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ABSTRACT

White matter hyperintensities (WMH) is one of main consequences
of small vessel diseases. Automated WMH segmentation techniques
play an important role in clinical research and practice. U-Net has
been demonstrated to yield the best precise segmentation results
so far. However, sometimes it losses more detailed information
as network goes deeper. In addition, it usually depends on data
augmentation or a large number of filters. Large filters increase
the complexity of model, which may be an obstacle for real-time
segmentation on cloud computing. To solve these two issues, a
new architecture, Lighter U-Net is proposed to reinforce feature
use, to reduce the number of parameters as well as to retain suf-
ficient receptive fields without losing resolution. The extensive
experiments suggest that the proposed network achieves compara-
ble performance as the state-of-the-art methods by only using 17%
parameters of standard U-Net.

KEYWORDS
U-Net, DenseNet, White matter hyperintensities, Cloud computing

ACM Reference format:

Jun Zhuang, Mingchen Gao, and Mohammad AI Hasan. 2019. Lighter U-Net
for Segmenting White Matter Hyperintensities in MR Images. In Proceed-
ings of 16th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, Houston, TX, USA, November 12-14,
2019 (MobiQuitous), 5 pages.

https://doi.org/10.1145/3360774.3368203

1 INTRODUCTION

White matter hyper-intensities (WMH), also known as leukoaraio-
sis or white matter lesions, refer to high intensity areas on T1
weighted or fluid-attenuated inversion recovery (FLAIR) human
brain magnetic resonance imaging (MRI) scans, which are consid-
ered as lesions produced largely by demyelination and axonal loss.
They are usually seen in healthy elderly people but also related to
some neurological disorders and psychiatric illnesses. High quality
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of WMH segmentation is high desirable, but the manual segmen-
tation is tedious, time-consuming and suffers from large inter and
inter-observers variations. Automated WMH segmentation tech-
niques in real-time will play a more and more important role in
future clinical research and practice. As early as 2001, unsupervised
learning method was implemented to detect sclerosis lesions by
model outlier detection [24]. Approximately three years later, su-
pervised learning approach was developed to segment different size
of white matter lesions [1]. In 2008, Dyrby et al. employed neural
networks to segment WMH [6]. Numerous automatic brain tissue
segmentation algorithms have been developed after that [3, 7, 9, 15],
but due to the huge heterogeneity and various brain abnormalities,
WMH segmentation is still a challenging problem compared to
general brain tissue segmentation [21].

Fully convolutional network (FCN) has achieved great success
in semantic segmentation [20]. Especially in the field of biomedical
image segmentation, a kind of FCN, so-called “U-Net” [23], is wildly
used in recent two years. Compared to FCN and SegNet [2], U-
Net has more elegant architecture which can yield more precise
segmentations while using smaller training dataset. There are many
deep learning based segmentation algorithms proposed for WMH
segmentation [8, 14].

There is a trend that convolutional networks are getting deeper
and deeper. Nevertheless, U-Net will lose more resolution as net-
work goes deeper. In order to gain more precise performance, U-Net
sometimes depends on data augmentation or larger numbers of
filters instead of deeper network. Employing larger numbers of
filters may make the network become more and more redundant.
However, this kind of redundant may be a obstacle for real-time seg-
mentation on cloud computing. The growing popularity of mobile
terminals indicates that the network should be much lighter and less
computation. Numerical researches attempt at model compression
of image or video [11, 17-19].

The main purpose of this study is to solve these two challenges.
One solution to resolution loss is using dilated convolution [5, 25].
Dilated convolution can retain sufficient receptive fields without
losing resolution even if network goes deeper. Inspired by DenseNet
[13], on the other hand, the study fuses dense connection with U-
Net. This integration encourages feature reuse, making it possible
to design light-weight architectures by reducing the number of
filters.

Derived from those two points mentioned above, this paper
proposes an advanced architecture, Lighter U-Net, which combines
dense connection and dilated convolution. The advantage of Lighter
U-Net can be concluded to “3R” Principles, which can reinforce
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feature reuse, reduce the number of parameters and retain lager
receptive fields.

At last, we restate our contribution here. This study proposes a
new architecture, called Lighter U-Net, by integrating those two ad-
vanced structures with U-Net. The straightforward and light-weight
architecture are demonstrated in WMH segmentation challenge
with leading performance. The model achieved dice similarity co-
efficient (DSC) 93.42% in training set, 82.53% in validation set and
79.28% in testing set without data augmentation. Moreover, com-
pared to the standard U-Net model, the model saves running time
by 26% and also reduces the size of weight by 83%.

2 METHODS

2.1 Preliminaries

In general, U-Net consists of two symmetrical components, encoder
(contracting on left side) and decoder (expanding on right side) with
corresponding concatenations, which are designed to compensate
the feature loss through max-pooling. To alleviate the shortcomings
of U-Net mentioned above, we propose two novel modifications to
U-Net, dense connection and dilated convolution. Dense connection
is inspired by DenseNet [13]. Each layer uses all preceding layers
as input, and its feature map will also be used as inputs to all
subsequent layers. The dense connections attenuate the vanishing-
gradient problem by promoting the efficiency of information flow.

Dilated convolution retains a large receptive field and avoids
resolution loss from pooling (both upsampling and downsampling)
without increasing the number of learned parameters. This opera-
tion can relieve resolution loss in U-Net architecture. This is partic-
ular important when segmenting delicate WMH structures while
high level information is also helpful. The idea of dense connection
and dilated convolution has been explored in many segmentation
problems, such as multi-organ abdominal CT segmentation [10]
and MRI Glioma segmentation [4].

2.2 Lighter U-Net

Our model is illustrated in Fig.1. Lighter U-Net derives from U-Net,
which captures more features and thus yields precise segmentations
by adding back previous corresponding layers. According to our
model, those corresponding layers could be more than one. Assume
that Lighter U-Net has n layers. Theoretically, n could be an infinite
positive even number since U-Net usually has symmetrical layers.
Practically, n > 4,ie. n := {x € Z* : 2x + 2}. Let’s define the
number of those corresponding layers in dense connection as r,
where r € Z*. Based on this theory, dense connection in layer
(n-a) is no more than 1, where a € [1, Z — 1). Let’s define the dense
connection space as dc(i) := {i € [1,r] : a + r — i}. This space
includes elements no more than i. The constrain comes from the
bottom layer in the network, where dc(i) € [a, § —1]. Thus, Lighter
U-Net can be defined as F := @(n, r, f,), where {f,,} represents the
sequence of the number of filters. Qualitatively speaking, Larger
n leads to deeper network, which may make worse performance.
Larger r causes the network more dense, which will definitely
increase computation and occupy too much memory. Because of
small dataset, this study uses ¢(10, 2, f;,) to achieve best result.
Specifically, this network has 10 layers. The 5th layer implements
dilated convolution, whose dilated rate is equal to 2. In the rest
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Table 1: Descriptions of MICCAI WMH Challenge dataset,

which contains 60 patients from 3 different scanners.

Dataset Scanner Images Size | No. Patients
Utrecht 3T Philips Achieva 240x240 20
Singapore | 3T Siemens TrioTim 252x232 20
GE3T 3T GE Signa HDxt 132x256 20

layers from one to nine, batch normalization and pre-activation,
LeakReLU, are applied before first convolutional layer. As men-
tioned in the technical report of DenseNet [22], batch normaliza-
tion can provide a unique scale and bias to previous input while
pre-activation can reduce the error significantly. In addition, those
layers have two convolutional layers with the same number of
filters. Kernel size is 3x3. The number of filters from layer one to
four is [16, 32, 64, 128]. Symmetrically, The number of filters from
layer six to nine is [128, 64, 32, 16]. The 10th layer is a output
layer with sigmoid activation function. From layer one to four, 2D
MaxPooling layer is used as downsampling. From layer six to nine,
deconvolution is implemented to up-sampling with 2x2 kernel size
and strides. Its number of filters reduces 50% compared to the num-
ber of filters in previous convolutional layer. Both convolution and
deconvolution use “same" padding and “He Normal" initializer [12].
Compared to standard U-Net, most importantly, our model uses
dense connection in layer seven to nine. For example, both layer one
and two are concatenated back to layer nine after deconvolution.
Other layers have the same pattern correspondingly.

2 16 16 1

240 240 . .
2 32 a * de()-
: .
120 ‘ ‘ 120 =
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Avecom 60 .
3x3
X3 conv 128 Batch Normalization
30 LeakyReLU Abstract Description of
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Figure 1: The Architecture of Lighter U-Net and The Ab-
stract Description of Dense Connection.

3 EXPERIMENTS
3.1 Dataset

This dataset was acquired from three different hospitals in Nether-
lands and Singapore. Each of them contains 20 patients. For each
patient, T1-weighted image, FLAIR image and manual label of the
WMH regions were provided. An example of the image was il-
lustrated in Figure 2. Details of dataset were described in Table
1. Five-fold validation was used for training and testing. In each
fold, 80% of data were used to train the model while the rest 20%
were used as testing set. Training images were further separated
as 80% for training and 20% for validation. Sample slides of train-
ing/Validation/Testing were 1669/418/522.
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Figure 2: Left most image is the 3D T1 image (with mask re-
moving the face); T1-weighted and FLAIR are used as two
input channels; Right most image is the WMH manual la-
bel.

3.2 Data Preprocessing

T1 modality presents clear contrast among white matter, gray mat-
ter and cerebrospinal fluid. FLAIR is wildly used in brain imaging
for highlighting the hyper-intense lesions. The combination of
T1-weighted and FLAIR has been demonstrated to provide affable
information on WMH detection and also significantly to increase
the performance [6, 16]. We followed this suggestion and com-
bined these two images into one two-channel image. Each patient’s
images were removed 1/8 along z-axis on both edges. After that,
dataset was randomly split into training set and testing set on pa-
tientdAZs level. Due to large variation in image sizes using different
scanners, we preprocessed the images to standard size 240 X 240
by padding or cropping. Lastly, different set of data were stacked
into different arrays correspondingly. Note that here didn’t use data
augmentation.

3.3 Training

This experiment was conducted in the platform of Amazon web
service Nvidia Tesla K80 with the instance, p2.xlarge. This instance
used 4 virtual CPUs, 61 GB memory. The network was trained by
Adam. Initial learning rate was set to be 1e-4 with step decay in the
future epochs. Decay protocol might be flexible. Here the learning
rate declined by 50% after 50 epochs and then dropped to 0.1 of
initial rate after 80 epochs. The batch size was empirically set as 32,
as batch size larger than 32 would trap the value of loss function in
a very small number at early epoch and not update in the rest of
training. As mentioned in Equation 1, given ground-truth y4 and
predicted label y,, DSC were selected to evaluate the performance
as measuring the overlap between y4 and y, in percentage was
most suitable here. Negative DSC was tested to be the best loss
function. Dropout gave worse results and wasn’t utilized here. The
model converged after 100 epochs’ training.

_ 2lyg N yp|

DSC =
(Iygl +1ypD)

1)

3.4 Five-Fold Cross-Validation

Table 2 shows the descriptive statistics of five-fold cross-validation.
Our results substantially outperformed the baseline standard U-Net.

Our model was also quite stable with a small standard deviation.
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Table 2: Five-Fold Cross-Validation for DSC.

DSC meanzstd

Training Set

Validation Set

Testing Test

Lighter U-Net

93.42% + 1.39%

82.53% + 1.25%

79.28% + 0.57%

Standard U-Net

79.29% + 1.44%

74.98% + 1.50%

71.03% + 1.25%

Table 3: DSC on different schemes for our model. P1(2): Po-
sition 1(2).

Evaluation Preprocessing Batch Normalization
Padding | Cropping P1 P2
DSC 79.07% 72.20% 78.47% 77.03%

Fig.3 presents the differences between ground truth and pre-
dicted labels, baseline U-Net model and Lighter U-Net. The yellow
arrows point the location where predictions are missing. Compared
to baseline U-Net model, visually our model is more similar to the
ground truth.

Ground Truth Baseline

Lighter U-Net

Figure 3: Ground truth, predictions from the baseline stan-
dard U-Net and Lighter U-Net, respectively.

3.5 Scheme Design

Table 3 reports scheme design of our architecture. U-Net is a sym-
metrical network. Due to dense concatenation, the size of input
is related to the model’s complexity. In this study, all inputs were
resized to 240 by 240. Before resizing, the preprocessing has two
possible options, padding and cropping. The result revealed that
padding got much higher DSC than cropping. Thus, rest experi-
ments used padding before resizing images.

Moreover, the position of batch normalization (BN) could affect
the performance. In our model, two 2D convolutions (Conv2D)
were operated in each layer. BN was attempted to execute in two
positions: 1) In front of two Conv2Ds; 2) Between two Conv2Ds.
This attempt illustrated that BN in position one attained better
result.

3.6 Ablation Study

In this experiment, we demonstrated the effectiveness of the two
major modifications, dense connections and dilated convolution.
A significant advantage of utilizing dense connections was that it
could reduce the number of parameters by encouraging the feature
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Table 4: Comparison between Lighter U-Net and standard U-
Net. DC: Dense Connection; DilConv: Dilated Convolution;
50%PM: Retain 50% parameters.
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Table 5: Comparison of DSC among different models. Our
model generates comparable results but is much smaller and
faster to compute.

Model Testing DSC | Avg. Time | Weight Team Name Approach DSC (Testing)
Baseline U-Net 71.03% 92s 93.3Mb Our model Lighter U-Net 0.79
DilConv+DC+100%PM 81.21% 141s 63.1Mb sysu_media Ensemble U-Net 0.80
DC+50%PM 77.38% 72s 24.6Mb cian Multi-Dimensional GRU 0.78
DilConv+DC+50%PM 79.28% 70s 16Mb nlp_logix 4-layer CNN 0.77
nic-vicorob 10-layer CNN 0.77
reuse. We investigated the contribution of dense connection and its - k2. - U-Net 0.77
influence on filter numbers. As shown in Table 4, the model utilizing nih_cidi2 U-Net 0.75
dense connection, dilated convolution as well as the same number of lrfie Deep FCN 0.7
filers as the standard U-Net achieved the best DSC, 81.21%. However, Tsp 31? 18'135,’6? CNN _ 0.72
that model was very slow to be trained and tested. Our proposed knight Voxel Wise Logistic Regression 0.70

Lighter U-Net used only half number of filters. It sacrificed testing
DSC by about 2%, but cut the running time by half and reduced the
model weight significantly.

In addition, the dilated convolution enlarges the receptive field
without losing resolution or increasing computation. It is a power-
ful scheme compared to deconvolution. As shown in Table 4, the
performance had increased approximately 2% after conducting the
dilated convolution. The size of weight had an extra decline from
24.6 Mb to 16 Mb. This decline made the model lighter and portable.
Dilated convolutional layer is a crucial component in the bottom
of Lighter U-Net.

Table 4 summarizes the ablation study of Lighter U-Net. The
dense connections enables good performance even with fewer fil-
ters. Compared to the standard U-Net, only half number of filters
were used. This made our model much lighter, and faster to com-
pute.

3.7 Comparison among Different Models

The competition of WMH Segmentation Challenge at MICCAI 2017,
aimed at comparing different approaches for automatic segmenta-
tion of WMH. In this competition, the team “sysu_media" employed
ensemble techniques and won the first place. This ensemble ap-
proach integrated n U-Net with random initialization and with
shuffled batch. Multiple predicted labels were averaged and then
transformed into a binary label under an empirical threshold. The
paper regards this approach as a benchmark [16]. The result of
competition is presented in Table 5. Our model achieved compa-
rable performance as “sysu_media". Note that our preprocessing
didn’t use data augmentation, such as flipping or rotation. Indeed,
preprocessing played an important role in the process of training.
One observation proved this point. Three teams implemented the
standard U-Net while only “sysu_media" achieved the best DSC.
Another observation, on the other hand, illustrated that deeper
networks did not guarantee better performance. Sometimes the
more layers, the lower DSC. This observation enlightened us to
make our model more lighter.

4 CONCLUSION AND FUTURE WORK

This study proposes a new architecture, Lighter U-Net, for WMH
segmentation. Dense connection and dilated convolution make
three main contributions: 1. Reinforce feature reuse; 2. Reduce

the number of parameters and running time; 3. Retain sufficient
receptive fields without losing resolution. The experiment shows
that our model gains state-of-the-art performance as well as yields
high quality prediction. However, this model has two shortcomings.
Firstly, dense concatenation will occupy extra memory. What’s
more, this network is still too large and can be further compressed
in order to achieve faster segmentation in real-time computing.
Those are the plans for further improvement.
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