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ABSTRACT: Assessing the risk, the severity and the likely evolution of droughts are key tasks for improving preparedness
of regions prone to drought conditions, and mitigation of drought consequences. The access to real-time and high-quality
climatic information is essential for this purpose. Different climatic databases are being developed and made available on
real time by climatic research institutions, but their capability for quantifying droughts characteristics including severity,
or spatio-temporal variability, is uncertain given their low spatial resolution. In this study, we assessed the capability of
three databases with contrasted spatial resolution for measuring spatial and temporal variability of drought occurrence. The
standardized precipitation index, calculated for each database, showed that the low resolution datasets allow an acceptable
measurement of the magnitude, intensity and duration of droughts, while failing mostly in detecting the spatial patterns
of the specific drought episodes. Moreover, the capability of the datasets for assessing the impacts of droughts on surface
hydrology and tree growth was examined. Results confirmed the usefulness of the drought index for assessing drought
impacts on water resources and forest ecosystems even when low resolution databases are used. Copyright  2012 Royal
Meteorological Society

KEY WORDS drought; real-time monitoring; standardized precipitation index; low resolution datasets; streamflow; water
resources; dendrochronology; tree growth

Received 16 December 2011; Revised 20 June 2012; Accepted 23 June 2012

1. Introduction

Understanding, monitoring and mitigating droughts is a
very difficult task as a consequence of the intrinsic nature
of the phenomenon. A drought can be identified by its
effects at different levels, but there is not a physical
measurable variable that enables quantifying droughts.
Due to its long-term development and duration, progres-
sive character of its impacts and diffuse spatial limits,
drought is amongst the most complex natural hazards to
be identified, analysed, monitored and managed (Burton
et al., 1978; Wilhite, 1993). Drought conditions are much
more difficult to identify than other natural hazards since
drought is commonly the result of a number of factors,
which are only apparent after a long period of precipi-
tation deficit. Moreover, it is very difficult to determine
its onset, extent and end. In contrast to other natural haz-
ards such as floods, which are typically restricted to small
regions and to well-defined temporal intervals, drought is

∗ Correspondence to: E. Morán-Tejeda, Instituto Pirenaico de Ecologı́a,
CSIC, Zaragoza, Spain. E-mail: emoran@usal.es

difficult to locate in time and space, affecting wide areas
over long time periods.

As a consequence, most of the actions conducted
to mitigate the negative effects of droughts are taken
during the response and recovery phases of the disaster
management cycle, i.e. they are focused on alleviating
the immediate effects of drought once the phenomenon
has occurred and restoring the affected areas to their
previous state (Wilhite and Svoboda, 2000). While these
measures are still necessary, their effectiveness is limited
in the long-term basis, since they can only cope with
specific catastrophes; i.e. they hardly contribute to reduce
the vulnerability of the affected societies to drought. To
reduce the drought vulnerability of the affected societies,
it is necessary to promote an integral conception of
drought risk management (Wilhite, 1996). Hence, event-
oriented actions need to be complemented by other
measures focused on promoting drought risk mitigation
and preparedness (Wilhite, 2002).

Two fundamental requisites for reinforcing drought
mitigation and preparedness in the long term are (1) an
accurate drought risk assessment quantifying the extent of
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the hazard and the degree of vulnerability of the different
regions; and (2) real-time information on the develop-
ment of drought conditions and early forecasting of the
likely evolution of the drought. This was acknowledged
by the World Summit on Sustainable development (24
August to 2 September 2002) by the UN and the Johan-
nesburg Plan of Implementation of the Agenda 21, who
pointed to prioritize policy actions that include ‘. . . Pro-
viding affordable local access to information to improve
monitoring and early warning related to desertification
and drought.’ The Review of implementation of Agenda
21 and the Johannesburg Plan of Implementation by the
Commission on Sustainable Development of the UN Eco-
nomic and Social Council (5–16 May 2008) stressed
as well that ‘the establishment and effective operation
of systems and networks for drought monitoring, early
warning and drought impact assessment are essential to
the identification and formulation of effective and timely
response actions’.

New technologies are available for developing mon-
itoring and early warning systems based on real-time
information to support decision making (Svoboda et al.,
2002; Carbone et al., 2008). Currently, the main problem
associated to the different drought monitoring systems
developed worldwide is the access to high-quality cli-
mate information on a real time. In Europe, for example,
the competences for collecting information correspond
to the different states and governmental agencies, thus
a common network of meteorological observatories is
not available at the continental scale. In addition, most
of the existing meteorological information is not open-
access and available on real time. One of the other major
problems associated to climatic data is the existence of
data gaps in the series, and the irregular spatial coverage
of the meteorological stations. This is particularly rele-
vant for precipitation, given its stochastic nature in time
and space. To overcome these problems, it has become
more and more frequent during the last two decades the
development and use of gridded climatic databases (Tren-
berth, 1997; Goddard et al., 2001; Perry and Hollis, 2005;
Herrera et al., 2012). These allow characterizing contin-
uously in space the behaviour of climatic variables, thus
permitting regional and supra-regional climatic studies
being accomplished. However, they are product of sta-
tistical and geostatistical interpolations, and subject of a
number of errors and uncertainties throughout the pro-
cess of construction (Haylock et al., 2008). It should be
recommendable, prior the use a gridded product, the cor-
rection of errors and the validation with other grids or
with stations data (Hofstra et al., 2010; Herrera et al.,
2012).

Nowadays, there are available different grid climatic
databases that enables large-scale monitoring of climate
variables, including those of the climate research unit
(CRU, University of East Anglia) (Mitchell and Jones,
2005), the Telecommunication Net of the World Meteo-
rological Organization (http://www.wmo.int/pages/prog/
www/index en.html) or the Global Precipitation Clima-
tology Centre (GPCC) (ftp://ftp-anon.dwd.de/pub/data/

gpcc/html/monitoring download.html), among others.
These climatic datasets have, however, very low spatial
resolution (typically 100 km2), and do not enable to find
spatial particularities in climate behavior, as the avail-
able station-based datasets by the national governmental
agencies do. We thus consider essential to validate these
datasets against finer resolution grids prior to their utiliza-
tion for real-time monitoring of droughts in the different
territories of the European continent.

The objectives of this paper are (1) to analyse the
capability of ‘low resolution’ datasets for quantifying
drought severity in a drought-prone area of southern
Europe, the Ebro Basin (Northeast Spain); and (2) to
assess the potential of the datasets for quantifying drought
impacts on different sub-systems, such as hydrology and
forestry. The assessment is based on the comparison of
the standardized precipitation index (SPI) calculated from
three different datasets of contrasted resolution. Details
of each database will be given in Section 3.1.

2. Study area

The Ebro Basin (Figure 1) is located in the northeast
of Spain and it is a region with complex topography
and diverse climate conditions. In the North, the Pyre-
nees record a humid climate with precipitation above
1300 mm. However, the centre of the Ebro Basin is the
northernmost semi-arid region of Europe, water availabil-
ity is often scarce and the management of water resources
is a priority task. The Ebro valley is usually isolated
from humid air masses by mountains located at the north
and south, thus drought is a very frequent hazard in
this area (Vicente-Serrano, 2005), affecting reservoir stor-
age levels (Vicente-Serrano and López-Moreno, 2005),
river flows (López-Moreno et al., 2011), crop production
(Vicente-Serrano et al., 2006), and vegetation activity
(Vicente-Serrano, 2007). Aridity is inherent to this area,
with a negative water balance (precipitation minus evap-
otranspiration) as a consequence of the high potential
evapotranspiration (PET) that occurs in summer. Thus,
annual PET reaches 1300 mm in some sectors of the val-
ley where annual precipitation hardly reaches 300 mm. In
spite of this, irrigation is a common practice in the low
sectors of the Basin, and numerous reservoirs were built
in the last decades to satisfy growing water demands.
Drought monitoring is therefore a priority in the region.
Real-time information on the developing of drought is
necessary to assess the possible impacts on the ecology,
water resources and cultivations of the Basin.

3. Data

3.1. Precipitation datasets
Three different precipitation datasets have been used for
the purpose of the study.

• EBRO: a high quality and dense dataset of precipitation
observations from the complete net of meteorologi-
cal observatories available in Spain has been used as
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Figure 1. Spatial distribution of the stations used in the EBRO, EDO and CRU climatic datasets (upper map) and location of tree-ring sites and
gauging stations analysed (bottom map).

the reference EBRO dataset (hereafter EBRO). This
dataset was built upon 429 observatories with data
between 1945 and 2005. It was obtained from the
MOPREDAS, a dense database of monthly precipi-
tation for Spain developed by González-Hidalgo et al.
(2011), and subjected to an accurate quality control
and homogeneity testing.

• EDO: the second dataset was obtained directly from
the European Drought Observatory (EDO), which
uses the available stations from the telecommunication
net of the World Meteorological Organization. The
availability of data and the density of observatories are
much lower than that of the EBRO. For the Ebro Basin,
the EDO dataset contains 14 observatories within the
Basin or in neighbouring areas.

• CRU: the third precipitation dataset used is the CRU
TS 3.1 (hereafter CRU), produced by the CRU of
the University of East Anglia (UK). It has a spatial
resolution of 0.5°.

The location of the precipitation observatories for the
reference EBRO dataset, the EDO observatories and the
0.5° grid CRU are showed in Figure 1 (upper map).

3.2. Drought impact datasets

For achieving the second objective of the study, we used
two different environmental datasets:

• Tree-ring data. These data represent a proxy of annual
growth data and were extracted using dendrochrono-
logical methods. The dataset corresponds to 8 mean
width chronologies of Pinus halepensis Mill. forests.
The forests were selected based on the dominance of
P. halepensis in the canopy over at least 1 ha of fully
forested area. At each of eight sampling sites (Figure 1,
bottom map), 15–20 trees were randomly selected,
separated by at least 50 m from each other. At least
two radial cores per tree were taken at 1.3 m height
using a Pressler increment borer. The preparation of
the wood cores and the statistical standardization of
the tree-ring width series were done following stan-
dard dendrochronological methods (Fritts, 1976). Fur-
ther details on the dataset can be found in Pasho et al.
(2011).

• Streamflow data. For the entire gauging stations net-
work available in the Ebro Basin (López-Moreno et al.,
2011), we selected different sub-basins that correspond
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to the headwaters, the medium course and the out-
let of the main stream, the Ebro River. The series of
monthly river discharges (Hm3 year−1) were converted
to standard units through calculation of the standard-
ized streamflow index (SSI) (see the details of calcula-
tion in Vicente-Serrano et al., 2011). Figure 1 (bottom
map) shows the location of the different gauging sta-
tions and their correspondent watersheds.

4. Methods

4.1. Selection of a drought index

Drought indicators are the most essential element for
drought analysis and monitoring since they allow identi-
fying and quantifying droughts (e.g., see reviews in Heim,
2002; Mishra and Singh, 2010; Sivakumar et al., 2010).
For the purpose of this study, we have selected the SPI
(McKee et al., 1993) since it has been recommended by
the World Meteorological Organization as the reference
drought index, and it only needs precipitation data to be
computed.

The SPI enables to be calculated at different time
scales. The time period from the arrival of water inputs
to availability of a given usable resource differs con-
siderably. Thus, the time scale over which water deficit
accumulates becomes extremely important and function-
ally separates hydrological, environmental, agricultural
and other types of drought. This multi-scalar nature of
droughts (McKee et al. 1993) was the other reason for
selecting the SPI versus other traditional indices (such
as the Palmer drought severity index). The computation
of the SPI is well documented, therefore we suggest the
interested reader that check the original proposal (McKee
et al. 1993), or the detailed version of the index that we
have used, in Vicente-Serrano (2006) or López-Moreno
and Vicente-Serrano (2008).

The SPI calculation was independent for each one
of the meteorological stations from the EBRO, EDO
and also for the 0.5° gridded series from the CRU.
Once the SPI was calculated in each station, it was
spatially interpolated to obtain SPI grids for each dataset.
The EBRO and EDO were interpolated at a resolution
of 5 km to match with the drought products provided
by the EDO. A method of ‘splines with tension’ was
used to perform the interpolations (Mitasova and Mitas,
1993). We selected this method since it provides the
same value of the variable in the points with available
measurements (exact interpolator), which is critical in the
comparison of different precipitation datasets. In addition,
the method is automatic, and this was essential given the
large number of monthly precipitation interpolations to be
done (732 months × 4 time scales). Geostatistic methods
(i.e. krigging) need an assisted semivariogram fitting
and they are not operative for massive interpolation.
In addition, splines have provided better results than
other local methods (e.g. inverse distance weighting) to
interpolate precipitation data in the Ebro basin (Vicente-
Serrano et al., 2003), reducing the local artifacts and

providing more coherent surfaces. Finally, the EBRO was
re-gridded to 0.5° resolution (using average of all grids
within the large new grids) to be compared with the SPI
obtained from the CRU dataset.

We analysed the accuracy of the interpolated maps
obtained with the EBRO dataset. Although interpolating
time series of climate variables is much more problematic
than using average values, since the spatial variability
of the climate variables increase when the cumulative
period decreases (Jeffrey et al., 2001), the high spatial
density of the EBRO dataset has provided very good
results interpolating the time series of the SPI values.
Each monthly SPI map was validated using a ‘jack-
knifing’ method, which is based on withholding one
station out of the network, estimating values from the
remaining observatories, and calculating the difference
between the predicted and observed values for each
withheld observatory (Phillips et al. 1992). We calculated
the mean absolute error and the Pearson’s correlation
coefficient between the observed and predicted SPI values
at the time scales of 3, 6, 9 and 12 months. Figure 2
shows a summary of the validation from 1945 to 2005.
The accuracy of the maps decreases when time scale
increases, but the agreement between the observed and
the predicted SPI values is high, with an average mean
absolute error for the entire series of 0.16, 0.18, 0.20 and
0.21 for the 3-, 6-, 9-, and 12 month SPI, respectively,
and very high coefficients of correlation between the
observed and predicted SPI values.

4.2. Statistical analyses

The comparison between the different datasets was per-
formed using different statistical techniques. First, we
used Pearson correlations to determine the areas of high
and low agreement between datasets. We also used trend
statistics to determine possible differences in the identifi-
cation of the changes of drought conditions on time as a
function of the dataset. Trends were calculated for each
gridded point using the nonparametric Mann–Kendall
(MK) test. The power of the MK test for detecting mono-
tonic trends in time series have been previously checked
(Yue et al., 2002). The test provides two useful param-
eters for characterizing trends: the Kendall’s coefficient
(tau), which indicates the sign and strength of the trend;
and the statistical significance (p-level) set for rejecting
the null hypothesis (no trend), which in this study was
p < 0.05 (a 95% confidence level). The computation of
the test can be checked in the original proposals by Mann
(1945) and Kendall (1975).

5. Results

5.1. Quantification of the drought severity
with the different multi-scale datasets

There are important differences in the spatial detail of the
drought information provided by the different dataset. As
a representative example, Figure 3 shows the 3-, 6-, 9-
and 12 month SPI for the EBRO, EDO and CRU datasets
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Figure 2. Box-plots summarizing the cross-validation results for the standardized precipitation index (SPI) maps of the entire time series
(1945–2005): (a) Mean absolute error and (b) Coefficient of correlation (R-Pearson).

Figure 3. Example of the standardized precipitation index (SPI) datasets from the EBRO, EDO and CRU data. The maps correspond to June
1995, in which strong drought conditions affected most of the Ebro Basin.

for the Ebro Basin in June 1995, when very severe
drought conditions affected most of the Basin. The EBRO
dataset shows a high degree of spatial detail, recording
several local features in the drought severity given the
high density of precipitation observatories used. On the
contrary, the EDO dataset shows more general spatial
patterns in the drought conditions, with an excessive
spatial filtering of the drought severity levels across
the region. Finally, the CRU dataset records excessively
coarse information to detect the local drought features at
a regional scale.

However, as shown in Figure 4, the two ‘low resolu-
tion’ datasets represent quite well the general evolution
of the drought conditions and the drought severity in the

entire Basin. The main drought episodes recorded in the
Basin from the EBRO dataset are also well identified
using the EDO and the CRU datasets. At the time scale
of 3 months, the correlation between the EBRO and the
EDO SPI is 0.96 and between the EBRO and the CRU
SPI 0.97. However, the resemblance between the differ-
ent datasets decreases when the SPI time scale increases.
For example, at the 12 month time scale, the magnitude
of the drought episodes changes noticeably as a func-
tion of the dataset. The drought episode of 1985–1986,
which showed a high magnitude from the EBRO SPI,
shows much lower magnitude from the EDO SPI. In addi-
tion, the EDO dataset tends to increase the magnitude of
the moist periods recorded from 1995 and to reduce the
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Figure 4. Average 3-, 6-, 9- and 12 month series of the standardized precipitation index (SPI) for the entire Ebro Basin based on the EBRO,
EDO and CRU climatic datasets (1974–2005).

magnitude of the droughts during the same period. Dis-
parities are as well observed between the EBRO and the
CRU datasets with some differences in the magnitude and
duration of the drought episodes.

Figure 5(a) shows the spatial variability in the corre-
lation of the SPI values between datasets. As previously
observed for the whole basin average time series, the
correlations tend to be higher for shorter (3 months) than
longer time scales (12 months). The lowest correlation
values (R = 0.5) are recorded in the north-western areas,

where the EDO dataset does not contain any precipitation
stations; but in general correlations between datasets are
higher than 0.75 in most of the Basin. Figure 5(b) shows
the correlations between the EBRO SPI and the SPI from
the two low resolution datasets at the time scales of 3
and 12 months for January and July. These months cor-
respond to the coldest (January) and warmest (July) in the
study area. In both months, lower correlations are found
in the northwest part of the study area, mainly at the
longest SPI time scales (12 months). Nevertheless, the

Figure 5. Correlations of SPI series between the different datasets for the period 1974–2005. (a) for the entire series, on different time scales,
(b) for January and July series on 3- and 12 month time scales.
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Figure 6. Box-plot of correlations between the EBRO and CRU standardized precipitation indices (SPIs) (0.5° resolution, left column) and EBRO
and EDO SPIs (5 km resolution, right column) at the time scales of 3, 6, 9 and 12 months. Each bar summarizes the correlations for the complete
set of 5 km or 0.5° for the corresponding month and time scale. The plot ‘total’ corresponds to the correlations from the complete series without

separation month by month. Box: 25th and 75th percentiles; whiskers: 10th and 90th percentiles; dots: 5th and 95th percentiles.

pattern tends to be the opposite at longer time scales,
since stronger spatial variability in the correlations is
found in winter than in summer. In Figure 6, the correla-
tions for the different months of the year are summarized
by means of box-plots. In general, the agreement between
the EBRO SPI and the other two low resolution datasets
is quite good, independently of the SPI time scale and
the month of the year, as average correlations tend to be
higher than 0.8 for all of the months. The aforementioned
pattern of higher (lower) correlations for short (long) time
scales in winter months and the opposite for summer is
as well observed in Figure 7.

The evolution of the surface affected by droughts
from the three datasets also provides interesting results.
For this purpose, two different thresholds have been

used: SPI = −0.84, which represents the 20% of the
probability distribution of the SPI and can be considered
as a threshold for moderate droughts; and SPI = −1.65,
which is the 5% of the probability distribution and can
be representative as a limit for severe droughts. Figure 7
shows the evolution of the surface affected by droughts
at the time scales of 3 and 12 months considering the
three datasets. Both the CRU and EDO datasets tend to
record the surface area affected by droughts similarly
than the EBRO dataset, independently of the SPI time
scale. However, it seems that the EDO SPI tends to
underestimate the surface affected by droughts at both
time scales. This is probably related to the interpolation
procedure, in which the SPI values are excessively
smoothed in the space due to the very few observatories
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Figure 7. Evolution (1974–2005) of the surface area affected by droughts considering two SPI thresholds (−0.84 and −1.65) at the time scales
of 3 and 12 months for the EBRO, EDO and CRU datasets.

included in the EDO dataset, and the local variance is
reduced compared to that recorded in the SPI maps from
the EBRO dataset.

The different SPI datasets were also compared in terms
of their capability of identifying the trends in the drought

severity during the study period. For this purpose, we
calculated the Kendall’s tau statistic for the different
datasets. Figure 8 shows the spatial distribution of the
tau values for the time series of SPI in January and
July at the 3- and 6 month time scale for the three

Figure 8. Kendall’s tau coefficient assessing temporal trends for the 3 and 6 months January and July standardized precipitation index series,
and considering the three datasets (1974–2005).
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Figure 9. Box-plot of Kendall tau coefficients (trends) for the EBRO, EDO and CRU standardized precipitation indices at the time scales of 3,
6, 9 and 12 months (1974–2005). Dashed lines indicate the threshold for statistical signification. Box: 25th and 75th percentiles; whiskers: 10th

and 90th percentiles; dots: 5th and 95th percentiles.

datasets between 1974 and 2005. In January, the SPI
trends are dominantly positive (more humid conditions
on time) but the most important changes are identified at
the time scale of 6 months, mainly in the western part
of the study area. In July, the trends are dominantly
negative (drier conditions) and also the 6 month time
scale records the changes of higher magnitude in the
Basin. These dominant positive trends in January and
negative in July are also observed from the EDO and
CRU datasets although large spatial differences are found.
For example, the trends in January and July affect larger
areas of the basin for the EDO than for the EBRO
dataset, being the former less sensitive to local variability.
The CRU dataset also records the positive SPI trends in
January, but oppositely it does not reproduce so well the
negative trends in July. Figure 9 shows a summary of
the trends found for the different months and time scales
from the three datasets. At the time scale of 3 months the
EBRO dataset recorded negative trends between February
and August, whereas positive trends were found between
September and December. The same pattern is well
reproduced using the CRU and EDO datasets. At the time
scale of 6 month negative trends in the EBRO dataset are
dominant from April to September. Although with some

differences in magnitude, these are also well observed in
the EDO and CRU datasets. The EDO, however, tends
to produce trends of higher magnitude in some months
and a lower spatial variability than the observed in the
EBRO. Moreover, the CRU dataset shows a higher spatial
variability in the tau coefficients. Finally, at the time scale
of 12 months the EBRO dataset shows dominant negative
trends for all of the months although these are mostly
non-significant. On the contrary, the EDO dataset tends
to show dominant low-magnitude positive tau coefficients
and the CRU SPI series show a tendency to 0 values
(no change), and a high spatial variability in the trend
coefficients.

5.2. Capability of datasets to monitor drought impacts
on tree growth

In this section, we show the different performance of
the three drought datasets to identify the drought impacts
on tree growth in forest ecosystems. The assessment is
based on the analysis of the relationship between the
annual growth of P. halepensis, measured by means of
tree-ring width, and the series of the SPI at different
time scales. The SPI series were obtained from the grid
cells in which the forests are located. Since the tree-ring
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Figure 10. Correlations calculated between the monthly series of the standardized precipitation index (SPI) on time scales from 3 to 12 months
and the annual tree growth of Pinus halepensis forests obtained from tree-ring width records and considering the period 1945–2005. Correlations

were obtained from the EBRO, EDO and CRU SPI datasets.

width series provide annually resolved information on
tree growth, correlations have been calculated between
the series of annual growth and each one of the 12
monthly series of SPI. Figure 10 shows the results of the
correlation analysis with examples in two forest sites and
the averaged correlations for the eight-sampled forests.
The contour plots reveal that the patterns of correlation
in the two selected examples (Alcubierre and Tarazona)
are quite similar to that observed for the average of
the eight-studied forests. In general, tree growth is more
determined by the drought conditions during the spring
and summer months and quantified at long time scales
(>9 months). The results show that, as expected, the
strongest correlations between the SPI and tree growth
is recorded with the EBRO dataset. However, the pattern
of correlations between the EDO SPI and tree growth is
similar to that observed for the EBRO SPI. This is really
surprising given the low spatial resolution of stations used
to generate the EDO dataset. Finally, the CRU dataset
provides the worst results in terms of the magnitude
of correlations, albeit the pattern of months/time scale
correlations is quite similar to that obtained with the
EBRO dataset.

5.3. Capability of data sets to monitor drought impact
on water resources

Figure 11 shows the correlation between the SPI and the
series of the SSI in the selected sub-basins of the Ebro
Basin. The SPI series used in this analysis correspond to

the average SPI for each sub-basin, aggregated from the
limits of the surface area that drain to the gauging station.
The results are showed independently for the two gaug-
ing stations located in the Ebro river (the main course of
the Basin) and the gauging stations of the Pyrenees (north
of the Basin) and the Iberian range (south of the Basin).
This separation has been done due to the different patterns
of response of hydrological droughts to the various time
scales of the climatic droughts. In the Pyrenees, the high-
est correlations between SSI and SPI are found for short
time scales, and the correlation values tend to decrease
when the considered time scale increases. Oppositely, in
the tributaries of the Iberian Mountains, the hydrological
droughts tend to respond better at longer time scales.

Correlations show that in the two stations located in
the Ebro River (Zaragoza, in the middle course, and Tor-
tosa, at the outlet) the streamflow droughts seem to be
insensitive to the time scale of the climatic droughts. In
both stations the EBRO SPI records higher correlations
than the EDO and CRU SPI. Nevertheless, the differences
are minimal between the datasets. When the correlation
between the SPI and the SSI is analysed in the headwaters
of the Pyrenees and the Iberian range, higher correlations
are also obtained with the EBRO dataset. The differences
are more important in the Iberian range as the hydrolog-
ical behaviour in this zone responds more in depth to the
local climatic conditions. It is clear that the low resolution
EDO and CRU datasets provided slightly worse results to
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Figure 11. Correlations obtained between the series of the standardized precipitation index (SPI) at the time scales of 3, 6, 9 and 12 months and
the standardized streamflow index series in different sub-basins of the Ebro Basin. Correlations were obtained from the EBRO, EDO and CRU

SPI datasets.

identify drought impacts on streamflows than the EBRO
dataset, but in general they reproduce well the differ-
ences in the response to different time scales of climatic
droughts.

6. Discussion and conclusions

The above results have illustrated the capacity of the
drought products, generated in the frame of European
drought monitoring systems, to quantify accurately the
severity of droughts, their temporal variability and trends
but also to identify the drought impacts in different
systems: water resources and ecology. Results show that,
as expected, high resolution climate datasets allow more
accurate assessment of the magnitude, intensity, duration
and spatial extent of droughts than ‘low resolution’
datasets. In addition, given the local character of most
of the drought impacts as a consequence of the variety
of hydrological systems, ecosystems or land uses, fine
climate datasets are preferable to identify better these
impacts and to determine differences in the drought
vulnerability. It must be stressed, however, that it is
difficult to develop and maintain dense climate data sets,
which are the base for the drought monitoring systems in
Europe. Currently, most of the existing meteorological
stations are not automatic and they are not able to
provide real-time information to the drought monitoring
systems. Given the current net of meteorological stations
in Europe, it is not possible to access the data from
dense networks, such as the EBRO database, since they

are based on manual observations and they need careful
procedures of quality control and homogenization of the
data prior to be used for analyses.

One of the causes for the lack of information on real
time is related to the national character of the organiza-
tions that collect and manage the climate data in Europe.
Although the national nets of automatic stations are not as
dense as the manual ones, they are still much denser than
those provided by the World Meteorological Organiza-
tion, which are subsequently used to develop the low spa-
tial resolution climate datasets used in the different supra-
national monitoring systems (e.g. the EDO). At present,
the meteorological agencies of various countries, such
as The Netherlands (http://www.knmi.nl/klimatologie/
daggegevens/download.html) and Spain (ftp://ftpdatos.
aemet.es/datos observacion/resumenes diarios/), are of-
fering access to real-time information of meteorological
stations. It is desirable that these initiatives extend to
the rest of European countries and that a supra-national
organism controls the quality of this information and
homogenizes the formats. This would guarantee that all
the available meteorological information can be used to
supply in real time the drought monitoring systems that
are being developed in Europe.

While this kind of initiatives are developed, the
suitability of current available datasets for monitor-
ing droughts must be assessed. In this work we have
showed that using low spatial resolution meteorological
information can be useful to quantify drought sever-
ity and to assess drought impacts. The EDO and CRU
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datasets failed mainly in detecting the spatial patterns
of the specific drought episodes. This was expectable,
given the high spatial variability of precipitation in the
region and the low density of stations (or grids) used to
build the databases. The correlation between the low res-
olution (EDO and CRU) datasets and the EBRO dataset
tend to be lower in summer than in winter months. It
is interesting to interpret these differences as a function
of the diverse meteorological factors that drive the cli-
mate of the region in the different seasons of the year.
In winter, the precipitation is usually related to polar
depressions and associated fronts that cross the Iberian
Peninsula. In summer, the Azores high is usually in its
northernmost position blocking the entrance of Atlantic
air masses, and most precipitation is associated to convec-
tive phenomena, thus dependent on local factors such as
topography. The spatial variability of precipitation tends
to be higher, therefore, in summer than in winter months.
This would explain the stronger spatial differences found
in the 3 month SPI for the series of July regarding Jan-
uary. Therefore, when short SPI time scales are used to
monitor drought conditions in the Ebro Basin, the spatial
density of observations is more critical in summer than
in winter months. The opposite pattern was observed for
long time scales, this is, lower correlation in winter than
in summer months. This is because the SPI values in win-
ter for long time scales (6–9 months) are mainly driven
by the precipitation events recorded in the previous sum-
mer and autumn and the events that drive the long time
scale SPI in July are recorded in winter. For example,
the magnitude of the 6 month or the 9 month SPI in July
will mainly depend on the winter and spring precipita-
tion, which are less spatially variable than the summer
and autumn precipitation.

In spite of the lower level of resemblance for summer
months and long time scales, the correlations between
datasets are rather high. This result suggests the useful-
ness of the two low resolution datasets for detecting both,
severity and temporal variability of droughts. The results
showed that the EDO and CRU databases reproduce quite
accurately the temporal variability of the SPI, but the
EDO fails to identify the main drought episodes affecting
the region as a consequence of the excessive smoothing
of the interpolated maps, especially at long time scales.
Nevertheless, they allow identifying the main features
of the drought changes (trends), which is of particular
relevance in the frame of the current climate change sce-
narios, which in general project more frequent and intense
droughts throughout the 21st century in southern Europe
(Meehl et al, 2007; Giorgi and Lionello, 2008). Similarly
to drought intensity, the EDO and CRU datasets are less
sensitive to local variability in the detection of trends
compared to the reference dataset.

Finally, the potential of different datasets for identi-
fying drought impacts was examined as well. The two
selected systems, water resources and forests, are crit-
ical in drought-prone regions, such as the Ebro Basin.
López-Moreno et al. (2011) demonstrated a generalized
decrease of streamflows in the majority of the rivers in

the Basin during the second half of the 20th century,
which is representative of the decrease of water resources
in other Iberian basins (Morán-Tejeda et al., 2011b) and
other Circum-Mediterranean areas (Kahya et al. 2004;
Lespinas et al., 2010; Mavromatis and Stathis, 2011).
Moreover, the projections for future availability of water
resources depict a decrease of at least 20% by the end
of the present century in the Mediterranean Basin (IPCC,
2007). This alerts about the necessity of large-scale infor-
mation on the probable evolution of water resources in
relation with drought occurrence. The studied datasets
provide evidence of a high resemblance between the vari-
ability of SPI and SSI, which indicates the suitability of
using real-time climatic information for preparedness and
mitigation of drought consequences over the availability
of water resources. However, some differences between
datasets are observed in relation to the spatial scale of the
studied catchments. In the stations located along the Ebro
River, the differences between the three datasets for iden-
tifying drought impacts are minimal. Therefore, when the
drought indices are aggregated at low spatial scales (large
basins) the spatial resolution of the climatic dataset is not
a limiting factor for relating streamflow and drought vari-
ability. On the contrary, when small basins located in the
headwaters are analysed, the spatial resolution of the cli-
mate datasets is logically more critical since the scale is
more local. When the correlation between the SPI and
the SSI is analysed in the headwaters of the Pyrenees
and the Iberian range, the EBRO dataset performs better
than the two low resolution datasets. However, the EDO
and CRU datasets are able of reproducing acceptably the
patterns of change of correlation between SPI and SSI
as a function of the considered time scale. Thus, in the
Pyrenean headwaters the three datasets record higher cor-
relations at low time scales and values tend to decrease
with increasing time scale. On the contrary, in the Iberian
headwaters, correlations are higher for long time scales,
and this is as well reproduced similarly by the three
datasets. The differences in the response times of stream-
flows to precipitation between the Pyrenees headwaters
and the Iberian headwaters can be explained by natural
and human-induced factors. On the one hand because of
the different lithology that dominates in the two moun-
tain ranges. While in the Pyrenees, the varied lithology
induce a rapid response of the hydrological system to the
climatic inputs, in the Iberian range the dominant lime-
stones determine a higher temporal inertia in the river
flows. Limestone substrates facilitate the free drain of
water from precipitation straight to the aquifers, giving
to a lagged response of runoff (Soulsby et al., 2010).
Thus, the response of streamflows to precipitation deficits
or droughts is observed for the longest temporal scales.
Differing response of streamflows to precipitation due to
contrasted lithology has also been observed between other
Spanish mountain, the Cantabrian Range and the Central
System (Morán-Tejeda et al., 2011a). On the other hand,
some rivers of the Pyrenees and the Iberian mountains
are regulated for irrigation, hydropower, or for managing
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floods and droughts. The different patterns of manage-
ment of reservoirs may be responsible as well for the
observed differences in the response times of stream-
flows to SPI. (Vicente-Serrano and López-Moreno, 2005;
Lorenzo-Lacruz et al., 2010).

The impact of droughts on forests is of wide interest.
Pasho et al. (2011) recently demonstrated the suitability
of multi-scalar drought indices, such as the SPI, to
monitor impacts of droughts on tree growth, given the
different response of tree species or habitats to water
deficit. The correlations between tree-rings width and SPI
reach maximum values at the longest time scales for the
P. halepensis indicating that tree growth is limited by
the accumulated drought conditions of the previous year.
At the monthly basis, the moisture conditions of spring
(when the rates of radial growth are maximum; Pasho
et al. 2011) and summer months are the most important
in constraining the growth of trees. These two features
are reproduced by the three datasets, although the EBRO
reference displays the strongest correlations between tree-
ring width and SPI. At this respect, it is relevant to
stress that the EDO performs notably better than the CRU
dataset, which hardly reaches values of correlation of 0.6
between the tree growth and SPI series.

In general, it is observed that the drought impacts
and the drought vulnerability of the different sub-systems
are better identified using drought information at a high
spatial resolution but the low resolution datasets also
provide reliable outputs in terms of understanding multi-
source impacts. Further research would be desirable to
assess the capability of these datasets for reproducing
the vulnerability of other water-dependent systems such
as those related to agriculture and tourism, given its
implications for socio-economic development, especially
in regions where water is a strategic resource, such as the
Mediterranean Basin.

The variety of users of the real-time drought infor-
mation demand the best information as is possible. At
present the drought monitoring systems are not using
the best available information but the current provided
information is good for most of the management and
scientific purposes. Therefore, the main recommenda-
tion that may be inferred from the above analyses is
that drought monitoring systems must provide drought
information based on the available climatic informa-
tion, independently of the spatial scale at which the
data is available. In addition, efforts must be conducted
to improve the access to the available climatic infor-
mation at real time in Europe to improve monitor-
ing systems that allow taking more realistic decisions
and more efficient drought preparedness and mitiga-
tion of the drought impacts. In this sense, the initia-
tive of developing a Pan-EDO (Niemeyer et al., 2009;
http://edo.jrc.ec.europa.eu/php/index.php?action=view
&id=201) using different spatial resolution datasets
seems to be a very useful tool to access real-time informa-
tion about the drought severity on different spatial levels
and time scales.
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