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Abstract 10 

Surface seawater and lower atmosphere gas samples were collected simultaneously between 18°N and 40°S 11 

in the open Pacific Ocean in 2006-2007. Samples were analyzed for organochlorine pesticides (OCPs) to 12 

assess their distribution patterns, the role of ocean in the long-range transport (LRT), and the air-water 13 

exchange directions in the open Pacific Ocean. Such open ocean studies can yield useful information such 14 

as establishing temporal and spatial trends and assessing primary vs secondary emissions of legacy OCPs. 15 

Target compounds included hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) 16 

and its derivatives, and chlordane compounds. Concentrations for α-HCH, γ-HCH, trans-chlordane (TC), 17 

and cis-chlordane (CC) were higher in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) 18 

in both gaseous and dissolved phases, while the distribution patterns of DDTs and heptachlor exo-epoxide 19 

(HEPX) showed a reversed pattern. In the N Pacific, concentrations of α-HCH and γ-HCH in the present 20 

work were lower by 63 and 16 times than those observed in 1989-1990. The distribution patterns of DDT 21 

suggested there was usage in the SH around 2006. Calculated fugacity ratios suggested that γ-HCH was 22 

volatilizing from surface water to the atmosphere, and the air-water exchange fluxes were 0.3 to 11.1 ng m-23 

2 day-1. This is the first field study that reported the open Pacific Ocean has become the secondary source 24 

for γ-HCH and implied that ocean could affect LRT of OCPs by supplying these compounds via air-sea 25 

exchange.  26 

Keyword:  Pacific Ocean, organochlorine pesticides, atmosphere, seawater, air-water exchange 27 
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Capsule: Most organochlorine pesticides levels were higher in N Pacific and S Pacific and declined 28 
compared to three decades ago, γ-HCH was found to volatilize from surface water to the atmosphere. 29 

1. Introduction 30 

Persistent organic pollutants (POPs) are ubiquitous in the environment and can be detected in various 31 

biotic and abiotic matrices, even in the remote environments such as polar regions (Zhang et al., 2013; Muir 32 

et al., 2013; Galbán-Malagón et al., 2013a, c; Khairy et al., 2016; Ruge et al., 2018;). Most semi-volatile 33 

POPs, such as organochlorine pesticides (OCPs), can be transported globally and deposited in remote 34 

regions far from the primary emission areas (Ding et al., 2007; Wu et al., 2010; Zhang et al., 2012; Galbán-35 

Malagón et al., 2013a), which has caused extensive concerns due to their persistence, toxicity, and high 36 

bioaccumulative potentials (Berrojalbiz et al., 2014; Wang et al, 2017; Ma et al., 2018; Li et al., 2018; 37 

Lohmann et al., 2019). Long-range oceanic current transport, air-sea exchange, and biological pump and 38 

sedimentation processes greatly affect the distribution and fate of POPs in the ocean, which were once 39 

believed to be the ultimate sink of these contaminants (Iwata et al., 1993; Harner et al., 2000; Lohmann et 40 

al., 2009; Nizzetto et al., 2010; Xie et al., 2011, Zhang et al., 2012; Galbán-Malagón et al., 2013b). However, 41 

because of the declined emission of most legacy POPs after the bans on the usage of these contaminants 42 

and together with the warming of seawater (Yao et al., 2019), the ocean became the secondary source of 43 

certain POPs by returning to the atmosphere (Lohmann et al., 2009; Zhang and Lohmann, 2010; Huang et 44 

al., 2013). The outgassing phenomena have been reported for PCBs in the Pacific Ocean (Zhang and 45 

Lohmann, 2010;), in the Atlantic Ocean (Lohmann et al., 2012), and in the Great Lakes (Ruge et al., 2018), 46 

DDTs in the Equatorial Ocean (Huang et al.,2013), and α-HCH in the Arctic Ocean (Harner et al., 1999; Li 47 

et al., 2003; Bidleman et al., 2015). The distributions of POPs are different in various oceanic environments, 48 

so it is important to assess the air-water exchange directions and calculate the fluxes for all major POPs in 49 

the oceans, particularly the largest one, the Pacific Ocean, to better understand the global fate of POPs. 50 

The usage patterns of OCPs differed between both hemispheres. Many developed and developing 51 

countries located in the temperate and tropical regions in the northern hemisphere (NH) were considered to  52 

be the major sources of the legacy OCPs production and usage (Breivik et al., 2004). The Southern 53 
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hemisphere (SH), mainly covered by oceans, is considered to be less polluted. The distribution patterns of 54 

OCPs in NH may indicate historical usage, while the residue levels in SH may show ongoing usage of 55 

certain OCPs such as DDTs in Africa for control of Malaria (Huang et al., 2016). Comparisons of 56 

occurrences between the SH and the NH can also show the magnitudes of potential sources and efficiency 57 

of long-range transport (Zhang and Lohmann., 2010; Galbán-Malagón et al., 2013a; Shunthirasingham et 58 

al., 2016;). However, most of the previous assessment of organic pollution focused in the NH, especially 59 

the North Atlantic (Zhang et al., 2012; Lohmann et al., 2012), Arctic (Harner et al., 1999; Lohmann et al., 60 

2009; Bidleman et al., 2015), and N Pacific (Ding et al., 2007; Wu et al., 2010). There were only a few 61 

studies in the SH (Bigot et al.,2016), the major one was conducted a few decades ago (Iwata et al., 1993;). 62 

There was a long history of scientific assessment of organic pollution in polar regions and coastal areas 63 

(Zhang et al., 2007; Xie et al., 2011; Lin et al., 2012; Jantunen et al., 2015; Ma et al., 2018), but less 64 

frequently in the open ocean. As the largest water body on Earth, the Pacific Ocean plays a critical role in 65 

the cycling of OCPs in the environment. However, studies on OCPs in the Pacific are scarce, furthermore, 66 

the reports on air-water exchange studies of OCPs in the Pacific are even fewer. 67 

In this study, the surface seawater samples and marine boundary layer air samples were collected 68 

simultaneously from the open Pacific Ocean and analyzed for OCPs, specifically HCHs (α, β, γ-HCH), 69 

DDTs (o,p'- and p,p'-DDT, DDE, and DDD), chlordane including trans-chlordane (TC) and cis-chlordane 70 

(CC), heptachlor (HEPT), and heptachlor exo-epoxide (HEPX). The R/V Revelle sailed from San Diego, 71 

CA, to Samoa and from Samoa to New Zealand between December 2006 and January 2007, which crossed 72 

the Equatorial Current, North, and South Pacific Gyre. The results of the PCBs from the same cruise have 73 

been published elsewhere (Zhang and Lohmann 2010), this study focuses on the results of OCPs with the 74 

goals to (1) determine the residual levels and distribution patterns of selected OCPs in open Pacific to better 75 

understand the usage patterns in both hemispheres, (2) assess the air-water exchange directions and fluxes 76 

to investigate the role of open ocean in determining the transport and environment fates of selected OCPs. 77 
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2. Methods and materials 78 

2.1 Cruise Track and Sample Collection 79 

A total of 27 water samples and 44 air samples were collected every 12 h to 48 h during a cruise on 80 

board R/V Revelle from San Diego, CA (32.78 °N, 117.15° W) to New Zealand (40°S, 143.0°W) via Samoa 81 

between December 2006 and January 2007. The cruise track and sampling locations of the surface seawater 82 

and boundary layer air are presented in Supporting Information (SI) Table S1, Table S2 (date, time, volume, 83 

temperature, coordinates, wind speed, and relative humidity). 84 

2.2 Sample Treatment and Analytical Protocol 85 

Detailed sampling treatment and analytical methods have been described elsewhere (Zhang et al., 86 

2012). Briefly, OCPs in the gaseous phase were filtered through Whatman glass fiber filters (GFF) and 87 

retained by two polyurethane foams (PUFs) using a high-volume air sampler installed on the flying bridge 88 

(ca. 17 m above sea level). Three PUFs were used on the water side for collecting OCPs in the dissolved 89 

phase. Whatman GFF (0.7 μm) was used to filter particles and replaced when the flow rate was below 1 90 

L/min. The three PUFs of a few samples were analyzed separately to test if there was any breakthrough. 91 

Only compounds with low KOWs such as α, β, γ-HCH were detected on the third PUF in the water samples, 92 

which were corrected based on equilibrium partitioning approach following Zhang et al., 2012 (see SI for 93 

more details).  94 

Thirteen OCPs including α, β, γ- HCH, TC, CC, HEPT, HEPX, o,p-, and p,p-DDT, and their 95 

degradation products (o,p-, and p,p-DDD and DDE) were determined by a Quattro micro GC-MS/MS 96 

(Waters Corporation, Milford, MA, US) using a quartz capillary DB-5MS column (30 m × 0.25 mm × 97 

0.25 μm film thickness, Agilent). More detailed information about sample analysis and quality assurance / 98 

quality control is summarized in SI.  99 

2.3 Air Mass Back Trajectories  100 

Back trajectories (BTs) were calculated using NOAA’s HYSPLIT model to assess the air mass origins 101 

of each air sample. BTs were retrieved at the beginning and end of each sample collection at 300 m above 102 
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sea level and traced back for 10 days with 6 h steps (Fig.1). The detailed BTs information was described in 103 

Zhang and Lohmann (2010).  104 

2.4 Air-Water Fugacity Ratios and Air-Water Exchange Flux 105 

Organochlorine pesticides concentrations of 25 paired air-water samples collected simultaneously 106 

were used to calculate air-water exchange directions and fluxes. The calculation of air-water fugacity ratios 107 

(FRs) and air-water flux (Fa/w) has been described in more detail in Zhang et al. (2012). FRs were calculated 108 

according to equation (1):  109 

          110 
 111 
Where fgas and fwater are fugacities in air and seawater, Cgas and Cwater are gaseous (pg m-3) and dissolved (pg 112 

L-1) concentrations of OCPs, and Kaw (T, Sal) is the Kaw corrected with in situ temperature and salinity. 113 

According to the uncertainty assessment in FR calculation conducted by Zhang et al., (2012), the significant 114 

FRs for net volatilization (FRVolatilization) were 0.57 for α-HCH, 0.58 for γ-HCH, and 0.46 for HEPX, 115 

respectively. The significant FRs for net deposition (FRDeposition) were 1.56 for α-HCH, 1.55 for γ-HCH, and 116 

1.66 for HEPX, respectively. Only FRs > FRdeposition were treated as net deposition and FR < FRvolatilization as 117 

net volatilization with 95% certainty. FRs in between were deemed not significantly different from air-118 

water equilibrium.  119 

Air-water gas exchange fluxes (Fa/w, ng m-2 d-1) were calculated using a modified version of the two-120 

film model described in Schwarzenbach et al (2003): 121 

 122 
 123 
where Vpop, a/w is the air-water gas exchange mass transfer velocity, calculated as described in Zhang et al., 124 

(2012). A positive value of Fa/w indicates a net flux from water to air, whereas a negative value of Fa/w 125 

suggests net deposition of pollutants from air to water. 126 
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3. Results and discussion 127 

3.1 Gas phase concentrations and distribution patterns of OCPs in the open Pacific 128 

3.1.1 HCH. 129 

In the atmosphere, the sum of the α- β- and γ- HCH  (∑HCH) ranged from 2.1 to 12.0 pg m-3 (avg. 130 

=5.1 pg m-3) in the NH, and from 0.1 to 8.9 pg m-3 (avg. =1.1 pg m-3) in the SH (Table 1). α- and γ-HCH 131 

were the most abundant HCH isomers detected in the atmosphere in both NH and SH. Highest levels were 132 

observed at the beginning of the cruise where the air mass originated from the west coast of North America 133 

(Fig.1). The lowest air concentration of ∑HCH was observed at the southmost end of the cruise track in SH, 134 

and back trajectories indicated the air mass was transported from the Southern Ocean without contact with 135 

land for more than 10 days. In general, the average [∑HCH] gas in the NH was about 5 times higher than 136 

that in the SH, which was consistent with the distribution trends of HCH observed in the Atlantic Ocean 137 

(Xie et al., 2011). 138 

In the NH, the average atmosphere concentrations of α-HCH ([α-HCH]gas) and γ-HCH ([γ-HCH]gas) 139 

were 2.7 pg m-3 (range 0.6-7.2 pg m-3) and 2.6 pg m-3 (range 1.2-4.7 pg m-3), respectively, which were about 140 

4-7 times higher than the mean value of [α-HCH]gas (0.4 pg m-3) and [γ-HCH]gas (0.7 pg m-3) in the SH 141 

(Table1, Fig. 2). Such hemispheric differences for bother isomers were also observed by Iwata et al (1993) 142 

and still existed during this study in 2006-2007, suggesting a much larger inventory for HCHs in the NH. . 143 

Comparing to other oceans (Table S6), the average [α-HCH]gas and [γ-HCH]gas in this study were about 7 144 

times and 3 times lower than N Atlantic and Arctic Ocean (55-84°N) in 2004 (Lohmann et al., 2009), and 145 

12 times and 3 times lower than N Atlantic (58-64°N) in 2008 (Zhang et al., 2012), respectively, but were 146 

in line with those reported in the lower latitudes of the Indian Ocean (0-6°N) (Huang et al., 2013). Although 147 

open ocean studies would provide an insight on the global distribution of POPs including OCPs (Wurl et 148 

al., 2006), very few studies have investigated OCPs in the S Pacific Ocean. [α-HCH] gas and [γ -HCH] gas 149 

detected in the S Pacific (Figure 2, Table S6) were in line with those reported in the South Atlantic (1.6-150 

41.4°S) in similar latitudes (Xie et al., 2011) and those in the South Ocean at higher latitudes (47-74°S) 151 
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(Galbán-Malagón et al., 2013a). In the SH, β-HCH was the most abundant isomer ranging from 0.2-5.9 pg 152 

m-3 with an average value of 1.4 pg m-3. 153 

The data from this study and previous studies undertaken between 1989 and 2011 were plotted together 154 

in Figure 2 to assess the temporal and spatial trends of gaseous HCHs in the Pacific Ocean of both 155 

hemispheres, which provides useful insights on global fate of HCHs and ocean’s role in long range transport 156 

of OCPs. In the lower latitudes of the N Pacific, [α-HCH]gas and [γ -HCH]gas decreased by a factor of 63 157 

and 16 compared to 1989-1990 (Iwata et al., 1993). During the similar period, [α-HCH]gas and [γ -HCH]gas 158 

in the high latitudes (i.e. Arctic regions) decreased by a factor of 15 and 4 compared to 1984 (Oehme, 1991, 159 

Wu et al., 2010). Even though the levels of HCHs decreased across latitudes in the NH, the concentrations 160 

of HCHs were still much higher than in the SH (Iwata et al., 1993, Table1, Figure 2). A steep gradient of 161 

[α-HCH]gas was observed in the Pacific between the Arctic Ocean and the Southern Ocean (Fig. 2a). 162 

Although [γ-HCH]gas also decreased from 80°N towards SH, a slight increasing trend was observed near 163 

the Antarctic Continent (Fig.2). Variations in the α-HCH and γ-HCH distribution patterns are probably 164 

determined by the physiochemical properties of these compounds and usage history of technical HCHs and 165 

lindane. Technical HCHs had been used heavily from 1940s to 2000 in NH (Iwata et al., 1993; Lakaschus 166 

et al., 2002). Due to their high volatility (Table S3), α-HCH and γ-HCH can also be transported far away 167 

from source regions via long-range atmospheric transport and condensed at high latitudes (i.e. Arctic) due 168 

to global distillation. Relatively uniform distribution of α-HCH in the SH indicates less usage of technical 169 

HCH in the SH, whereas increasing [γ-HCH]gas with latitude in the SH suggests more lindane was used in 170 

the SH (Tanabe and Tatsukawa, 1982). The observed increase of both HCH isomers near Antarctic could 171 

also be that the result of previously deposited HCHs outgassing to the environment resulted from ice 172 

melting (Dachs 2011, Galbán-Malagón et al., 2013, Cabrerizo et al., 2013). Technical HCH was banned 173 

since the 1970s by many countries (Li and Macdonald 2005) resulted in the continuous decline in α-HCH 174 

levels globally seen in this study and in Canadian Arctic throughout the 1990s (Hung et al., 2005). Since 175 

both HCHs showed decline trends in both hemispheres compared to the 1990s (Iwata et al., 1993) 176 

suggesting no major emission sources since then, an apparent first order half-life (t1/2) can be estimated 177 
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following t1/2=t/log1/2([HCH]t/[HCH]0), where t is the time interval between 1990 and 2007, [HCH]t is the 178 

concentration measured in 2007 in the Pacific and [HCH]0 is the concentration reported by Iwata et al 179 

(1993). The half-lives for α-HCH were about 3.0 years both in the NH and SH, which were similar to those 180 

estimated in Great Lakes (3.3-4.4 years, Cortes and Hites 2000) but were lower than those for Canadian 181 

Arctic (9.1 years, Hung et al., 2005), presumably because the α-HCH emitted in the lower latitudes would 182 

deposit in the Arctic region due to its high volatility, then re-emit to the atmosphere from Arctic Ocean and 183 

glacial/ice loss (Dachs 2011, Galbán-Malagón et al., 2013, Cabrerizo et al., 2013), which slowed down the 184 

decline in higher latitudes. The half-lives for γ-HCH derived here were 4.5 and 4.4 years in NH and SH, 185 

respectively, which are similar to those in Great Lakes (4.6-5.4 years, Cortes and Hites 2000) and Canadian 186 

Arctic (4.9-5.7 years, Hung et al., 2005). The longer half-lives of γ-HCH compared to α-HCH were 187 

probably due to the continued usage of lindane (γ-HCH) after the ban of technical HCHs.      188 

The ratio of the α/γ-HCH has been suggested as a method of characterizing local lindane (mainly γ-189 

HCH) releases (near or less than 1) versus global transport of technical HCH residues (α/γ-HCH >1) (Willett 190 

et al., 1998; Lakaschus et al., 2002; Dickhut et al., 2005). Variation of the α/γ-HCH ratios in space and time 191 

were influenced by the historical usage of technical HCH and lindane and the environmental behaviors of 192 

the two isomers during the LRT (Iwata et al., 1993). In this study, the average ratio of α/γ-HCH was 1 in 193 

the N Pacific which was comparable with the value reported in the Equatorial Indian Ocean (1.3) in 2011 194 

(Huang et al., 2013), but was lower than those in the N Pacific (4) (Iwata et al., 1993) in 1989-1990, the 195 

Northern N Pacific (9.4) in 2003 (Ding et al., 2007) and (2.6) in 2008 (Wu et al., 2010), and the North 196 

Atlantic (3.3) in 2008 (Zhang et al., 2012) and Arctic Ocean (2.3) in 2004 (Lohmann et al., 2009). It is 197 

reasonable to have α/γ-HCH >1 in the NH, as technical HCHs were heavily used in the NH until 2000 198 

(Lakaschus et al., 2002) and photochemical reactions during the LRT could also convert γ-HCH to α-HCH 199 

to make the ratio higher than 1 (Iwata 1993 and Willett et al., 1998). To the contrary, the average α/γ-HCH 200 

ratio is 0.5 in the S Pacific, in line with the value reported in the Southern Ocean (0.6) in 2008-2009 201 

(Galbán-Malagón et al., 2013). There was also a declining trend of the ratio (1.8-0.3) along the cruise track 202 

(Spearman’s F25 = 0.697, p = 0.01) from NH to SH. The temporal and spatial declining trend of this ratio 203 
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together with the distribution patterns of HCHs observed in this study indicate a reduction in usage of 204 

technical HCHs from NH to SH (Dicknut et al., 2005) and a greater usage of lindane in the SH (Voldner 205 

and Li, 1995; Jantunen et al., 2004). 206 
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 224 

Figure 1 Gaseous HCH concentrations (magenta bars stand for α-HCH; yellow bars stand for γ-HCH) and back trajectories (red dash arrows) during the sampling 225 
track. Color bar indicates chlorophyll a (Chla) concentration of Jan-2007 in the Pacific Ocean. 226 
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  229 
 230 

Figure.2 Temporal and latitudinal distribution of gaseous α- HCH (A) and γ- HCH (B) in the Pacific. Data were 231 
obtained from this study and previous studies cited in the legend. 232 
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Table 1 Concentration of OCPs in Water and Air of the Pacific Ocean. 233 

 234 

 235 

236 
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3.1.2 DDT and its metabolites.  237 

In the gas phase, o,p'-DDT and p,p'-DDE were the most abundant DDT and its derivatives detected. 238 

The concentration of o,p'-DDT ranged from 1.1 to 3.6 (avg.= 2.0) pg m-3 in the NH, which were in line with 239 

the reported values in the N Pacific (0.2-2.5 pg m-3) (Ding et al., 2003) and the Equatorial Indian Ocean 240 

(0.4-2.9 pg m-3) (Huang et al., 2013), but lower than those measured two decades ago in the N Pacific from 241 

11.62 °N to 43.73 °N (Iwata et al., 1993, Table S6). The concentrations of o,p'-DDT were higher in the SH 242 

ranging from 0.6 to 11.4 (avg.= 2.7) pg m-3 (Fig. S1), which were higher than those reported in East Indian 243 

and Southern Ocean in the SH in 1989-1900 (Iwata et al., 1993). For p,p'-DDE, the average concentration 244 

was 1.3 (0.8-1.9) pg m-3 in the NH, which were similar to those reported in the same decade in the N Pacific 245 

(0.2-1.1 pg m-3, Ding et al., 2003), N Atlantic (0.3-1.1 pg m-3, Zhang et al., 2012), and Equatorial Indian 246 

Ocean (0.2-2 pg m-3, Huang et al., 2013), but was lower than that in the Canadian Arctic (0.7-8.3 pg m-3, 247 

Lohmann et al., 2009) and lower than the samples collected in the N Pacific in 1989-1990 (Table S6) by 248 

Iwata et al. (1993). In contrast, the concentrations of p,p'-DDE (0.3-7.2 pg m-3) in the lower and mid 249 

latitudes in the SH were higher than those reported two decades ago in the SH (Iwata et al., 1993), and 250 

higher than the values reported in the western Antarctic peninsula (0.29 pg m -3, Khairy et al., 2016). This 251 

temporal declining trend in the N Pacific and relative uniform distribution across different oceans in the 252 

NH suggest a reduced usage of DDTs in the NH, even though there was higher historical DDT use in the 253 

NH (Li and Macdonald, 2005). The concentrations of both o,p'-DDT and p,p'-DDE in the SH were higher 254 

than the NH, probably reflecting the existence of unknown sources of DDTs besides the residues of 255 

technical DDT (Voldner and Li, 1995; Channa et al., 2012) at the sample of sampling. Highest levels of 256 

gaseous DDTs in this study were located in the S Pacific gyre with 10-day back trajectory tracing the air 257 

back to New Zealand (about 40°S). However, the average wind speed of circumpolar westerly was about 258 

9-12 m/s (Sun et al., 2012), the shortest time needed for it to circle the earth is 30 days at 40°S, so the 259 

current source of DDT usage could be from any countries around this latitude in the SH. Another possibility 260 
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is that these relatively high levels DDTs were resulted from outgassing of  previously deposited DDTs due 261 

to glacial melting/ice loss (Dachs 2011, Galbán-Malagón et al., 2013, Cabrerizo et al., 2013). 262 

3.1.3 Chlordane. 263 

Technical chlordane including two abundant isomers: TC (8-15%) and CC (8-13%), and other 264 

components with different numbers of chlorines, such as heptachlor (Dearth, 1991) were banned by the 265 

Stockholm Convention on Persistent Organic Pollutants in 2001. In the atmosphere over Pacific, HEPT 266 

displayed the highest average concentration in the NH (mean 3.3 pg m-3) among all chlordane compounds, 267 

followed by TC (3.0 pg m-3), CC (1.6 pg m-3) and HEPX (1 pg m-3; Table 1). The chlordane compounds 268 

with highest average concentration in the SH was TC (3.0 pgm -3), followed by CC (1.3 pgm-3), HEPX (1.1 269 

pg m-3), and HEPT (1.0 pg m-3). The different distribution patterns between the NH and the SH probably 270 

attribute to the isomer-specific behavior during the long-range transport (Iwata et al., 1993) and different 271 

usage history in different hemispheres.  272 

The concentration of TC in the gas phase ([TC]gas) ranged from 1.8 to 4.9 pg m-3 and 0.4 to 8 pg m-3 in 273 

the NH and SH, respectively, and CC concentration ([CC]gas) ranged from 1.2 to 2.0 pg m-3 and 0.8 to 2.0 274 

pg m-3 in the NH and SH, respectively (Table 1). TC was more frequently detected than CC in both 275 

hemispheres (Table 1). These gaseous concentration levels in the N Pacific were about 2 to 5 -fold lower 276 

than those measured in 1989-1990 (Iwata et al., 1993), showing that both TC and CC were declining over 277 

the N Pacific Ocean in the past 2 decades. However, much higher values of TC and CC were reported in 278 

the Equatorial Indian Ocean in 2011, suggesting possible continue usage of chlordane in Sri Lanka (Huang 279 

et al., 2013). Back trajectories of the air samples collected in the NH suggest the air mass mainly coming 280 

from the east from American continents transported by Trade Winds (Fig S2 and Fig 1), which may have 281 

caused the relatively higher levels of TC and CC in this study compared to reports in the Arctic Ocean in 282 

2004 (Lohmann et al., 2009), N Atlantic in 2008 (Zhang et al., 2012), and Antarctic in 2010 (Khairy et al., 283 

2016). Technical chlordane has a TC/CC range of 0.76-0.87 in China (Li et al., 2006) and ~1.16 in North 284 

America and other places in the world (Shunthirsingham et al., 2010; Jantunen et al., 2000; Mattina et al., 285 
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1999). The mean value of TC/CC was 2.3 in NH, 2 in SH in this study, which were higher than those in the 286 

technical mixture, but a similar TC/CC value (2) in the dissolved phase was reported in the Arctic in 287 

1993/1994 (Jantunen and Bidleman 1998). The apparent half-lives estimated in this study for TC is 15 years 288 

and 9.6 years for CC, respectively. Therefore, it is reasonable that the TC/CC ratio in the air exceed the 289 

ratio in the technical mixture.  290 

HEPT ranged from 1.2 to 6.1 pg m-3 in the NH and 0.2 to 3.9 pg m-3 in the SH, respectively. HEPX 291 

ranged from 0.6 to 1.2 pg m-3 in the NH and 0.1 to 2.7 pg m-3 in the SH, which was similar to those reported 292 

in the Atlantic Ocean in 2008 (Zhang et al., 2012), suggesting HEPX as the metabolite of HEPT may have 293 

a uniform distribution in the open ocean. HEPT, on the other hand may still be used in some countries at 294 

the time of sampling (2006-2007) as high levels (27 pg m-3) were observed in the Equatorial Indian Ocean 295 

in 2011(Huang et al., 2013). In addition, HEPT was the most frequently detected isomers in the air and has 296 

higher concentrations than HEPX in the NH. This could be due to the larger historical emissions in the NH 297 

(Iwata et al., 1993) and continuous usage in some countries (Huang et al., 2013), and also due to the much 298 

higher KAW of HEPT than other chlordane compounds (Table S3), which results a relatively low HEPX/ 299 

HEPT ratio in the NH (0.4). The HEPX/ HEPT ratio in the SH averaged at 1, which may suggest no current 300 

usage of HEPT in the SH and further confirmed by a declining trend of HEPT gaseous concentrations along 301 

the ship track observed in this study (Fig. S3, Spearman’s F36=0.82, p=0.01). 302 

3.2 Dissolved phase concentration level and distribution pattern of OCPs in open Pacific 303 

3.2.1 HCH 304 

Reports on dissolved HCH isomers in seawater are much more limited than measurements for gas 305 

phase, especially in the S Pacific Ocean. Similar to the distribution pattern in the  gas phase, the 306 

concentrations of dissolved HCH isomers in NH were much higher (2-24 folds) than in the SH, which is in 307 

consistent with the higher historical usage of technical HCH in the NH (Xie et al., 2011). Average 308 

concentrations in NH were 18.8 pg L-1 for α-HCH, 79.4 pg L-1 for β-HCH, and 21.8 pg L-1 for γ-HCH. In 309 

the SH, average concentrations for α-, β-, and γ-HCH were 0.8 pg L-1, 17 pg L-1 and 8.8 pg L-1, respectively 310 
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(Table 1). There was about 2-fold decline of the average dissolved γ-HCH ([γ-HCH]diss) concentration in 311 

the N Pacific in this study compared to those measured in 1989-1990 (Iwata et al., 1993), and dissolved α-312 

HCH ([α-HCH]diss) decreased about 10 times compared to two decades ago (Table S7). Such disproportional 313 

reductions in dissolved concentrations lead to higher [γ-HCH]diss than [α-HCH]diss, and higher half-life of 314 

γ-HCH (16.2 years) than α-HCH (5.28 years) in the N Pacific, which could also be attributed to higher 315 

lindane usage after the volunteered ban of technical HCHs before the 2000. This pattern was also observed 316 

in the Southern Ocean near the Western Antarctic Peninsula (Dickhut et al., 2005; Galbán-Malagón et al., 317 

2013c). [γ-HCH]diss and [α-HCH]diss in the N Pacific were in line with those observed in the N Atlantic 318 

(Zhang et al., 2012) and N Atlantic (Lohmann et al., 2009), but were still lower than those in the Canadian 319 

Arctic (Wong et al., 2011). [α-HCH]diss in the SH decreased strongly compared to Iwata reported in the East 320 

Indian Ocean (9.6-36.6 °S) and Southern Ocean (44.2-64.7 °S) in 1989-1990 (Iwata et al., 1993), but the 321 

[γ-HCH]diss (8.8 pg L-1) did not decrease much compared to two decades ago (8.2 pg L-1 in the Southern 322 

Ocean, Table S7), suggesting the possible usage of lindane in the SH (Jantunen et al., 2004) and no first-323 

order half-life can be derived. Such declining in seawater resulted in an average α/γ-HCH ratio of 1.4 in the 324 

NH, which was in line with the reported values in Equatorial Indian Ocean (1.46, Huang et al., 2013) but 325 

was lower than those from two decades ago and those in the higher latitudes in the Atlantic (Lohmann et 326 

al., 2009, Zhang et al., 2012). and the α/γ -HCH ratio was 0.3 in the SH, which was similar to those reported 327 

in the Southern Ocean (0.27) in 2008-2009 (Galbán-Malagón et al., 2013b). Dissolved α-HCH (Spearman’s 328 

F12 = 0.979, p = 0.01), β-HCH (Spearman’s F17 = 0.880, p = 0.01), and γ-HCH (Spearman’s F11 = 0.645, p 329 

= 0.05) concentrations also exhibited a strong decreasing gradient with latitudes along the cruise track, 330 

while no correlation with temperature was founded. β-HCH was found to have higher concentrations in 331 

surface seawater than γ-HCH and α-HCH in both NH and SH, which was probably due to the much lower 332 

KAW of β-HCH compared to other two HCH isomers (Table S3) and β-HCH is also more stable than other 333 

isomers, making it accumulate in the dissolved phase. This pattern was also observed by Huang et al. (2013) 334 

in the Equatorial Indian Ocean. The average dissolved concentration of β-HCH in SH was about 5-fold 335 
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lower than NH, the latter was much higher than other oceans (Table S7) such as the Atlantic Ocean (Zhang 336 

et al., 2012; Xie et al., 2011), the Equatorial Indian Ocean (Huang et al., 2013) and Southern Ocean (Dicknut 337 

et al., 2005; Galbán-Malagón et al., 2013b). This was probably due to the fact that most of the sampling in 338 

this study was in the middle of the N and S Pacific Gyres, the current circulation in the central gyre is slower 339 

than those in the boundary currents, which may lead to the accumulation of plastics, garbage, and POPs.  340 

3.2.2 DDT and its metabolites. 341 

o,p'- and p,p'-DDT and all their metabolites (o,p'- and p,p'-DDE and DDD) were detected in the 342 

dissolved phase (Table S7). p,p'-DDT levels in lower latitudes of the N Pacific (0.4-0.5 pg L-1 ) were lower 343 

than the value reported in 1989-1990 (Iwata et al., 1993), but were higher than the measurements (0.02-0.2 344 

pg L-1) in Northern N Atlantic Ocean in 2004 (Lohmann et al., 2009), which suggests a greater reduction 345 

in DDT usage in the N Atlantic surrounding countries. On the contrary, the average concentrations of both 346 

o,p'- and p,p'-DDT (0.7 and 0.6 pg L-1) were close to the values reported in the SH two decades ago (Iwata 347 

et al., 1993), suggesting ongoing usage of DDT products in lower latitudes of N Pacific and in the SH. 348 

Indeed, much higher levels of DDT (avg. 330 pg L-1 for o,p'-DDT and 1600 pg L-1 for p,p'-DDT) and its 349 

derivatives were detected in the Equatorial Ocean in 2011 (Huang et al., 2013). Technical DDT was still 350 

used in India (Huang et al., 2013) and some African countries (Voldner and Li, 1995; Channa et al., 2012) 351 

for agricultural and public health purposes at the time of sample collection in this study, which probably 352 

lead to the increase in the background concentrations of dissolved DDTs in the lower latitudes of the NH 353 

and SH. The dissolved concentrations of ∑DDTs were significantly lower than those of dissolved ∑HCHs, 354 

reflecting lower global production of ∑DDTs than ∑HCHs (Li and Macdonald, 2005), coupled with the 355 

different physiochemical properties. DDTs are more hydrophobic with much higher KOW values than HCHs 356 

(Shen and Wania, 2005), thus are removed from the seawater quickly by sinking particles (Lohmann et al., 357 

2007).   358 

3.2.3 Chlordane. 359 

As the most abundance compounds in the technical chlordane, TC and CC had higher average 360 

concentrations than HEPT and HEPX (Table S7) both in the NH and SH. The dissolved concentration of 361 
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TC ranged from 0.7 to 1.6 pg L-1 and from 0.1 to 1.9 pg L-1 for CC in NH, the average dissolved 362 

concentration of both isomers was 1.2 pg L-1 in the NH. Similar to the HCH distribution pattern, the 363 

concentrations of TC and CC in the NH are higher than those in the SH, which is probably attributed to the 364 

usage history. The average dissolved concentrations in the SH for TC and CC were 0.9 (0.7 to 1 pg L-1) and 365 

0.6 pg L-1 (0.1 to 1.4 pg L-1), respectively. Compared to the reported levels of TC (avg. 3.4 pg L-1) and CC 366 

(avg. 3 pg L-1) in 1989-1990 in the N Pacific and those in the SH (Table S7), the present concentration 367 

levels were about 2-3 times lower, and this declining trend reflected the decline usage of chlordane globally 368 

in the past two decades. However, these values from the Pacific were still higher than those in the Northern 369 

N Atlantic (0.5 pg L-1 for TC, 0.2 pg L-1 for CC) in 2004 (Lohmann et al., 2009) and the N Atlantic (0.7 pg 370 

L-1 for both isomers) in 2008 (Zhang et al., 2012), which was likely due to two reason. First of all, there are 371 

still ongoing usage of Chlordane compounds in the lower latitudes, for example, the TC (9.4 pg L-1) and 372 

CC (6.6 pg L-1) concentrations in the Equatorial Indian Ocean were significantly higher (Huang et al., 2013). 373 

Secondly, the sampling tracks in this study mainly crossed N and S Pacific gyres with very little biological 374 

activities (low chlorophyll a concentrations in Figure 1), the removal of these hydrophobic large-molecular-375 

weight pesticides by sinking particles produced by plankton would be very little, evidenced by extremely 376 

low chlorophyll-a concentration (Fig 1) and low sedimentation rates reported by D’Hondt et al., (2009). 377 

Therefore, the derived first-order half-lives for TC (12.0 years in NH and 18.0 years in SH) and CC (13.6 378 

years in NH and 12.7 years in SH) were relatively long.   379 

TC/CC ratio has been used to distinguish between aged and new sources of chlordane (Bidleman et 380 

al., 2002; Shunthirsingham et al., 2010). In this study, the mean ratio of TC/CC was 2.1 in the NH and 0.7 381 

in the SH. Long-range atmospheric transport likely supply chlordane with a lower TC/CC ratio than freshly 382 

evaporated chlordane (Bidleman et al., 2002). The TC/CC value in the NH (2.1) was very similar to what 383 

was reported in the Arctic Ocean (Jantunen and Bidleman 1998). The ratio in the S Pacific Ocean was much 384 

lower than the technical grade (~1.16), which was in line with that in the N Atlantic Ocean (avg. 0.53±0.22) 385 

in 2004 (Lohmann et al., 2009). The lower ratio in the dissolved phase in the S Pacific Ocean together with 386 
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the lower concentration of chlordane in the SH than in the NH, indicating that study area had received aged 387 

chlordane by long-range atmospheric transport from the source areas (Shunthirsingham et al., 2010).  388 

HEPX is the most detected chlordane compounds in the dissolved phase. The average dissolved 389 

concentrations of HEPX (0.4 pg L-1 in the NH and 0.6 pg L-1 in the SH) were higher than HEPT in both 390 

hemispheres (0.1 pg L-1 in the NH and 0.11 pg L-1 in the SH), which was probably caused by the differences 391 

in their physiochemical properties (Table S3). HEPX has lower KAW value than HEPT, thus, the latter 392 

prefers to stay in the gas phase. Their KOW values are similar which is higher than HCHs but lower than 393 

DDTs. HEPX would tend to accumulate more in the dissolved phase due to less removal by sinking particles, 394 

resulting in relatively higher dissolved concentrations observed in this study.  395 

3.3 Directions and fluxes of air-water exchange 396 

The FRs and Fa/w for four OCP compounds were calculated and summarized in Table 2. All of four 397 

OCPs have Kaw values smaller than 1×10-3 (Table 2) suggesting the limiting step for air-water exchange is 398 

on the water side (Schwarzenbach et al., 2003). According to the FRs, α-HCH varied between equilibrium 399 

and net deposition along the cruise track. Deposition or equilibrium between gaseous and dissolved phase 400 

of α-HCH were also observed in the North Atlantic Ocean (Lohmann et al., 2009; Zhang et al., 2012), the 401 

Southern Ocean during 2008 to 2009 (Galbán-Malagón et al., 2013a), and the Western Antarctic Peninsula 402 

in 2001-2002 (Dickhut et al., 2005). The FRs suggested that the air-water exchange of β-HCH was at the 403 

equilibrium or deposition in the S Pacific, which was also reported in the Atlantic Ocean in 2008 (Xie et 404 

al., 2011). In contrast, all FRs for γ-HCH reflected net volatilization from water to air. However, most 405 

previous studies reported net deposition and equilibrium for γ-HCH in other water bodies (Lohmann et al., 406 

2009; Zhang et al., 2012; Dickhut et al., 2005; Galbán-Malagón et al., 2013). Less hydrophobicity of HCHs 407 

lead to less removal by sinking particles in the ocean and enable them to actively exchange through the air-408 

water interface, which together with the relatively high dissolved concentrations cause γ-HCH to volatilize 409 

in the Pacific. To our best knowledge, it is the first time that the volatilization of γ-HCH in the open ocean 410 

was observed, this could be due to the delayed ban of lindane, which was not incorporated into the 411 
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Stockholm Convention until 2009 (Wong et al., 2010). Most of the FRs for HEPX were found to be 412 

deposited. 413 

The net deposition fluxes of α-HCH in this study ranged from -6.9 to -4.1 ng m-2day-1 in the N Pacific, 414 

which were about 100 times lower than those during 1989 to 1990 (about -500 ng m-2day-1, Iwata et al., 415 

1993). While technical HCHs were still used, many water bodies probably acted as a sink for HCHs such 416 

as observed in 1989-1990 (Iwata et al., 1993). However, after the primary emission sources of POPs were 417 

banned in most of the countries, the air-water exchange was at equilibrium or evaporating from water to air 418 

for certain POPs in some water bodies, turning them secondary sources of these POPs. For example, Zhang 419 

et al. (2012) found that α-HCH in the N Atlantic varied between deposition and equilibrium between gas 420 

and dissolved phases. The Pacific Ocean has also become the secondary source for PCBs (air-water 421 

exchange flux 0.5-30.4 ng m-2 day-1) reported by a previous study (Zhang and Lohmann 2010). However, 422 

the status for γ–HCH has been dominated by net deposition in water bodies reporting by previous studies 423 

(Lohmann et al., 2009; Zhang et al., 2012; Xie et al., 2011; Huang et al., 2013). The volatilization of γ-424 

HCH in this study with fluxes ranging from 0.3 to 11.1 ng m-2 day-1 suggested that the tropical Pacific 425 

Ocean were acting as a secondary source supplying γ-HCH to the atmosphere. 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 



21 
 

Table 2 Summary of Fugacity (FR) and Air-Water Gas Exchange Fluxes (ng m -2 d-1) for different OCPs (Negative 434 
values indicates net deposition fluxes, underlined italic values indicate net evaporation fluxes, and blanks next to FR 435 

indicate that air-water was at equilibrium and thus no fluxes were calculated.) 436 

Lat Long α-HCH β-HCH γ-HCH HEPX 

  FR Flux FR Flux FR Flux FR Flux 

20.6 -135.2 0.59       0.06 11.1 0.39  

15.8 -140.8 4.09 -6.9         2.44  

12.5 -144.5 0.98              

9.0 -148.3 3.64 -4.1     0.02 21.0 1.73  

4.4 -153.0         0.04 4.3    

0.9 -156.5             2.07  

-2.6 -159.6     1.74       2.78  

-5.9 -163.4     0.82          

-7.2 -164.7         0.04 1.9    

-9.2 -166.9     1.34       5.48 -1.8 

-13.1 -171.1 0.23 0.1     0.04 0.9    

-27.3 -134.9         0.10 0.3    

-28.4 -131.5             0.92  

-28.9 -119.3 1.16   3.10          

-30.5 -121.6                

-32.0 -123.8     2.41          

-33.5 -126.1 3.38 -0.2             

 437 

4. Conclusion 438 

The distribution patterns and air-water exchange status of OCPs in air and seawater samples in the 439 

Pacific Ocean in 2006-2007 were assessed in this study. Both gaseous and dissolved phases concentration 440 

for most OCPs were higher in the North than in the South Pacific. Higher OCPs levels were observed in 441 

gas samples affected by Trade Winds coming from the American continents. In the N Pacific, α-HCH levels 442 

were lowered by a factor of 63 compared to those observed in 1990s (Iwata 1993), but γ-HCH’s reduction 443 

was not as strong, probably because lindane was still used after banning technical HCHs. This is the first 444 

report that γ-HCH was returning to the atmosphere in open oceans. With ongoing volatilization, γ-HCH 445 

may reach equilibrium soon like α-HCH if there is no further lindane usage. DDTs in S Pacific were as high 446 

as they were in 1990s which may indicate recent usage in the SH during the time of sample collection. 447 

HEPT has higher gaseous concentrations than HEPX due to its higher KAW whereas HEPX accumulated to 448 

higher levels in the dissolved phase due to its low KAW and intermediate KOW. The four different groups of 449 



22 
 

OCPs showed different distribution patterns, suggesting such open ocean studies are very useful to reveal 450 

historical usage patterns, detect any new usages of OCPs, and predict their environmental fate through air-451 

water exchange assessment. It is essential to continue monitoring POPs in the open oceans, even though 452 

there may not be any primary emission sources for legacy POPs, garbage and/or plastics in the ocean may 453 

slow down the reduction of these pollutants. Deploying polyethylene passive samplers (Lohmann et al. 454 

2017) on cargo ships could potentially provide an easy way of monitoring POPs in the open ocean, which 455 

can help distinguish between background concentrations of legacy POPs likely transported over long 456 

distances through atmospheric and oceanic currents and primary inputs of current usage in certain countries.  457 
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