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Abstract 

The stability of components of multiprotein complexes often relies on the 

presence of the functional complex. To assess structural dependence among the 

components of the R388 Type IV secretion system (T4SS), the steady-state level of 

several Trw proteins was determined in the absence of other Trw components. While 

several Trw proteins were affected by the lack of others, we found that the coupling 

protein TrwB is not affected by the absence of other T4SS components, nor did its 

absence alter significantly the levels of integral components of the complex, 

underscoring the independent role of the coupling protein on the T4SS architecture. 

The cytoplasmic ATPases TrwK (VirB4) and TrwD (VirB11) were affected by the absence 

of several core complex components, while the pilus component TrwJ (VirB5) required 

the presence of all other Trw proteins (except for TrwB) to be detectable. Overall, the 

results delineate a possible assembly pathway for the T4SS of R388. We have also 

tested structural complementation of TrwD (VirB11) and TrwJ (VirB5) by their 

homologues in the highly related Trw system of Bartonella tribocorum (Bt). The results 

reveal a correlation with the functional complementation data previously reported.  
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Introduction  

Type IV secretion systems (T4SS) mediate the selective translocation of 

macromolecules across the cell envelope of Gram negative and positive bacteria. 

These machines are involved in bacterial functions as different as conjugative DNA 

transfer and virulence. T4SS can secrete a variety of substrates (protein, DNA, 

nucleoprotein complexes, or even peptidoglycan) into different target cells 

(prokaryotic and eukaryotic) or into the milieu (Alvarez-Martínez and Christie, 2009).  

T4SS subunits are named after their homologue in the prototypical 

Agrobacterium tumefaciens (At) T4SS VirB, one of the best studied (Christie and 

Cascales, 2005); it is composed of 12 proteins named VirB1–VirB11 and VirD4. 

Although T4SS vary in subunit number and composition, they all seem to have retained 

a core VirB–VirD-like subcomplex (Christie et al., 2005), and probably assemble and 

function in a similar manner.  

T4SS comprise three types of structural components: i) cytoplasmic ATPases, 

VirB4, VirB11 and VirD4; the latter is the Type IV coupling protein (T4CP), proposed to 

link the substrate to be transferred to the T4SS. ii) Integral membrane proteins VirB6, 

VirB7, VirB8, VirB9 and VirB10, often referred to as core proteins. They span both the 

inner and outer membranes. iii) The extracellular pilus is composed of a major (VirB2) 

and a minor (VirB5) component; this structure is believed to mediate contact between 

cells. 

 Due to the conservation of T4SS components and structures, it is not surprising 

that interactions between central components are also conserved. For example the 
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interaction between VirB7 and VirB9 has been described for the T4SS in At (Baron et 

al., 1997; Das et al., 1997), Bordetella pertussis (Farizo et al., 1996), Bartonella 

henselae (Bh) (Shamaei-Tousi et al., 2004) and Xanthomonas axonopodis (Alegria et al., 

2005). Biochemical studies also allowed isolation of VirB7-B9, VirB8-B9-B10, and VirB2-

B5-B7 subcomplexes; the latter presumably represents pilus preassembly complexes 

(Krall et al., 2002). Of special relevance was the elucidation of the structures of the 

VirB7-B9-B10 “core complex” (Chandran et al., 2009; Fronzes et al., 2009) and the 

recently published image of the complex formed by VirB4 with the core complex 

(Wallden et al., 2012).  

In accordance with the model of conserved structure and function, 

complementation of heterologous T4SS proteins has been reported in a few instances: 

At virB1 and virB5 mutations were complemented by their homologues in pKM101 

(Schmidt-Eisenlohr et al., 1999b) (Hoppner et al., 2004) and virB1 and virB4, by their 

counterparts in Brucella suis (Bs) VirB T4SS (Hoppner et al., 2004; Yuan et al., 2005). 

Several Trw T4SS proteins of plasmid R388 can be substituted in conjugation by their 

homologues from the related Trw T4SS of Bartonella spp (Bh and Bt); these included 

TrwD (VirB11) and the core components TrwH (VirB7), TrwG (VirB8), TrwF (VirB9), and 

TrwE (VirB10) (Seubert et al., 2003) (de Paz et al., 2005). 

Based on subunit topologies, 3D structures and biochemical studies, a model 

for the assembly of a functional VirB–VirD T4SS has been delineated (Waksman and 

Fronzes, 2010). This model proposes that the core complex forms first; the pilus 

components VirB2 and VirB5 form a subcomplex, and then pilus biogenesis would 

require all remaining Vir proteins, except for the T4CP; for substrate secretion, all 
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three cytoplasmic ATPases would be required. This model also takes in consideration 

the results of the DNA translocation pathway delineated by the TrIP assay, which 

described a temporally and spatially ordered series of substrate–channel subunit 

interactions (Cascales and Christie, 2004a). The substrate makes sequential contacts 

with VirD4, VirB11, VirB6/VirB8 and VirB9/VirB2 while it is transferred from the 

cytoplasm to the outer membrane. The other T4SS components do not interact with 

the substrate but are essential for substrate transfer at different steps (Cascales and 

Christie, 2004a). 

Coupling proteins (T4CP) are present in all T4SS involved in DNA transfer and 

also in many T4SS that secrete effector proteins to eukaryotic cells, mediating contact 

between the T4SS machinery and the transferred substrate. In addition to their 

coupling role, they may act as DNA pumps during conjugation (Cabezon and de la Cruz, 

2006; Llosa et al., 2002). Specific protein-protein interactions with both T4SS and the 

transferred substrate have been described for the prototype T4CP TrwB of plasmid 

R388 (Llosa et al., 2003) and VirD4 of At (Atmakuri et al., 2004; Cascales and Christie, 

2004a). The interaction of the T4CP with VirB10 has been well established in several 

DNA-transfer systems [R388, pKM101, R6K (Llosa et al., 2003), R27 (Gilmour et al., 

2003), At Ti (Atmakuri et al., 2004)]. T4CP are indispensable for substrate transfer but 

dispensable for pilus formation (Lai et al., 2000a; Lawley et al., 2002), suggesting that 

they may be not required for T4SS assembly and structural maintenance. The 

evolutionary relationship between the T4CP and its T4SS has not been clearly 

established. Evolutionary studies reported first that conjugative T4CP have co-evolved 

with their cognate relaxase genes, rather than with their Type IV secretion machineries 

(Garcillan-Barcia et al., 2009) (de la Cruz et al., 2010). However, a recent report 
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compares evolutionary history of T4CP and VirB4 homologues and concludes that T4CP 

tend to coevolve with both the T4SS and the relaxosome (Guglielmini et al., 2013).  

Components of multiprotein complexes often show interdependence for 

structural stability; in the absence of a functional complex, the observed levels of the 

unassembled components are lower than in the presence of the complex. In this work 

we have analyzed a collection of R388 T4SS mutants in order to assess whether the 

absence of particular proteins alters the steady state level of the other Trw proteins. 

Our results suggest that the T4CP of R388 does not play a structural role in the T4SS, 

since TrwB levels were unaffected by any other trw mutation. The effect of Trw 

mutants in other Trw proteins delineates a possible order of assembly which is similar 

to the previously described model. We have also tested structural complementation by 

the Trw proteins of Bt and find a correlation with the functional complementation data 

reported previously in de Paz et al., 2005. 
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Materials and Methods 

Bacterial strains and Plasmids. E. coli strain D1210 (Sandler and Clark, 1990) 

was used as a host for all plasmids. Bacteria were grown in LB (supplemented with 

agar for solid growth). Antibiotics were added at the following concentrations: 

ampicillin (Ap), 100 µg/ml; chloramphenicol (Cm), 25 µg/ml; kanamycin (Km), 25 

µg/ml. Plasmids used in this work are described in Table 1. Plasmids were routinely 

introduced into D1210 by electroporation.  

Protein extracts. The amount of Trw proteins was estimated by Western 

blotting of total protein extracts. D1210 cells harbouring the indicated plasmids were 

grown in LB broth supplemented with the antibiotic for plasmid selection until OD600= 

0.6; at this point, IPTG was added when indicated. Cells were collected, centrifuged, 

resuspended in 1/10 volume of 2X SDS-loading buffer, and frozen at -20ºC. Samples 

corresponding to equal amounts of cells (as estimated by optical density) were boiled 

for 10 minutes and applied to 10% acrylamide SDS-PAGE gels (Sambrook and Russell, 

2001). Protein loading was estimated to be similar in all cases since samples 

corresponded to a similar number of cells.  

Western blots.  After the run, gels were transferred to nitrocellulose filters. 

Gels were stained with 0.1% Coomassie Brilliant Blue R250 in 50% methanol to 

estimate protein transfer and subsequently Trw proteins were detected with specific 

antisera by Western blot as described in (Towbin et al., 1979). Primary antibodies and 

dilutions used were: anti-TrwB (de Paz et al., 2010), 1:5,000; anti-TrwC (Grandoso et 

al., 1994), 1:10,000; anti-TrwD (Rivas et al., 1997), 1:50,000; anti-TrwK (Peña et al., 

2011), 1:5,000; anti-TrwJ (Sastre, 1996), 1:10,000. Secondary antibody (peroxidase-
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conjugated anti-rabbit IgG from Sigma-Aldrich) was used at 1:5,000. Detection was 

performed with the SuperSignal West Pico mol kit (Pierce), using a ChemiDocTM System 

(BioRad); the exposure time was 1,000 seconds. 
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Results and Discussion 

1. R388 T4SS mutants 

The transfer region of plasmid R388 (Figure 1) is divided in two regions named 

Dtr (DNA transfer and replication) and Mpf (mating pair formation) (Fernandez-Lopez 

et al., 2006). Dtr includes the oriT, and an operon including the genes that encode the 

relaxase TrwC, the accessory nicking protein TrwA, and the coupling protein TrwB. Mpf 

includes all trw genes involved in the formation of the T4SS, plus entry exclusion 

determinants, and regulator genes. The T4SS genes are proposed to be transcribed in 

two main operons, trwL-trwI (operon 1) and trwH-trwD (operon 2) (de Paz et al., 

2005). 

We used a set of previously constructed R388 mutants, each carrying the 

Tn5tac1 transposon inserted into a different trw gene. For clarity, each gene and 

protein will be named hereafter using both Trw and Vir nomenclatures, eg. TrwK 

(VirB4). The non-polar character of Tn5tac1 insertions was previously reported (Llosa 

et al., 1991), and it was shown that pairs of Tn5tac1 mutants in adjacent genes fully 

complemented each other (de Paz et al., 2005). Only the trwL (virB2) mutant showed a 

polar effect on TrwK (VirB4) (S. Bolland, Ph.D. thesis, and data not shown); thus, we 

have not taken in consideration the results from this mutant. The mutant collection 

did not include any insertion in trwG (virB8), so we included in our analysis plasmid 

pSU4035, carrying an insertion of the Ω interposon in this gene (Bolland et al., 1990). 

Since this mutant is present in a different replicon (about 5 times the copy number of 
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R388), control Western blots were performed to test the levels of several Trw proteins 

expressed from comparable plasmids based on the two different replicons: pSU4028 

(carrying the Ω interposon in trwA, and thus not affecting the T4SS genes) and 

pSU2007 (a KmR derivative of R388). The results indicated that the replicon did not 

affect the observed level of Trw proteins (not shown), allowing us to compare 

pSU4035 with the rest of R388 trw mutants. 

In multiprotein complexes, the absence of one component often affects the 

stability of the other unassembled proteins. To assess the steady-state levels of Trw 

proteins in wild-type R388 and trw mutants, we analyzed total protein extracts by 

western blot with specific antisera. We measured the abundance of proteins from the 

Dtr region: the T4CP TrwB, and the relaxase TrwC; and proteins from the two operons 

of the R388 Mpf region (de Paz et al., 2005): TrwJ (VirB5) and TrwK (VirB4) from 

operon 1, and TrwD (VirB11) from operon 2. The antibodies used allow us to test a 

representation of the different parts of a T4SS, from cytoplasmic ATPases to pilus 

components, from the most conserved T4SS element (VirB4) to the most divergent 

(VirB5). 

2. The amount of the T4CP is not affected by the absence of other T4SS 

components. 

TrwC is the R388 relaxase, the protein substrate of the T4SS. It is absolutely 

required for DNA transfer but dispensable for T4SS assembly and biogenesis. It has no 

known structural link to the T4SS, so we expected no effect of the T4SS mutants in the 

cellular amount of TrwC. In fact, we observed that Trw mutants accumulated 

comparable amounts of TrwC protein (Fig. S1A). Similarly, all trw mutants accumulated 
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wild type amounts of the T4CP TrwB (Fig. S1B). This result suggests that the stability of 

the T4CP does not depend on the existence of a functional T4SS, and argues for a lack 

of structural dependence between the T4SS and the T4CP. 

T4CP are known to interact specifically with their substrates but can interact 

also with heterologous T4SS with lower affinity (Llosa et al., 2003). To extend the 

above analysis, we have determined TrwB levels in the presence of different T4SS and 

relaxosomes. The results are shown in Figure 2. TrwB was produced in E. coli 

expressing trwB from the Plac promoter upon IPTG induction; the results shown in the 

Figure correspond to 3h of induction, but identical relative results were obtained after 

30 min of addition of IPTG (not shown).  Fig. 2 shows that the amount of the T4CP was 

unaltered by the presence of other plasmid coding for different T4SS (from R388, the 

related plasmid pKM101, or the Trw T4SS of Bt), or a multicopy plasmid coding for the 

relaxosomal components of R388 (oriT, TrwA and TrwC) or pKM101 (oriT, TraJ, TraI). 

Finally, since co-expression of trwA and trwB gave rise to higher conjugation 

frequencies (de Paz et al., 2010) and both proteins interact in vitro (Llosa et al., 2003) 

(Tato et al., 2007), we compared TrwB amounts alone or when coexpressed with trwA; 

again, no significant differences were observed (Fig. 2). 

From these assays we conclude that the presence of a T4SS or a relaxosome of 

R388 or related systems does not modify TrwB amounts as detected by Western Blot. 

These results support the proposed role of the T4CP as a third functional module of 

the conjugative machinery (Llosa and de la Cruz, 2005), which is structurally 

independent from the substrate and the T4SS. 
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3. Stability of Trw proteins in the absence of other T4SS components  

We have analysed the effect of the absence of each Trw protein on the 

amounts of other T4SS components: TrwK (VirB4), which is the most conserved 

element present in all known T4SS, and is known to interact with the core complex 

(Wallden et al., 2012); TrwD (VirB11), a cytoplasmic ATPase associated with the 

membrane, involved in both substrate transfer and pilus biogenesis (Sagulenko et al., 

2001a); (Cascales and Christie, 2004a); and TrwJ (VirB5), a minor component of the 

pilus, which is believed to be the last part of the T4SS to be assembled (Waksman and 

Fronzes, 2010). The results of the Western blots using antisera for these R388 Trw 

proteins are shown in Figure 3 and are compiled in Table 2 to facilitate their 

discussion. 

TrwK (VirB4) was detectable in all trw mutants (except for trwL which, as 

explained above, shows a polar effect on trwK). The intensity of the signal varied: the 

trwE (virB10) mutant produced an increased amount of TrwK (VirB4), whereas for trwI 

(virB6), trwF (virB9) and trwG (virB8) mutants, reduced quantities were observed 

compared to wild-type R388. Mutations in trw genes had a severe effect on TrwD 

(VirB11) levels; the protein was undetectable in trwF (virB9), trwG (virB8), and trwK 

(virB4) mutants, while reduced amounts were detected in trwI (virB6) mutant. 

Mutation in trwB (the T4CP) caused a modest reduction on TrwD (VirB11) amounts. In 

contrast, higher amounts were observed for trwH (virB7) and trwJ (virB5) mutants. In 

the case of TrwJ (VirB5), its levels were completely abolished in all trw mutants 

encoded in the Mpf region, suggesting that TrwJ (VirB5) needs an assembled T4SS for 

its own integrity. A mutation in trwB did not change the levels of TrwJ (VirB5). This 
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result supports previous works showing that TrwB is not required for pilus production, 

as inferred by the sensitivity of trwB mutants to the pilus-specific phage PRD1) 

(Bolland et al., 1990). Similarly, the T4CP VirD4 of At and TraD of F are not required for 

pilus biogenesis (Lai et al., 2000a) (Ghosh et al., 2008). 

Similar studies have been carried out in the VirB T4SS of At, to test the 

influence of T4SS mutants in the stability of other T4SS components. Although overall 

the results reported correlate with ours, there are some significant differences. In At, 

the absence of VirB4 did not affect steady-state levels of VirB5 and VirB11 (Yuan et al., 

2005), while R388 TrwK (VirB4) mutant produced undetectable levels of TrwD (VirB11) 

and TrwJ (VirB5). It was also reported that the absence of VirB11 did not influence the 

amount of pilus subunits VirB2 and VirB5 (Sagulenko et al., 2001a). In our case, no TrwJ 

(VirB5) was detected in the absence of TrwD (VirB11) (Fig. 3D). Other study reported 

that virB6 mutant did not change levels of Vir proteins except for VirB5 (Hapfelmeier et 

al., 2000) while we found low TrwK (VirB4), very low TrwD (VirD11), or undetectable 

TrwJ (VirB5) protein levels caused by the trwI (virB6) mutation. Finally, an At virB7 

mutant produces decreased amounts of several VirB proteins including VirB11 and 

VirB4 (Fernandez et al., 1996b); in the R388 system, the trwH (virB7) mutant showed 

an increased amount of TrwD (VirB11) and wild-type levels of TrwK (VirB4). All these 

differences may reflect a different pattern of protein-protein interactions in different 

T4SS, or more likely, a different effect on T4SS protein stability in the absence of an 

assembled T4SS. 
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4. Structural complementation of R388 trw mutants by the Bt Trw T4SS  

In previous reports, we demonstrated the existence of functional interactions 

among R388 Trw proteins and their homologues in the Trw T4SS of Bt (de Paz et al., 

2005). The R388 mutants trwH (virB7), trwG (virB8), trwE (virB10) and trwD (virB11) 

were functionally exchangeable to different extents (Table 2 col. 3) (de Paz et al., 

2005). Even in the absence of functional complementation, when a protein from one 

T4SS is able to substitute structurally for its homologue in another T4SS, this may allow 

system assembly and therefore revert the destabilizing effect of the absence of the 

cognate protein. As shown in the above section, TrwD (VirB11) and TrwJ (VirB5) were 

severely affected in the absence of other Trw proteins, allowing to assay structural 

complementation by their homologue Trw proteins of the Bt T4SS and to compare 

with previous functional complementation data. Plasmid pAB2, coding for the Bt Trw 

T4SS, was introduced in cells carrying the R388 Trw mutants, and Western blots were 

performed in parallel with cells not carrying pAB2.  

As shown in Fig. 3 (B,C), endogenous TrwD (VirB11) levels were not 

reconstituted in most R388 trw mutants in the presence of Bt T4SS except for a weak 

signal detected for trwK (virB4) mutant, indicating structural complementation by Bt 

VirB4. This protein shares around 80% amino acid identity with R388 TrwK, however it 

cannot substitute it in conjugation (de Paz et al., 2005), suggesting that the Bt protein 

can substitute that of R388 into the T4SS scaffold, but lacks specific interactions 

needed for substrate translocation. In the case of At and Bs VirB T4SS, both structural 

and functional complementation was observed between their VirB4 components (Yuan 

et al., 2005). We also found that Bt TrwH (VirB7) reverts the effect of the R388 trwH 

mutation, causing a decrease to wild-type levels of TrwD (VirB11) (Fig. 3 B, C, lane 5), 
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in accordance with the previously observed functional complementation (Table 2). In 

the presence of the Bt T4SS, TrwJ (VirB5) levels were recovered in R388 trwH (virB7), 

trwG (virB8), trwF (virB9), trwE (virB10) and trwD (virB11) mutants (Fig. 3 D, E), 

correlating perfectly with the functional complementation data described previously 

[Table 2 col.3; (de Paz et al., 2005)]. 

5. Assembly model for the T4SS of plasmid R388. 

The assembly model for At and pKM101 VirB T4SS proposes that the core 

complex made of VirB7 -VirB9 -VirB10 forms in the inner membrane and inserts into 

the outer membrane. That structure would then nucleate the formation of the 

translocation apparatus by the addition of VirB6 and VirB8 at the inner membrane, and 

VirB4 at the cytoplasm; then pilus subunits VirB2 and VirB5 would join to form a 

minimal T4SS functional unit. Finally, the ATPases VirB11 and VirD4 would add in the 

cytoplasm (Waksman and Fronzes, 2010). In accordance with this model, we observed 

that the absence of TrwI (VirB6), TrwG (VirB8) or TrwF (VirB9) affect the steady-state 

levels of TrwK (VirB4) and TrwD (VirB11). As already discussed, in our case the absence 

of TrwH (VirB7) does not alter the stability of other T4SS components.  

We propose a tentative assembly pathway for the R388 T4SS based on the 

previously proposed model (Waksman and Fronzes, 2010), with modifications 

suggested by our results: 

- In a first step, the cytoplasmic ATPase TrwK (VirB4) would be anchored to 

the inner membrane establishing interactions with components of the core complex, 

as shown by (Wallden et al., 2012).  We observed that the absence of TrwE (VirB10) 
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does not affect stability of other T4SS components, suggesting it is assembled after the 

rest of the core components. 

- Our results suggest that the pilus is assembled in the last place, as reported 

by others, since the integrity of the minor pilus component TrwJ (VirB5) is dependent 

on all T4SS components except for the T4CP TrwB (VirD4). Interestingly we found that 

trwH (virB7) and trwJ (virB5) mutants caused TrwD (VirB11) accumulation. VirB7 forms 

part of pilus preassembly complexes (Krall et al., 2002). It is possible that a pool of 

TrwD (VirB11) exists free in the cytoplasm or associated to the inner membrane 

depending on the stage of the T4SS assembly. 

- The T4CP is structurally independent from other T4SS proteins. We suggest 

that TrwB is anchored to the inner membrane as a monomer, and when a mating 

signal is detected, it would locate at the T4SS to recruit the substrate. After protein 

translocation, the T4CP would oligomerize around the single stranded DNA and pump 

it out of the cell using the energy obtained from ATP hydrolysis, as previously 

proposed (Cabezon and de la Cruz, 2006; Llosa et al., 2002). 
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Figure 1. The R388 transfer region. The extent of the Mpf and Dtr regions is 

indicated with thick black horizontal lines. The Trw ORFs are indicated with coloured 

arrows and named by their last letter (Trw prefix omitted for clarity). Proposed 

operons are indicated with black arrows. The vertical arrowheads indicate the site of 

insertion of Tn5tac1 (light blue) or Ω interposon (dark blue) in the indicated R388 

mutants (pSU prefix omitted). 
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Figure 2. Western blots with anti-TrwB. Samples are total extracts from D1210 

cells containing the indicated plasmids, which code for trwB under the Plac promoter, 

and different components of the R388 or pKM101 transfer machineries, or Bt T4SS. 

TRA: complete transfer region; in the case of R388, this was provided from an R388 

trwB mutant (pSU1443), so the only source of TrwB was the expression vector. RLX= 

relaxosomal components (oriT + relaxase + accessory protein). Description of the 

plasmids used and their replicons can be found in Table 1. Line 1, no plasmid; line 2, 

pHP139; line 3, pSU1443+ pHP139; line 4, pSU4058 + pHP139; line 5, pDEL003; line 6, 

pHP139 + pHP138; line 7, pKM101 + pHP139; line 8, pKM101Δmob + pHP139; line 9, 

pMTX539 + pHP139; line 10, pAB2 + pHP139. The black arrow points to TrwB. The 

white arrowhead points to a nonspecific band. 
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Figure 3. Western blots to detect TrwK, TrwD and TrwJ. Total extracts of E. coli 

cells containing R388 derivatives were processed as described in Materials and 

Methods. Samples were run on SDS-PAGE, and proteins were detected with A) anti-

TrwK (αK), B,C) anti-TrwD (αD), D,E) anti-TrwJ (αJ). In C) and E) cells were co-

transformed with pAB2 cosmid expressing the Bt Trw T4SS. At the top of the gel, the 

Trw mutant is indicated. The black arrows indicate the protein detected specifically. 

The white arrowhead points to nonspecific bands visible in the strain with no plasmids.  
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Supplementary material 

 

 

Figure S1. Western blots to detect TrwB and TrwC. Total extracts of E. coli cells 

containing R388 mutants were processed as described in Materials and Methods. 

Samples were run on SDS-PAGE, and proteins were detected with A) anti-TrwC (αC), or 

B) anti-TrwB (αB). At the top of the gel, the Trw mutant is indicated. D1210: E. coli cells 

with no plasmid. 
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Table 1. Plasmids used in this work 

Plasmid Phenotype Description Reference 

pAB2 KmR TcR pLAFR5-Km:: trw T4SS (Bt) (Seubert et al., 2003) 

pDEL003 CmR pSU19::trwA-trwB (de Paz et al., 2010) 

pHP138 KmR pET29c::RLX (R388) (de Paz et al., 2010) 

pHP139 CmR pSU19::trwB (de Paz et al., 2010) 

pKM101 ApR Natural plasmid, IncN (Martínez and de la 
Cruz, 1988) 

pKM101Δmob ApR pKM101ΔDtr  (T4SS only) (Draper et al., 2005) 

pMTX539 ApR pHG329::RLX (pKM101) (Llosa et al., 2003) 

pSU1443 KmR TpR R388::Tn5tac1 in trwB (Llosa et al., 1994) 

pSU2007 KmR R388 KmR  (Martínez and de la 
Cruz, 1988) 

pSU4028 CmR p15A::R388 TRA with Ω 
insertion in trwA 

(Bolland et al., 1990) 

pSU4035 CmR  p15A::R388 TRA with Ω 
insertion in trwG 

(Bolland et al., 1990) 

pSU4058 ApR pHG327::trwL-trwD (Bolland et al., 1990) 

pSU4130 KmR TpR R388::Tn5tac1 in trwL (de Paz et al., 2005) 

pSU4131 KmR TpR R388::Tn5tac1 in trwH (Bolland, 1991) 

pSU4132 KmR TpR R388::Tn5tac1 in trwD (Bolland, 1991) 

pSU4133 KmR TpR R388::Tn5tac1 in trwK (Llosa et al., 2003) 

pSU4134 KmR TpR R388::Tn5tac1 in trwE (Llosa et al., 2003) 

pSU4135 KmR TpR R388::Tn5tac1 in trwF (de Paz et al., 2005) 

pSU4136 KmR TpR R388::Tn5tac1 in trwJ (de Paz et al., 2005) 

pSU4137 KmR TpR R388::Tn5tac1 in trwI (de Paz et al., 2005) 
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Table 2. Summary of the results from Western blot assays 

 

First column: the letter indicates the missing R388 Trw protein. Second column: the 
presence (√) or absence (-) of Bt Trw-T4SS is indicated. Third column: DNA transfer 
frequencies (from de Paz et al., 2005): +++, 10-1- 10-2; ++, 10-2- 10-4; +, 10-4- 10-6; -, <10-6 
transconjugants/donor. The rest of columns show the steady-state of the proteins 
observed with each anti-Trw serum. ++: wild type levels; + decreased levels; - not 
detected; +++ increased levels compared to wild type. 
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