed Recall), the small sample size of HF 

participants, and the AD-focused cohort in which these relationships were studied. 

BDNF Met frequencies were similar across the participants with and without HF 

and with and without cognitive impairment (i.e., AD and MCI). In addition, presence of 

Met allele was not predictive of cognitive function in the pooled sample as well as in the 

HF subsample. The preexisting literature is not in agreement regarding the relationship 

between BDNF Met and cognitive function.54 Prior work reports that Met allele was 

associated with poor episodic memory and abnormal activation of the hippocampal area 

among healthy adults and adults with schizophrenia, but was not associated with other 

cognitive domains (e.g., semantic and working memory, executive function).33,55 

However, in recent meta-analytic studies, no association was found between BDNF 

Val66Met and cognitive function among healthy adults56 and patients with 

neuropsychiatric conditions.57 The inconsistencies may stem from the fact that BDNF is 

one of the most widely spread neurotrophins in the brain. Hence, the many factors that 

could influence its effect need to be considered (e.g., race, age, gender, ethnicity, 

environmental factors, gene-gene interactions).58 Furthermore, some evidence indicates 



 
 

that the BDNF Met allele is associated with worse cognitive changes (i.e., perceptual 

speed) over 13 years of follow-up among healthy older adults59,60 and more memory 

decline over three years in the prodromal AD stages.35 This highlights the need for 

longitudinal studies of the relationship between presence of BDNF Met allele and 

cognitive function among patients with HF.  

The study results are limited by the use of self-reported race data and the 

inclusion of participants with White race only. Although there is a high concordance 

between self-reported race and genetically-determined race (over 90%),61 it is possible 

that the results may be less accurate compared to those obtained by analyzing the 

allele frequencies according to genetically-determined ancestry. The limited focus on 

participants with White race also prevents generalization to other races.  

In conclusion, despite these limitations, this study found that the frequencies of 

APOE ε2 and ε4 were different between participants with HF and without HF. APOE ε2 

and BDNF Met were not associated with cognitive function in HF. The presence of HF 

was associated with worse cognitive performance in attention and language after 

adjusting for APOE ε2, ε4, age, education, gender, and comorbidities in this sample.  

Among participants with HF, APOE ε4 was associated with worse memory. The 

underlying mechanisms of poor cognitive function and any genetic contributions in HF 

may need more in-depth examination including effects of the common and major 

comorbid conditions (e.g., atrial fibrillation, stroke, and depression) on cognition among 

patients with HF. Clinicians need to assess patients with HF for atrial fibrillation, stroke, 

and depression and their combined influence on cognition. Prospective longitudinal 



 
 

studies with larger HF samples that have a well-defined ancestry are needed to 

elucidate mechanisms of cognitive dysfunction that may have treatment implications.  
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Table 1. Participant Characteristics at Baseline (N=7,166) 

Characteristics 
mean ± SD or n (%) 

HF 
(n = 174) 

Non-HF 
(n = 6,992) 

t or x2 p 

Age, years 83.7 ± 8.65 74.6 ± 9.05 -13.19 <0.0001 
Gender 

Women 
Men 

 
103 (59.2) 
71 (40.8) 

 
4,024 (57.6) 
3,022 (42.3) 

0.1879 0.6647 

Education, years 14.1 ± 3.55 15.7 ± 2.94 5.64 <0.0001 
Diastolic blood pressure, mmHg 69.1 ± 9.81 73.8 ± 10.35 5.64 <0.0001 
Systolic blood pressure, mmHg 131.8 ± 19.08 133.6 ± 18.45 1.18 0.2388 
Comorbid conditions 

Depression 
Atrial fibrillation 
Stroke 
Transient ischemic attack 

 
35 (20.1) 
80 (46.8) 
26 (14.9) 
29 (16.7) 

 
886 (12.7) 
503 (7.2) 
249 (3.6) 
331 (4.8) 

 
8.3979 

343.5089 
59.2958 
50.0848 

 
0.0030 

<0.0001 
<0.0001 
<0.0001 

Medications 
Currently take medications 

 
165 (96.5) 

 
6,373 (91.6) 

 
5.2473 

 
0.0220 

Level of cognitive impairment 
Normal cognition 
Mild cognitive impairment 
Alzheimer’s dementia 

 
75 (43.1) 
24 (13.8) 
75 (43.1) 

 
3,692 (52.8) 

649 (9.3) 
2,651 (37.9) 

7.9189 0.0191 

Mini-Mental Status Exam 24.7 ± 6.69 26.1 ± 5.52 2.66 0.0086 
 
 



Table 2. Cognitive function among 6 groups of participants with and without HF and with and without cognitive impairment 

(N=7,166) 

Neuropsychological 
test raw scores, 

mean ± SD 

HF 
with CN 
(n=75) 

HF 
with MCI 

(n=24) 

HF 
With AD 
(n=75) 

Non-HF 
With CN 
(n=3,692) 

Non-HF 
With MCI 
(n=659) 

Non-HF 
With AD 
(n=2,651) 

 
p 

Mini-Mental Status 
Exam  

28.6 ± 1.73 27.2 ± 2.06 19.5 ± 7.62 29.1 ± 1.19 27.4 ± 2.21 21.4 ± 6.57 <0.0001 

Logical Memory, 
Delayed recall 

11.8 ± 4.22 7.0 ± 5.42 3.3 ± 4.27 12.8 ± 4.10 7.2 ± 5.32 2.5 ± 3.66 <0.0001 

Digit Span Forward 6.6 ± 1.05 6.6 ± 1.20 6.0 ± 1.26 6.8 ± 1.05 6.5 ± 1.12 6.1 ± 1.31 <0.0001 
Trail Making A 46.5 ± 18.90 61.8 ± 31.66 69.2 ± 36.10 32.9 ± 13.85 42.3 ± 20.02 62.7 ± 37.80 <0.0001 
Trail Making B 117.8 ± 47.44 166.5 ± 87.48 220.3 ± 86.39 84.1 ± 42.00 128.2 ± 68.78 187.5 ± 90.16 <0.0001 
Digit Symbol 37.8 ± 10.95 30.8 ± 13.95 27.8 ± 12.22 48.4 ± 11.71 38.3 ± 11.31 29.1 ± 14.22 <0.0001 
Category fluency – 
Animals 

18.3 ± 4.07 15.1 ± 4.55 9.6 ± 5.22 21.0 ± 5.45 16.3 ± 5.25 11.6 ± 5.51  
<0.0001 

Category fluency – 
Vegetables 

12.3 ± 3.02 10.6 ± 4.17 6.7 ± 3.79 15.0 ± 4.25 11.2 ± 3.93 7.5 ± 4.22  
<0.0001 

Boston Naming 26.4 ± 2.67 23.7 ± 6.46 20.0 ± 6.84 27.7 ± 2.36 25.6 ± 3.76 21.1 ± 7.04 <0.0001 
z-scores for each cognitive domain 
Verbal memory  0.20 ± 1.05 -0.72 ± 1.39 -1.66 ± 1.10 0.16 ± 1.01 -0.65 ± 1.37 -1.86 ± 0.94 <0.0001 
Attention  -0.11 ± 0.79 -1.25 ± 1.14 -1.65 ± 1.37 0.15 ± 0.66 -0.65 ± 0.93 -1.50 ± 1.52 <0.0001 
Executive function -0.17 ± 0.90 -2.60 ± 1.45 -3.45 ± 1.29 0.18 ± 0.76 -1.96 ± 1.17 -2.97 ± 1.52 <0.0001 
Language -0.04 ± 0.56 -1.00 ± 1.14 -2.00 ± 1.15 0.17 ± 0.67 -0.65 ± 0.85 -1.74 ± 1.29 <0.0001 

 



Table 3. Multiple linear regressions to examine influences of HF on cognitive function (N = 7,166) 

 
Note: * p < .05,  ** p < .01, *** p < .001 

Predictor variables 

Neuropsychological tests, β 
Logical Memory, 

Delayed recall 
Digit Span 
Forward 

Trail 
Making A 

Trail Making 
B 

Digit 
Symbol 

Category 
Fluency - 
Animals 

Category 
Fluency - 

Vegetables 

Boston 
Naming 

Intercept -0.31***  0.09*** -0.63*** -0.43*** -0.79*** -0.43*** -0.37*** -0.25*** 
HF  0.06 -0.02 -0.55** -0.35* -0.31 -0.24* -0.30** -0.27 
Atrial fibrillation -0.14*  0.10* -0.26* -0.28** -0.30* -0.15* -0.09 -0.09 
Stroke/ transient 

ischemic attack 
-0.20** -0.16** -0.81*** -0.68*** -0.75*** -0.43*** -0.40*** -0.23** 

Depression -0.26*** -0.07 -0.59*** -0.63*** -0.72*** -0.36*** -0.29*** -0.33*** 
APOE ε2  0.26***  0.04  0.29***  0.17*  0.33***  0.18***  0.16**  0.22*** 
APOE ε4 -0.72*** -0.07** -0.83*** -0.84*** -0.96*** -0.53*** -0.51*** -0.39*** 
BDNF Met 0.00 -0.03 0.01 -0.00  0.01  -0.01 0.00  0.02 

Predictor variables 
Cognitive domains, β 

Verbal memory Attention Executive Function Language 
Intercept -0.31*** -0.25*** -0.53*** -0.34*** 
HF  0.06 -0.24* -0.31 -0.25* 
Atrial fibrillation -0.14* -0.08 -0.27** -0.11 
Stroke/ transient 

ischemic attack 
-0.20** -0.46*** -0.71*** -0.35*** 

Depression -0.26*** -0.32*** -0.67*** -0.32*** 
APOE ε2  0.26***  0.17***  0.20**  0.19*** 
APOE ε4 -0.72*** -0.44*** -0.88*** -0.47*** 
BDNF Met 0.00 -0.01 0.00  0.00 



Table 4. Multiple linear regressions to examine influences of the genetic factors on cognitive function in HF subsample (n 

= 174). 

 
Note: * p < .05,  ** p < .01, *** p < .001 
 

Predictor variables 

Neuropsychological tests, β 
Logical Memory, 

Delayed recall 
Digit Span 
Forward 

Trail 
Making A 

Trail 
Making B 

Digit 
Symbol 

Category 
Fluency - 
Animals 

Category 
Fluency - 

Vegetables 

Boston 
Naming 

Intercept -0.62**  0.11 -1.67** -0.76* -1.23*** -0.69** -0.86*** -0.59 
Atrial fibrillation  0.07  0.06  0.13 -0.34 -0.42 -0.16  0.09 -0.14 
Stroke/ transient 

ischemic attack 
 0.59* -0.14 -0.31 -0.47 -0.21 -0.06 -0.22  0.07 

Depression -0.10 0.06 -0.84 -0.47 -0.65 -0.20 -0.17  0.10 
APOE ε2  -0.03 -0.54*  0.67  -0.21 -0.02 -0.34 -0.40  0.17 
APOE ε4 -0.56* -0.20 -0.13 -0.76 -0.61 -0.61* -0.36 -0.58 
BDNF Met  0.06  0.19  0.05 -0.13 -0.03 -0.01  0.23 -0.05 

Predictor variables 
Cognitive domains, β 

Verbal memory Attention Executive Function Language 
Intercept -0.62** -0.67** -0.87** -0.71*** 
Atrial fibrillation  0.07  0.08 -0.26 -0.07 
Stroke/ transient 

ischemic attack 
 0.59* -0.13 -0.52 -0.10 

Depression -0.10 -0.54 -0.52 -0.08 
APOE ε2  -0.03  0.03 -0.21 -0.23 
APOE ε4 -0.56* -0.16 -0.69 -0.42 
BDNF Met  0.06  0.02 -0.15  0.09 
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