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Beyond the time-dependent Hartree grid approximation for curve-crossing 
problems 

Jose Campos-Martinez,a) Janet R. Waldeck, and Rob D. Coalsonb
) 

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 

(Received 29 July 1991; accepted 16 October 1991) 

A new "configuration-interaction" method is presented which extends the single-surface time­
dependent Hartree grid (TOHG) approximation into a formally exact algorithm for obtaining 
multidimensional quantum wave-packet dynamics on nonradiatively coupled electronic 
potential surfaces. As a numerical example, photofragmentation cross sections are computed 
for a two-degree-of-freedom model of direct dissociation. For systems prepared in vibrationally 
excited states of the ground electronic potential the TOHG approximation fails due to "direct 
correlation" effects, while our method provides accurate results. 

I. INTRODUCTION 

The role of wave-packet theory in computing and inter­
preting quantum-dynamical properties continues to grow at 
a rapid pace. J Central to this growth is the availability of 
reliable and efficient numerical techniques for simulating 
the quantum evolution of chemically interesting molecular 
systems. Oespite considerable progress in the development 
of such technology, there is still no general algorithm for 
performing exact Schrodinger evolution of nuclear wave 
packets on a prescribed potential-energy surface that can be 
applied to systems with more than three degrees offreedom. 
Hence, even exact gas-phase tetra-atomic dynamics is cur­
rently at the edge of tractability. 

The situation for polyatomic and condensed-phase 
quantum systems is not so bleak as the opening paragraph 
implies if we are willing to settle for approximate solutions to 
the Schrodinger equation. One approach which has received 
considerable attention recently is the time-dependent Har­
tree (TOH) method [also known as the time-dependent 
self-consistent-field (TOSCF) method], 2 in which the com­
plete system wave packet is factorized into a product of sin­
gle-degree-of-freedom packets and each one-dimensional 
factor evolved in its own one-dimensional "variationally op­
timized" effective potential. For problems involving motion 
on a single Bom-Oppenheimer (BO) potential surface, the 
effective potential for each degree of freedom is obtained by 
averaging the many-body interaction potential over the in­
stantaneous probability distribution of all the other degrees 
offreedom. In this way, certain aspects of inter dimensional 
coupling, such as mode-mode energy transfer, are reasona­
bly well accounted for. Indeed, the TOH approximation has 
proved useful for studying a number of short-time (subpico­
second) photodissociation and inelastic molecular scatter­
ing processes.2

•3 Nonetheless, the TOH factorization of the 
overall system wave packet omits "direct correlation" ef­
fects, i.e., features which depend directly on the nonfactori-
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Fundamental, Centro Mixto, Consejo Spperior de Investigaciones Cienti­
ficas, Serrano 123, E-28006 Madrid, Spain. 

b) Camille and Henry Dreyfus Teacher-Scholar. 

zability of the exact multidimensional wave packet. 
In order to study processes involving long-lived (multi­

picosecond) complexes with more complicated dynamical 
signatures (such as double-well tunneling), numerical in­
vestigation2

-4 indicates that it will be necessary to go beyond 
the TOH approximation and include direct correlation ef­
fects neglected at the TOH level. Recently, we introduced4 a 
configuration-interaction (CI) algorithm which enables di­
rect correlation to be included by expressing the exact sys­
tem wave function as a time-dependent superposition offac­
torized, TOH-type basis functions. Substitution into the 
Schrodinger equation leads directly to equations of motion 
for the superposition coefficients responsible for mixing the 
basis functions. Through the time development of these coef­
ficients, details of the overall system wave function which 
cannot be described via a single product of one-dimensional 
functions are recovered. 

The notion of improving upon the TOH approximation 
to the Schrodinger wave-packet evolution by "mixing" sev­
eral approximate TDH level solutions is not new. It is, of 
course, a time-dependent analog of the (static) self-consis­
tent-field configuration-interaction (SCF-Cl) procedure 
which lies at the heart of modem molecular electronic struc­
ture theory. 5 Time-dependent CI algorithms for problems of 
nuclear dynamics of distinguishable particles on given po­
tential-energy surfaces are at a much more primitive stage of 
development.4.6 The novel features of our algorithm stem 
from a desire to streamline the computation of CI correc­
tions to the TOH level dynamics. To this end, we maintain a 
time-dependent orthonormal basis set of one-dimensional 
wave functions in each coordinate in a simple way by propa­
gating all product basis functions according to the same ef­
fective separable potential. Not only do the evolving basis 
functions remain factorizable and orthonormal, but compu­
tationallabor in constructing the basis set grows strictly lin­
early with spatial dimensionality. In the case of motion on a 
single potential surface the appropriate separable potential is 
generated by an application of the TOH prescription to one 
"central" wave packet in the initial collection of basis pack­
ets (typically the nodeless wave packet upon which an or­
thonormal set of "excited states" is initially constructed). 
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As demonstrated in Ref. 4 (henceforth referred to as Paper 
I), this procedure enables the construction of a traveling 
orthonormal basis set which is flexible enough to represent 
complicated wave forms that can arise in scattering and pho­
todissociation applications. Furthermore, for problems of 
the type considered in Paper I the CI part of the algorithm 
converges rapidly and reliably. 

In this paper we extend the wave-packet CI algorithm 
introduced in Paper I to treat motion on two (or, in princi­
ple, more) nonradiatively coupled potential-energy sur­
faces. The concept of coupled-surface dynamics finds appli­
cation in several experimental contexts.7 One important 
example entails a molecular transition between different 
electronic states in a region of nuclear coordinate space 
where the BO potential surfaces associated with those elec­
tronic states are nearly degenerate. Such curve crossing is 
common in electronic excited-state processes (stimulated 
and probed in great detail by various optical spectrosco­
pies7

), so useful theoretical modeling of excited-state dy­
namics depends critically on our ability to compute curve­
crossing effects accurately and efficiently. 

The theoretical intrigue of curve-crossing dynamics 
stems in part from its inherent nonclassicality. Even when 
the intersurface coupling is precisely specified (cf. Sec. II), 
there is no way to guess from classical mechanics alone the 
probability that a molecule will "hop" from one electronic 
state to another when its nuclear coordinates go through a 
crossing seam in the relevant BO potential surfaces. Further­
more, when these nuclear coordinates are represented in a 
more complete way by wave-packet states, it is not obvious 
(without the benefit of examples provided by exact wave­
packet propagation codes!) how a packet will behave when it 
goes through such a crossing seam, and in particular what 
wave form will be created on the originally unoccupied sur­
face. From the point of view of extending the single-surface 
CI algorithm presented in Paper I, the challenge is to isolate 
a "best zeroth-order" (time-dependent) Hamiltonian Ho, 
which generates a perpetually orthonormal set of two-sur­
face spinor-type basis functions in a simple manner. To do 
this we have identified "best diabatic" guiding potentials on 
which to propagate the spatial wave packets on each surface. 
These potentials are real and Hartree type (i.e., separable), 
so the basis-set orthonormality is automatically maintained. 

We have isolated two candidates for the "best diabatic" 
guiding potentials. They are set forth in Secs. IV A and IV B, 
after the mathematical problem of interest is introduced and 
motivated in Sec. II, and the general strategy of our CI 
scheme is presented in Sec. III. Then in Sec. V we demon­
strate the utility of coupled-surface wave-packet CI by a nu­
merical application involving a two-degree-of-freedom mod­
el of curve crossing in molecular photodissociation 
processes. Specifically, we consider the nonradiatively cou­
pled Beswick-Jortner potential surfaces8 recently studied 
within the TDH approximation in Ref. 9 (henceforth re­
ferred to as Paper II). We find, as in earlier work on single­
surface problems,3(bl,4 that spatially extended wave packets 
associated with excited vibrational eigenfunctions (which 
arise, for example, in studying photodissociation of vibra­
tionally excited molecules) are not always easily handled by 

simple TDH methods. The two-surface CI algorithm of Sec. 
IV is found to accurately and efficiently incorporate the "di­
rect correlation" effects which elude TDH level dynamics. 
Both candidates for "best diabatic" potential surfaces prove 
effective, and their relative merits are compared. The paper 
concludes with a Discussion and Conclusion (Sec. VI), in 
which strengths, weaknesses, and possible extensions of the 
proposed approach are discussed. 

II. WAVE-PACKET DYNAMICS FOR CURVE-CROSSING 
SYSTEMS 

For a system consisting of two coupled diabatic poten­
tial-energy surfaces, the Hamiltonian governing the motion 
can be written as 10 

He = HI lei> (e l I + H 2 lez) (e2 1 
+G(lel )(e2 1 + lez)(ell), (2.1) 

where lel,2) are (structureless) diabatic electronic states, 
H I ,2 are the corresponding Hamiltonians for motion on the 
isolated diabatic surfaces VI ,2 , and G is the coupling function 
responsible for transitions between diabatic surfaces. We 
will term G the "nonradiative coupling" function because it 
prescribes a nonradiative mechanism for transitions between 
zeroth-order diabatic electronic states. Specializing to the 
simplest multidimensional case, i.e., for a system with two 
spatial degrees of freedom, these terms can be written for 
surface I (and analogously for surface 2) as 

(2.2) 

Here, h lx is a "single-particle" Hamiltonian, 
h lx = Tx + Vlx (x); Tx is the kinetic-energy operator (with 
Ii = 1 here and throughoutthepaper) Tx = - Cl/2mx )a~, 

and Vlx is the "single-particle potential" for the x motion on 
surface 1. h ly is defined analogously. The interaction poten­
tial on surface 1 is given by U j I l (x,y). Combining this term 
with the single-particle potentials Vlx (x) and v ly (y) yields 
an expression for the overall diabatic potential surface 1, 

For simplicity, we assume a factorizable form for the inter­
action potential, Uj\)(x,y) = ulx(x)uly(y), and also for 
the coupling function, G(x,y) = gx (x )gy (y). Thus the 
Hamiltonian is completely specified. 

A general two-component excited-state wave packet 
can be described as 

in which the nuclear wave functions on surfaces 1 and 2 are 
denoted by <PI (x,y,t) and<p2 (X,y,t) , respectively. A common 
situation in excited-state spectroscopy involving nonradiati­
vely coupled excited potential surfaces is that the radiative 
coupling of the electronic ground state to one of the zeroth­
order excited states is much larger than to the other.7

(a) For 
simplicity we assume this to be the case here, although the CI 
method developed below can be applied to more complicat­
ed radiative coupling scenarios with no additional difficulty. 
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Thus, the initial wave packet, 1\II(t = 0» = lfJii ) (x,y) Ie,), is 
comprised of the initial (preabsorption) vibrational eigen­
function lfJii ) (x,y) of the ground electronic state, "placed" 
on the radiatively "bright" surface VI at time t = O. [The 
appropriateness of this initial state follows from the standard 
time-domain prescription for computing photodissociation 
cross sections; cf. Refs. 6(a), 11 (b), and below.] The wave 
function is then propagated according to 

(2.5) 

The nonradiative coupling results in some leakage of the 
wave packet to the "dark" surface V2 , so that population 
develops on both surfaces. This schematized situation is 
qualitatively related to experimental photofragmentation 
processes in methyl halides and ICN.7 

The numerical implementation ofTDH via a numerical 
grid for each spatial dimension, which we will term the time­
dependent Hartree grid (TDHG) method, entails the sepa­
rate propagation of wave packets for each degree of free­
dom.2,3 Here, we use TDHG wave-packet dynamics as the 
foundation on which to construct a CI scheme which natu­
rally incorporates direct correlation effects and accounts for 
the curve-crossing dynamics. Our original intention was to 
utilize a two-surface TDHG wave packet of the type consid­
ered in Paper II as the zeroth-order approximation, and then 
build a set of time-dependent orthogonal basis functions on 
top ofit, in the same spirit as the single-surface CI algorithm 
developed in Paper I. Unfortunately, in the case of nonradia­
tively coupled multisurface dynamics, some simplicity is lost 
with this approach. In particular, the "mean-field" coupling 
term destroys the unitary character of the effective propaga­
tion operator which governs the wave-packet evolution in 
each spatial dimension [cf. Eq. (3.2) of Paper II]. As a con­
sequence, a set of basis functions which is initially orthogo­
nal will not necessarily remain so for the entire propagation 
interval. 

As noted above, it is our desire to preserve the orthogo­
nality of the basis functions over time in order to streamline 
the computation. To do this we have settled for a less-sophis­
ticated zeroth-order propagation scheme. In particular, the 
basis wave packets on each surface are propagated by an 
"optimal" separable single-surface potential. In this way it is 
entirely straightforward to construct an orthogonal time­
dependent set of basis functions on each surface. If the exact 
wave function is then represented by a superposition of these 
basis functions, the superposition coefficients evolve accord­
ing to simple linearly coupled first-order differential equa­
tions. These coefficients enable the basis functions to "mix" 
in order to accurately represent the dynamics on both sur­
faces and also the transfer of wave-packet amplitude be­
tween them. Section III is devoted to the problem of con­
structing a two-surface CI algorithm, given an arbitrary set 
of separable single-surface potentials upon which to base it. 
It will become obvious that the key to successful conver­
gence of such a scheme is to pick a good zeroth-order start­
ing point, i.e., an "optimal" set of single-surface guiding po­
tentials. We have identified two viable candidates for this 
purpose, and these are set forth in Secs. IV A and IV B, re­
spectively. 

III. CONFIGURATION INTERACTION BASED ON 
SEPARABLE DIABATIC GUIDING POTENTIALS 

Let us consider a zeroth-order Hamiltonian of the form 

Ho (t) = [Tx + Ty + W, (x,y,t) ] Ie, ) (e, I 
+ [Tx + Ty + Wz (x,y,t)] lez) (ezl, (3.1a) 

where W"z are time-dependent separable potentials, i.e., WI 
can be written as 

(3.1b) 

[with an overall constant V j (t) explicitly isolated to make 
easy contact with the specific forms for W,,2 considered in 
Sees. IV A and IV B below], and likewise for W2 • Note that 
the initial basis state XI\)(x)YJ\)(y)le,) evolves under 
HoU) into XI\)(x,t)Yj')(y,t)exp(iS,)le,), where 
Xj')(x,t) obeys the one-dimensional (lD) Schrodinger 
equation, 

iJ,XI\)(x,t) = [Tx + W~I)(X,t) ]XII)(x,t), (3.2) 

the packets Yj') evolve analogously, and S, is a time-depen­
dent phase angle given by S, = S~dtIVj(t'). In the same 
manner, the initial basis state X)2) (x) YiZ

) (y) le2 ) evolves 
under Ho (t) intoX)2) (x,t) YF) (y,t) exp(iS2) le2 ), with the 
time evolution of X}Z), YiZ), and S2 determined by 
W2 (x,y,t). 

Next, we construct an expansion of the electronic-nu­
clear wave-packet state 1\11 (t» which evolves under the full 
nonradiatively coupled Hamiltonian He in Eq. (2.1), utiliz­
ing the time-dependent base states just generated, i.e., 

1\11 (t» = e
iS

, L aij') U)X I') (x,t) Yj') (y,t) Ie, > 
i.j 

+ eiS
, L a}f) (t)X)2) (x,t) Yf) (y,t) le2 )· 

I,k 

(3.3 ) 

Note that since all the X I' )'s are evolved under the same ID 
Hermitian Hamiltonian [Eq. (3.2)], an initially orthonor­
mal set of XI')'s will remain orthonormal throughout the 
course of the propagation. This is true for the X i2

), Y J \) and 
Yi2

) wave-packet sets as well. Hence, if the initial expansion 
of the wave packet is complete, its time evolution according 
to Eq. (3.3) remains complete. Moreover, if this representa­
tion of I \II (t) > is inserted into the SchrOdinger equation in­
volving He' the superposition coefficients will evolve so as to 
incorporate effects due to the terms in He which cause it to 
deviate from Ho (f). These "interaction" terms are given ex­
plicitly by 

H/(t) =He -Ho(t) 

= (VI - WI ) lei) (e l I + (V2 - W2 ) le2 ) (e2 1 

+G(le l )(e2 1+le2 )(e,I). (3.4) 

Because the electronic-nuclear basis states are orthonormal 
at all times, the evolution equations obeyed by the coeffi­
cients have a very simple structure, namely 

[a(l)] [H 
i ti(2) = G~ 

G ] [a(l)] 
Hz a(2) , 

(3.5) 
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where the vector a(l) is a list of all coefficients a~1) (t) asso­
ciated with the wave packet on surface VI (organized into a 
conveniently indexed linear array), and analogously for a(2). 

Furthermore, the time-dependent matrices HI' H2 prescribe 
the coupling between or "mixing" of the various base states. 
If there are n~ x-basis functions and n; y-basis functions on 
surface VI> the length of a(l) is n~n; =NI , and analogously 
for a (2). The matrices H I and H2 are then square matrices of 
dimension NI XNI and N2 XN2, respectively. Their ele­
ments are given explicitly by 

[Ha h.t! (t) = (x)a) (x,t) YJa) (y,t) 16. Via) (X,y,t) I 
Xx~a)(x,t)na)(y,t», (3.6) 

with 6.v(a) (x,y,t) = Va (x,y) - Wa (X,y,t) , a = 1,2. These 
matrix elements are independent of the nonradiative cou­
pling, and essentially reflect the inability of an x,y-factorized 
wave packet to represent the true nuclear motion on one 
surface or the other even in the absence of nonadiabatic cou­
pling effects. 

The matrix G, on the other hand, is solely due to nonra­
diative coupling. It is of dimension NI X N2 and has matrix 
elements 

[Glv.lk (t) = (X)I)(X,t) YJ 1) (y,t) IG(x,y) IXi2) 

X (x,t) Yi2) (y,t) )ei(S, - S,). (3.7) 

Clearly, G generates transfer of probability amplitUde be­
tween diabatic surfaces VI and V2. 

Since H I •2 are each Hermitian, the overall 
(NI + N2 ) X (NI + N2 ) coupling matrix on the right-hand 
side of Eq. (3.5) is Hermitian, and consequently 
a(l)*'a(l) + a(2)*'a(2) = 1 for all times, i.e., the sum of the 
probabilities to be on either of the two diabatic surfaces is 
conserved, as it should be. Moreover, construction of the 
basis of zeroth-order spatial wave packets X)I), y?), etc. is 
extremely simple, as is the evaluation of all the matrix ele­
ments which couple the superposition coefficients in Eq. 
(3.5). Of course, if the size of the basis needed to converge 
the solution for 1'I'(t» becomes too large, these advantages 
become moot. In practice, the basis wave packets (or equiv­
alently, the guiding potentials WI •2 ) must be chosen judi­
ciously, and this is the subject of the next section. 

IV. DIABATIC GUIDING POTENTIALS 

A. Bare diabatic potentials 

When G = 0, a wave packet starting on VI is impervious 
to the existence of V2 • This suggests that we choose WI to be 
the separable time-dependent potential generated by TDH 
evolution of an appropriate initial wave packet on VI' An 
obvious choice for the initial packet is ¢ii) (x,y) itself, al­
though other viable options exist.4 It is reasonable to expect 
the TDH approximant to WI generated in this way to pro­
vide a set of basis wave packets capable of representing the 
net wave packet on surface 1 even when G is "turned on." 

Selecting a guiding potential for the dark surface is a 
more subtle task. However, appeal to the Schrodinger equa­
tion results in the conclusion (confirmed by numerical simu­
lations) that a piece of the bright surface wave packet will be 

shaved off when it goes through the seam where VI and V2 
cross. Moreover, in many cases the initial wave packet 
emerging on the dark surface will nearly be a copy of the 
bright-surface wave packet at the time when the latter goes 
through the crossing seam. (As long as the difference 
V2 - VI exceeds the nonradiative coupling strength, little 
leakage to the dark surface will occur. When the bright-sur­
face packet does begin to leak, in the region of the crossing 
seam, lowest-order time-dependent perturbation theory in­
dicates that the first signs ofleakage will be an approximate, 
albeit faint, copy of the parent packet.) Thus, our strategy is 
to use the TDH approximant to the bright-surface wave 
packet at the time fe when it goes through the crossing seam 
to establish an appropriate TDH "guiding" trajectory on the 
dark surface. Specifically, we propagate ¢g (x,y) within the 
TDH approximation on VI' and label it at time te as 
X (I) (x,te ) Y (I) (y,te ). We then take the wave packet on the 
dark surface to be identical at this time, i.e., 

X(2) (x,t
e

) y(2) (y,t
e

) =X(I) (x,t
e

) y(l) (y,t
e

). 

To determine the initial wave packet X(2)(X,0) y(2)(y,O) 
which evolves into X (2) (X,te ) Y (2) (y,te ) when propagated 
at the TDH level on V2 , we simply backpropagate 
X (2) (x,te ) Y (2) (y,te ) on this surface to t = O. [This is done 
by complex conjugating X (2) (X,te ) Y (2) (y,te ), propagating 
it forward in time through an interval te under the TDH 
approximation, and finally, complex conjugating the resul­
tant wave packet.] TDH propagation of X(2)(x,O) 
y(2) (y,O) then generates the desired guiding potential W2. 

Having specified an initially factorized wave packet 
x(a)(x,O) y(a)(y,O), where a = lor 2, and an appropriate 
potential surface Va (X,y), TDH evolution of the initial 
packet is tantamount to propagation according to the effec­
tive separable time-dependent potential 

Wa(X,y,t) = Vax (X) + (y(a)(y,t)IU~(x,y)ly(a)(y,t» 
+ Vay (y) + (X (a) (x,t) 1U~(x,y) IX (a) (x,t) 

- (X (a) (X,t) yea) (y,t) 1U~(x,y) I 
xX (a) (X,t) yea) (y,t». (4.1 ) 

As indicated in Eq. (4.1 ), these separable potentials are to be 
inserted directly into the CI prescription developed above in 
Sec. III. In particular, we can see that for these choices of 
Wa, the diabatic interaction potentials 6.v(a) take the sim­
ple form 

6.v(a)(x,y) = U~(x,y) - (x(a)(x,t)IU~(x,y)lx(a)(x,t» 

- (y(a)(y,t)IU~(x,y)ly(a)(y,t) 

+ (X (a) (x,t) yea) (y,t) 1U~(x,y) I 
xX (a) (X,f) yea) (y,t». (4.2) 

To complete the details of the construction of a set of 
zeroth-order basis wave packets via the "uncoupled single­
surface evolution" strategy, we note that in the numerical 
work presented below we have chosen to construct the or­
thonormal basis set as a product of Hermite -Gaussian func­
tions, as was done in Paper I. Moreover, the propagation of 
the basis wave packets according to the appropriate 1 D time-
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dependent SchrOdinger equation was accomplished via a 
standard fast Fourier transform (FFr)-based split-operator 
algorithm. 12 

As will be demonstrated in Sec. V, this "bare diabatic" 
zeroth-order basis-set strategy works quite well for the direct 
photodissociation dynamics considered in this work, even 
when the nonradiative coupling is strong and delocalized. 
Nevertheless, for more complex dynamics, it may become 
necessary to have a more sophisticated algorithm for gener­
ating a set oftime-dependent basis functions that "track" the 
exact wave-packet motion with sufficient accuracy to ensure 
rapid convergence of the CI part of the algorithm. For exam­
ple, the success of the scheme just presented depends on our 
ability to isolate a single crossing event, and "intuit" how the 
dark surface wave packet is going to emerge from it. When 
multiple seam crossings are involved (as in the case of colli­
sionally induced curve crossing, where the scattering wave 
packet must cross the seam on the way in and on the way 
out), this strategy obviously has to be modified. Fortunate­
ly, the Schr6dinger equation is linear, and we anticipate that 
it will often be possible to separate the evolution of the entire 
wave packet into a coherent superposition of wave packets, 
each of which encounter the crossing seam only once. Never­
theless, it would be nice to have an automatic way to gener­
ate "optimal" separable diabatic surfaces for arbitrary dy­
namical scenarios. A step in that direction is taken in the 
next subsection. 

B. Variationally optimized diabatic potentials 

In the quantum theory of many-body systems which 
undergo curve-crossing events, there is a well-known Har­
tree-type approximation procedure for simplifying the dy­
namics of secondary or "bath" degrees of freedom by re­
stricting them to have the same spatial wave packet (which 
is sometimes referred to as a "configuration") on both sur­
faces except for an overall complex scale factor. 13 In such a 
"single-configuration" or "mean (wave-packet) trajectory" 
approximation, the nuclear dynamics then proceeds accord­
ing to a single effective potential (which must be some 
weighted average of the two relevant diabatic potentials and 
the nonradiative coupling function; see below), and an over­
all scale factor sets the probability to be in either electronic 
state. We can use this idea to determine a single variationally 
optimized separable effective potential that can be utilized in 
tum to generate a set of naturally orthogonal basis functions 
for the purpose of implementing CI corrections to the ap­
proximate zeroth-order dynamics. 

Specifically, we consider 

11I'(t» g,; [a l (t) lei) + a2 (t) le2) ]X(x,t) Y(y,t)e
iS

,. 

(4.3) 

Appeal to the Frenkel-McLachlan variational principle l4 

yields optimized equations of motion for the components 
a l 2 (t), X(X,t), Y(y,t), and St. These are most easily stated 
in'terms of the one-dimensional effective potentials 

wx(x,t)=laI12[vlx(x) + (Uly)yUlx(x)] 

+ la212 [v2x (x) + (U2y )yU2x (x)] 

+ 2 Re(afa2 ) (gy) yg, (x) (4.4) 

[here (A)y = (Y(y,t)IA IY(y,t), etc.], and analogously 
for Wy (y,t). Furthermore, it is useful to define the "average 
interaction potential" 

VI(t) = la I 12(u lx )x (uly)y + la212(u2x)x(U2Y)y 

(4.5) 

Hartree-type variational equations of motion for the wave 
packetsX(x,t) and Y(y,t) can be expressed in terms of these 
quantities as 

iatX(x,t) = [Tx + Wx (x,t) ]X(x,t), 

iatycy,t) = [Ty + wy(y,t)] Y(y,t); (4.6) 

the dynamics of the phase angle St is given by 

St = V/(t); (4.7) 

and the coefficients a l ,2 (t) evolve according to 

i[:J 
= [(VI (x,y) - W(x,Y»x,y (gx)x(gy)y ] 

(gx)x(gy)y (V2(x,y) - W(x,Y»x,y 

x[::l (4.8) 

[Here (A) x,y = (X(x,t) Y(y,t) IA IX(x,t) Y(y,t», and 
VI (x,y) is the complete diabatic potential surface associated 
with electronic state lei) given in Eq. (2.3).] 

Note that since this strategy requires the diabatic guid­
ing potentials for both surfaces and the corresponding cen­
tral wave-packet trajectories to be identical, it will not yield 
asymptotically correct zeroth-order (pre-CI) dynamics un­
less the diabatic potential surface VI and V2 are asymptoti­
cally identical to within an overall constant. In the numeri­
cal work presented in Sec. V we employ potentials with this 
property [in particular, the asymptotic vibrational poten­
tials vax (x), a = 1,2, are chosen to be the same]. In more 
general circumstances, it may be wise, in order to guarantee 
asymptotic stability of the exiting wave packets, to trans­
form to an interaction picture representation 15 in which the 
asymptotic motion on surfaces VI and V2 has been removed. 

Once the effective potential W(x,y) = Wx (x,t) 
+ Wy (y,t) - VI (t) has been determined, CI corrections 
can be built as discussed in Sec. III. Note that since 
WI = W2 = W in this scheme, the same effective separable 
potential is used to generate the (same) set of time-depen­
dent orthonormal basis functions on surfaces VI and V2 • 

Corrections to this "single-configuration" two-surface Har­
tree wave-packet dynamics are then achieved by mixing the 
basis superposition coefficients in the manner described in 
Sec. III. 

V. NUMERICAL APPLICATION 

To illustrate the utility of our coupled-surface CI algo­
rithm we have studied photodissociation in a model involv­
ing two degrees of freedom which evolve according to Bes­
wick-Jortner8 (BJ) type potential surfaces, i.e., 

Va (X,y) = Aa exp[ - Ba (y - Cax)] + !Kax2 + V~O). 
(5.1) 
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The BJ model provides a qualitative description of the disso­
ciation dynamics of a triatomic molecule such as ICN in the 
absence of overall rotation. In particular, the y coordinate 
describes the bond which has been broken by direct elec­
tronic excitation (e.g., the distance between I and the CN 
center of mass) and the x coordinate describes the internal 
vibration (e.g., the CN vibration) which is excited in the 
process. The form of the nonradiative coupling function is at 
present not well understood for most polyatomic curve­
crossing systems. In Paper II we studied the effects of cou­
pling functions which are localized vs nonlocalized in the 
crossing region, and found that a nonlocalized coupling of 
the form G(x,y) = go exp [ - .B(y - Yo)] produced par­
ticularly complicated wave-packet dynamics. Hence to chal­
lenge the proposed CI method, such a nonradiative coupling 
function has been adopted for the numerical work described 
below. 

Computation of partial cross sections for dissociation 
into specified asymptotic fragment states requires accurate 
propagation of the wave packet over the full course of the 
photodissociation event. Specifically, the cross section to re­
sult in vibrational state v on diabatic surface a = 1,2 is ob­
tained from the asymptotic evolution of the wave packet ac­
cording to II( c) 

U ~V) (wd = I (k ~V)(y) I (X~V) (x) l<Pa (x,y,t-+ 00) W, 
(5.2) 

where X~V) is the vth asymptotic vibrational eigenfunction on 
surface Va' and I k ~V) > is an appropriately normalized plane­
wave state with wave vector k ~V) determined by conserva­
tion of energy. [For the class of two-dimensional Hamilto­
nians considered in this paper E ii) + w L = E~V) 
+ k ~V)2 12m y, where E ii) is the vibrational energy eigenval-
ue associated with <p~i) (x,y), the initially prepared vibration­
al state on the ground electronic surface, w L is the incident 
laser frequency, and E~V) the vibrational energy eigenvalue 
associated with the asymptotic vibrational fragment state 
X~V) (x).] In the commonly encountered situation alluded to 
above where only one of the excited diabatic surfaces is radi­
atively coupled to the ground electronic surface, the partial 
cross sections for photodissociation onto the other, radia­
tively "dark" excited surface are particularly sensitive to 
wave-packet propagation errors. Again, to challenge our CI 
method, we will concentrate primarily on the quality of the 
dark-surface partial cross sections which it can provide. 

In Paper II the coupled two-surface TDHG approxima­
tion was found to be remarkably successful at tracking the 
curve-crossing dynamics of an initially Gaussian wave pack­
et. Even bifurcations in the exiting wave packets (a common 
occurrence in the case of nonlocal nonradiative coupling) 
were well accounted for by TDHG level dynamics. How­
ever, we know from previous work in Paper I [and also Ref. 
3 (b) ] that the TDHG method has more difficulty propagat­
ing spatially extended initial states which can arise when 
some degrees of freedom are vibrationally excited. For this 
reason, we focus on initially vibrationally excited states in 
the tests reported here. As anticipated, simple TDHG dy­
namics can yield inaccurate partial cross sections for such 
initial states, particularly with regard to dissociation on the 

TABLE I. Parameters used to generate the potential-energy surfaces and 
the nonradiative coupling fuction. 

Potential parameter (a = 1,2) 

Aa Ba Ca Ka V~o) 

13.71 0.4547 0.9850 43.28 4.0 
34.04 0.4547 0.9850 43.28 0.0 

go {3 Yo 

5.7 0.668 0.0 

radiatively dark diabatic surface. As we shall demonstrate, 
errors in the TDHG dynamics can easily be corrected using 
the CI scheme proposed in Sec. III. 

The computations reported below are for the same basic 
system considered in Paper II. Specifically, we set the mass 
pertaining to each coordinate equal to 1 and the potential 
parameters as indicated in Table I. We chose the nonradia­
tive coupling strength to achieve about 50% transmission to 
the dark surface and focused on the case that the initial wave 
function corresponds to two quanta of excitation, i.e., v = 2 
in the "CN stretch." The parameters xs ' y" which set the 
starting location of the wave packet in the x and y coordi­
nates, were set to 0.665 and 1.5, respectively. In Fig. 1, we 
present snapshots of the probability density of the wave 
packet on the dark surface when the propagation is per­
formed using the coupled-surface TDHG approximation of 
Paper II. [It should perhaps be emphasized that all 
"TDHG" results displayed in the figures are based on the 
coupled-surface TDHG algorithm of Paper II, while all 
"CI" results are based on the two-surface TDHG-CI algo­
rithm developed in this paper, which utilizes separable sin­
gle-surface guiding potentials to generate the basis functions 
appropriate to each diabatic potential.] As observed in that 

~~~~~~~~~-r~ 
-3 o 

X 
3 

FIG. I. TDHG contour plot of dark-surface wave-packet probability densi­
ties for times t = 2 and 4 on the dark surface, V" The initial wave packet on 
bright surface, V" is also indicated for reference. (The dark-surface wave 
packet is identically zero at t = 0.) The x and y coordinates represent the 
bound and dissociative degrees of freedom, respectively. The straight line 
denotes the V, - V2 crossing seam. 
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(.) 

(b) 

1~~:::::::r::::::::;~~::;:::::~---,.~ 
-3 o 

X 
3 

FIG. 2. Probability densities, as in Fig. I, comparing exact dark-surface 
probabilities at times t = 2 and 4 (solid) vs those for (a) CI scheme A (CI­
A) and (b) CI scheme B (CI-B) (dashed lines). The basis set employed is 
indicated in Table II. 

work, the dark-surface wave packet bifurcates, and further­
more, the TDHG packet retains a rigid orientation along the 
x andy axes. In Figs. 2(a) and 2(b) we depict the analogous 
probability densities obtained from our CI methods outlined 
in Sec. IV A (schemeA) and Sec. IV B (scheme B), respec­
tively, which are compared to exact results obtained via two­
dimensional (2D) split-operator FFT propagation. 12 There 
are two important features to note concerning Fig. 2. First, 
as it evolves the exact wave packet becomes twisted in such a 
way that it cannot be accurately represented by a single fac­
torized ("rigid") TDHG packet. Second, our CI algorithm, 

TABLE II. Number of basis functions (BPs) used for calculations shown 
in Figs. 2 and 3. CI-A stands for the scheme developed in Sec. IV A, and 
analogously, CI-B is for that in Sec. IV B. 

x BPs 
yBPs 

Bright surface 

CI-A 

5 
8 

CI-B 

5 
7 

Dark surface 

CI-A 

6 
14 

CI-B 

6 
14 

1 

." 
o 
o 

CII o 
c:i 

'-' -.N 
'"b.-< 

o 
c:i 

v=O 
EXACT -­
TDHG 
CI-A 
CI-B 

8 +---~-.--~--~~~--r------.------, o 
0.0 

(a) 

(b) 

(e) 

o 
IQ 
o 
o 
c:i 

10.0 20.0 30.0 40.0 

v=l 
EXACT -
TDHG 
CI-A 
CI-B --

50.0 

o 
o 8 +------.~----.-----~~~--_r----__. 
00.0 

o 
IQ 
o o 
o 

o 

10.0 20.0 30.0 40.0 50.0 
c.JL 

v=3 
EXACT 
TDHG 
CI-A 
CI-B 

g +------.------.---~~~~~~--~--. 
00.0 10.0 20.0 30.0 40.0 50.0 

c.JL 

FIG. 3. Exact (solid), CI-B (solid), CI-A (dotted), and two-surface 
TDHG (dashed line) partial cross sections for population of the asymptotic 
vibrational eigenstates (a) v = 0, (b) v = I, and (c) v = 3 on the dark po­
tential-energy surface V2 , as a function of incident laser frequency OJL • 

implemented with guiding diabatic potentials generated by 
the strategy of either scheme A or scheme B, is capable of 
representing the required wave forms without undue effort. 
Close examination reveals that the numerical results ob­
tained from the CI variations A and B are not quite identical. 
In particular, the rate of convergence of the two schemes 
differs slightly, as discussed more fully in Sec. VI. However, 
the final results obtained from the two methods are of com­
parable quality. Certainly, the converged wave-packet tra­
jectories obtained with a "large" number of basis functions 
(cf. Table II for details) are indistinguishable at the level of 
resolution characterizing Fig. 2. 

In Fig. 3 we present partial cross sections on the dark 
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surface converged via "large" basis CI computations and 
compare these to exact and TDHG results. As can be seen, 
both CI algorithms yield results which are very close to the 
exact ones (extracted from the numerical grid integration 
scheme described above), while the analogous TDHG re­
sults are poor. In general, variation B performs slightly bet­
ter than A, but the agreement is sufficiently good in both 
cases to be termed "quantitative." Even though we have 
termed these "large-basis" calculations, the computational 
effort is still small compared to that required for exact 2D 
FFT integration. We have not tried to fully optimize the 
performance of either the split-operator FFT or TDHG-CI 
codes, but for the versions which were utilized in these calcu­
lations, we estimate conservatively that the TDHG-CI code 
applied to the "large" basis set indicated in Table II is 3-4 
times faster than the 2D split-operator FFT. 

An important feature of our algorithm is the flexibility 
to concentrate effort on the hardest degrees of freedom or 
diabatic surface(s). In the present calculation we can see 
from Table II that to get a very accurate bright surface wave 
packet requires 35 basis functions (5 for the x coordinate 
and 7-8 for the y coordinate), but that the more elaborate 
motion on the dark surface requires 84 basis functions for CI 
scheme A and 70 for scheme B. In the same spirit, we are free 
to choose different numbers of basis functions on different 
degrees offreedom (e.g., 6 vs 14 on the dark surface for x and 
y, respectively). We expect this flexibility to concentrate nu-

(a) 

(b) 

~~~~r=~~~~~~-J 
-3 o 

X 
3 

~~~~~~~~~ 
-3 o 

X 
3 

FIG. 4. As in Fig. 2, but using a smaller basis set (see Table III). 

TABLE III. Same as Table II, but for the calculations shown in Figs. 4-7. 

xBFs 
yBFs 

Bright surface 

CI-A 

3 
7 

CI-B 

3 
7 

Dark surface 

CI-A 

3 
7 

CI-B 

3 
7 

merical effort where it is required will prove to be crucial in 
applications to multidimensional systems. 

It is also interesting to explore the accuracy of these CI 
methods when a smaller number of basis packets are uti­
lized. This is an important issue because it may be possible 
using small basis sets to obtain semiquantitative results at a 
very low cost. In Fig. 4 we show results analogous to those 

(a) 

(b) 

(e) 

en 
o 
o 

v=O 
EXACT 
CI-A 
CI-B 

o 
o +-~~--.-~~~~~---.-------.------. 
o 

0.0 

o 
It) 
o 
o 
o 

o 

10.0 20.0 
CJL 

30.0 40.0 

v=l 
EXACT 
CI-A 
CI-B 

50.0 

o ..... '_ g +-----~~~---.------~~---.------~ 
00.0 

o 
It) 
o 
o 
o 

10.0 20.0 30.0 40.0 
C.h 

v=3 
EXACT 
CI-A 
CI-B 

50.0 

o 
o g +------,------~=-~-,--~--,-~~~ 
00.0 10.0 20.0 30.0 40.0 50.0 

CJL 

FIG. 5. As in Fig. 3, but using a smaller basis set (see Table III). 
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FIG. 6. Bright-surface partial cross sections extracted from the small basis­
set calculation specified in Table III. Exact (solid line) and TDHG (dotted 
line) results are compared for final vibrational states (a) v = 0 and (b) 
II = 1. 

contained in Fig. 2, except that they were obtained with the 
"small-basis" set described explicitly in Table III. It can be 
seen from the probability density plots in Fig. 4 that the 
essential distortions of the dark-surface wave packet are al­
ready contained in these small-basis CI computations. Obvi­
ously, these results are not converged to the same level as the 
large-basis CI trajectory in Fig. 2, and consequently the par­
tial cross sections extracted from the small-basis wave pack­
et are not expected to be as accurate as their large-basis coun­
terparts. This is, in fact, the case, as Fig. 5 shows. Although 
there are small discrepancies between small-basis CI and ex­
act results, the improvement over TDHG-level results ob­
tained with this modest amount of CI is dramatic (cf. Fig. 
3). Considering that the small-basis CI calculation runs five 
times faster than the large-basis counterpart used to generate 
Figs. 2 and 3, the virtue of small-basis CI corrections is clear. 

Small-basis CI results for the bright-surface partial 
cross sections, presented in Figs. 6 and 7, reinforce this con­
clusion. We expect these quantities to be somewhat less deli­
cately dependent on the hopping of wave amplitude between 
the two diabatic surfaces, and indeed, small-basis CI does a 
good job in accounting for them, as Fig. 7 shows. Neverthe­
less, the effects of CI corrections are often substantial, as the 
failure ofTDHG in Fig. 7(b) indicates. 

(a) 

(b) 

lQ 
o o 
-.j< 
o 
o 

.... 
o 
o 

~ 
\ 
\ 

v=O 
EXACT --
TDHG ........ . 

\\ ..... g +-__ -L __ .-__ ~~~ ______ ._------._------, 

o 

o 
CII 
o 
o 
o 

o 

0.0 10.0 20.0 
CJL 

30.0 40.0 50.0 

v=l 
EXACT 
TDHG 

g +-______ ._L--=~~L-----~~----._------, 
o 
00.0 10.0 20.0 30.0 40.0 50.0 

CJL 

FIG. 7. Bright-surface partial cross sections extracted from the small basis­
set calculation specified in Table III. Exact (solid line), CI -A (dashed line), 
and CI-B (dotted line) results are compared for final vibrational states (a) 
II=Oand (b) v= 1. 

VI. DISCUSSION AND CONCLUSIONS 

In recent years the time-dependent Hartree approxima­
tion 14 has been established as an important tool for studying 
many-body quantum dynamics.2

•
3

•
9 It has major computa­

tional and interpretive advantages. Computationally, it re­
duces the scaling of effort from an exponential to a nearly 
linear function of spatial dimensionality. At the same time, 
the factorization of the overall system wave packet into sin­
gle-degree-of-freedom pieces allows easy visualization of 
many-body quantum dynamics. 

Nevertheless, the TDH approximation can fail qualita­
tively in situations where correlation effects become suffi­
ciently strong.2•3 (b).4.6(c).16 We have shown in this paper that 
spatially extended wave packets moving on nonradiatively 
coupled diabatic potential surfaces can stymie TDHG meth­
ods. Clearly, the ability to compute strongly correlated 
wave-packet dynamics for multidimensional curve-crossing 
problems is required in order to successfully model many 
experimentally interesting scenarios. The coupled-surface 
TDHG-CI algorithm introduced in this work appears to 
hold some promise in this regard. 

As noted in the Introduction, the idea of correcting for 
the deficiencies of a Hartree factorization ansatz by repre­
senting the exact system wave function as a superposition of 
products of single-coordinate functions is not new. This idea 
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has been extensively developed in CI methods for computing 
electronic structure of atoms and molecules. 5 It has also 
been utilized in time-dependent wave-packet dynamics ap­
plications, although to a much lesser extent. Most extant 
wave-packet CI algorithms other than the one introduced in 
Paper I utilize projection operators that assign different 
parts of the Hilbert space to different functions. Such algor­
ithms are often referred to as MC-TDSCF [Refs. 2(a) and 
16] or MC-TDH,6(C) where the abbreviation MC stands for 
"multiconfiguration" (a "configuration" being a single fac­
torized TDH wave packet). 17 It is difficult to obtain accu­
rate results from a highly restricted set ofTDH-type config­
urations since considerable intuition is required to pick the 
projection operators. The other alternative is to use many 
configurations to "forcibly" span the relevant Hilbert space. 
A rather general formal procedure along these lines has re­
cently been given by Meyer, Manthe, and Cederbaum.6(c) 

However, the prescribed equations of motion are quite com­
plicated. The CI algorithm developed in Paper I sacrifices 
flexibility in the basis functions in return for very simple 
evolution equations for both the basis wave packets and the 
mixing coefficients. One of the strengths of this strategy is 
that it can be extended in a practical way to more complicat­
ed situations, such as the case of wave-packet motion on 
coupled potential surfaces studied herein. 

A critical issue in the construction of the coupled-sur­
face CI scheme developed in this work is the choice of "opti­
mal" zeroth-order diabatic guiding potentials which are 
used to generate orthonormal traveling TDH-type basis 
wave packets on each diabatic surface. We introduced two 
possibilities for these potentials. It is interesting to compare 
their performance as a guide to developing other alterna­
tives. Scheme A, which used diabatic potentials based com­
pletely on single-surface motion, appears natural when the 
nonradiative coupling is weak, since it correctly anticipates 
what the coupled-surface motion will look like in this limit. 
(The central wave packet on the dark surface is generated so 
that it is equal to its bright-surface counterpart when the 
latter goes through the diabatic potential crossing seam.) In 
general, it appears to be more accurate than scheme B when 
a very small basis is utilized. 

In the latter scheme, a single effective separable diabatic 
potential guides the (same set of) wave packets on both sur­
faces. This "mean (wave-packet) trajectory" potential is de­
termined by substituting a simple trial function of the appro­
priate form into the McLachlan variational principle. The 
resultant basis is somewhat less natural for describing weak 
or highly localized coupling effects (since the bright- and 
dark-surface basis wave packets cannot "go their separate 
ways" after the bright-surface wave packet goes through the 
crossing seam). Hence it is somewhat poorer when only a 
very small number of basis packets are employed. However, 
as more packets are added, the superposition of packets ob­
tained within scheme B becomes flexible enough to account 
for the fact that true wave packets on the two surfaces are not 
completely "slaved" to each other. Furthermore, the fact 
that some intersurface coupling is included via the prelimi­
nary "mean wave-packet trajectory" variational computa­
tion enables the basis packets to partially adjust to the nonra-

diative coupling, and consequently, once scheme B begins to 
converge to the exact result, it does so more rapidly than 
schemeA. 

In terms of flexibility, we should remember that the dia­
batic guiding potentials of scheme A are easy to construct 
and naturally describe the asymptotic motion of the exiting 
wave packets when the nonradiative coupling has gone to 
zero. The only difficulty could come when the wave packets 
go through the crossing seam multiple times, as discussed in 
Sec. IV A. The variationally determined diabatic guiding 
potentials of scheme B, on the other hand, have the advan­
tage that the variational principle eliminates all guesswork. 
For potentials of the kind considered here, the determina­
tion of optimal guiding potentials is straightforward and as­
ymptotically stable. However, for more general potentials, 
complications with regard to asymptotic post-dissociation 
stability may arise unless more elaborate procedures are de­
veloped. 

The basic difficulty with the coupled-surface CI method 
developed herein is that it relies strongly on the TDH ap­
proximation for its foundation. In cases where TDH-Ievel 
dynamics is qualitatively reasonable, our CI algorithm 
seems quite sensible, but in cases where TDH-Ievel solutions 
are qualitatively misleading, the same algorithm will become 
inefficient. (The single-surface version of this CI algorithm4 
suffers from the same problem.) Several possibilities for im­
proving upon the zeroth-order dynamics are naturally sug­
gested. 

The utilization of partially correlated (orthonormal) 
zeroth-order basis functions is worth investigating. For ex­
ample, it may be possible to use the variational generator 
approach of Kucar and co-workers l8 to allow some degrees 
of freedom to rotate among themselves within the restric­
tions imposed by a convenient variational trial function and 
still preserve the orthonormality of the partially correlated 
basis functions. Also, the incorporation of feedback between 
superposition coefficients and basis functions remains to be 
explored. In the implementations of our CI schemes pursued 
to date, the basis coefficients respond to the zeroth-order 
TDH-type wave-packet motion, but not vice versa. If a way 
could be found to enable the basis functions to adjust to the 
instantaneous shape of a multiconfiguration wave packet 
(without compromising the orthonormality of the basis 
functions), erosion of the accuracy of the zeroth-order basis 
functions could, in principle, be substantially reduced. Fin­
ally, we have observed that although the list of basis coeffi­
cients becomes long as the number of excitations included in 
the basis increases, most coefficients are very nearly zero. It 
should be possible to sift out the instantaneously unimpor­
tant basis functions, and thereby reduce the effective basis 
size. Clearly, there are many directions along which the ba­
sic ideas introduced here can be expanded, and many appli­
cations to multidimensional molecular systems which lie 
ahead. 
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