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A remedy for zero-point energy problems in classical trajectories: 
A combined semiclassical/classical molecular dynamics algorithm 
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Department of Physical Chemistry and The Fritz Haber Center for Molecular Dynamics, 
The Hebrew University of Jerusalem, Jerusalem 91904, Israel and Department of Chemistry, 
University of California, Irvine, California 92717 

(Received 15 August 1991; accepted 21 October 1991) 

A new method is proposed for dealing with difficulties in molecular dynamics (MD) 
simulations caused by nonpreservation of zero-point energies (ZPE) in classical dynamics. 
Specifically addressed is a difficulty, for molecules held in weakly bound clusters, of energy 
flow from the initial ZPE of stiff molecular vibrations into soft cluster modes, causing 
unphysical dissociation or melting of the cluster. The remedy proposed is a classicallike MD 
algorithm, which treats the stiff modes by semiclassical Gaussian wave packets and the soft 
modes by classical dynamics, using the time-dependent self-consistent field (TDSCF) 
approach to couple the classical and the semiclassical modes. The resulting algorithm is very 
similar in form to classical MD, is computationally simple, stable, and appears free of 
unphysical effects. The method is illustrated by test applications to models of the clusters I2He 
and (HBr)2 in the ground states, which dissociate at the expense of their ZPE classically, but 
remain stable in the new method. 

INTRODUCTION 

Classical trajectory simulations provide a computation­
ally powerful approach to the dynamics of many-atom sys­
tems, but have the disadvantage of not describing quantum 
effects such as tunneling, interferences, or zero-point energy 
(ZPE). The importance of omitting each of these quantum 
effects depends on the system. There is, in particular, exten­
sive evidence that lack of preservation of zero-point energies 
in classical dynamics can be a source of serious difficulties in 
simulations of various realistic systems. Classical trajectory 
simulations of several unimolecular1.2 and bimolecular3-6 

reactions were, for instance, shown to give unreasonable re­
sults as a consequence of not obeying the "ZPE require­
ment" according to which, quantum mechanically, each in­
ternal molecular mode must contain an amount of energy at 
least equal to the ZPE. Some atom-diatomic reactions were 
found when treated by classical trajectories to result in a 
large fraction of the products having a vibrational energy 
much lower than the ZPE.7 Several ad hoc solutions for such 
unphysical behavior were proposed.8 Similarly, a recent 
study of photolysis of HI in low-temperature solid Xe has 
shown that classical molecular dynamics simulations lead to 
a final energy for the H photoproduct in the lattice that is 
much lower than the ZPE value.9 A particularly important 
difficulty arises in cases where the large ZPE from stiff vibra­
tional modes is transferred to other, soft modes, leading to 
dramatic, but unphysical effects. A very simple example is 
found for a van der Waals cluster in which a vibrationally 
stiff diatomic molecule is bound loosely to rare-gas atoms. In 
a classical calculation in which one initially gives the stiff 
oscillator an energy equal to the quantum ZPE, part of the 
energy will ultimately flow to the weak bonds leading to 
dissociation of the cluster. Another interesting example is in 
the case oflarge molecules, such as proteins, in which ZPE 

given initially to stiff local stretching modes such as CH vi­
brations is transferred to softer vibrations and causes unphy­
sical conformational changes. Not putting ZPE in stiff 
modes to prevent this problem may result in incorrect de­
scription of various system properties, since the effective 
coupling among vibrational modes is changed. 

There have been several attempts to deal with this prob­
lem. One suggestion is the so-called reduced dimensionality 
approximation,IO-12 which is based on an adiabatic treat­
ment of the relevant modes. It is not clear to what extent this 
approximation of classical dynamics should be suitable for 
large polyatomic systems. Recently, two groupsl3.14 have 
independently proposed a simple correction of the molecular 
dynamics (MD) algorithm which prevent the violation of 
the ZPE constraint. This method requires, however, an 
ad hoc procedure which perturbs discontinuously and sud­
denly the classical equations of motion and which can lead to 
instabilities. 

The purpose of the present paper is to present a new 
method for dealing with the ZPE problem described above. 
The new method is computationally easy and stable and has 
the advantage that it leads to equations that are very similar 
to those of classical MD, so the same integrators can be used 
(and essentially the same computational effort is involved). 
At the same time, the method eliminates the ZPE problem 
not by imposing arbitrary constraints on classical dynamics, 
but by introducing the appropriate quantum effect through a 
semiclassical approximation. The method appears thus to 
have conceptual as well as computational advantages. 

The contents of the paper are as follows: Sec. II de­
scribes the method. In Sec. III, we present two applications 
of the new scheme, one for a case of a diatomic molecule 
weakly bound to an atom, the other for a van der Waals 
cluster of two diatomic molecules. Brief conclusions are giv­
en in Sec. IV. 
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II. METHOD 

The method is based on treating the vibrationally stiff 
mode, which has a high ZPE, by a semiclassical Gaussian 
wave packet, and the soft, large amplitude modes of the sys­
tem by classical trajectories. There can certainly be cases in 
which a vibrational mode that is not the stiffest loses its ini­
tial ZPE to the soft modes and then the scheme should be 
modified to treat this vibration semiclassically. In a recent 
study of photo dissociation of HI in solid Xe,9 classical MD 
calculations resulting in the H photofragment having final 
kinetic energies much lower than the ZPE and this was cor­
rected by a hybrid method that treated the light atom by 
time-dependent quantum wave packets and the heavy atoms 
by classical trajectories.9 The method proposed here is simi­
lar, but further simplified by using a semiclassical wave 
packet to describe the quantum mode. Since semiclassical 
wave functions yield the ZPE effect, the additional approxi­
mation seems reasonable and the gain in simplicity is sub­
stantial. To couple the classical and the quantum mechani­
cal degrees of freedom, we use the mixed quantum/classical 
time-dependent self-consistent field (Q/C-TDSCF) meth­
od.9,15-19 The validity of this approximation was tested nu­
merically against exact quantum calculations for certain 
processes such as photodissociation 19 and we shall later dis­
cuss its validity in the present context. 

While the approach is quite general, we consider here 
for simplicity a system of two modes {r,R}. The Hamilto­
nian operator is 

A A A p; p~ A 

H= T+ V=-+-+ V(r,R), (I) 
2fJ.r 2fJ.R 

where P rand P R are the momenta associated with the modes 
r, R, respectively, andfJ.r' fJ.R are the corresponding masses. 
Suppose that physical considerations justify treating the R 
mode in the classical approximation, while for the r mode a 
quantum description must be retained. In the Q/C-TDSCF 
approach, the R mode is described by classical trajectories. 
Let R ( t) be a trajectory in time of the R mode (we discuss 
below the determination of such trajectories). In the Q/C­
TDSCF, this trajectory is taken to define a time-dependent 
potential function 

A 

V2 (r,t):= V [r,R(t)]' (2) 
A 

which governs the r motion. V [r,R(t)] is the full potential 
function of the system as in Eq. (1), with R replaced by the 
trajectory value R (t) at time t. The r dynamics is described 
by a wave packet satisfying the time-dependent Schr6dinger 
equation 

in at/J(r,t) = [-.!£..~+ V2 (r,t)]t/J(r,t). (3) 
at 2fJ.r ar 

The potential that governs the classical motion in Q/C­
TDSCF is the mean potential obtained by averaging the full 
potential over the r state 

VI (R,t):=(t/J(r,t)IV(r,R)It/J(r,t)r' (4) 

The trajectory R(t) is obtained by solving Newton's equa­
tion of motion 

aVI (R,t) 

aR 
(5) 

In the Q/C-TDSCF, the trajectory R (t) and the wave pack­
et t/J(r,t) are calculated self-consistently, using Eqs. (2)­
(5).18.19 The initial conditions required are the values R (0), 
PR (0), and the wave function t/J(r,O) at some initial time 
point t = O. If the initial state of the system is described by 
several classical initial values, e.g., R (a) (0) and P ka

) (0) for 
a = 1, ... ,N, then for each classicalinitial valuesR (a)(o) and 
Pif)(O) are calculated from the Q/C-TDSCF trajectory 
R (a)(t), Pka)(t), and a wavepacket t/Ja (r,t). Any observ­
able property is then calculated as an average from this en­
semble of N hybrid quantum/classical states. 

In the present problem, we assume that the Q/C­
TDSCF can be further simplified by approximating the 
quantum wave packet t/J(r,t) by a semiclassical Heller-type 
Gaussian wave packet.20,21 In the situation considered here, 
the quantum mode is essentially expected to be carrying out 
zero-point motions, in which case a near-harmonic descrip­
tion of the potential governing that mode should be suitable 
for most systems and the Gaussian wave packet approxima­
tion should be valid.20 Quite obviously, a Gaussian wave 
packet has the essential physical properties for describing 
the zero point effect. The Gaussian wave packets have the 
form2o,21 

G(r,t) = exp{ ~ [a,(r- r,)2 + p,(r- r,) + y,]}, (6) 

where the parameters r, and p" which represent, respective­
ly, the position of the center ofthe wave packet and its mo­
mentum, are real-valued and the parameters a, and y, are 
complex valued. Using Heller's equations for the time prop­
agation of the parameters Yo Po a o and Yo 15 we have 

· . aV2 (rot) 
r, =p,/fJ." p, = - a ' 

r, 
(7) 

· 2a; 1 a2 V(ro t) 
a +-= ------
'f-Lr 2 ar, (8) 

· . ina, p; 
y, =p,r, +----- V2 (rO t), (9) 

fJ.r 2fJ.r 

where V2 (r,t) in Eqs. (7)-(9) is defined as in Eq. (2). 
Somewhat modified equations for the parameters have been 
proposed by Metiu et al. 22 and by other authors. In particu­
lar, Eq. (7) can be replaced by 

p, = -~{(G(r,t)IV[r,R(t)]IG(r,t»J(GIG)r}' 
arl 

( 10) 

We tested both Eqs. (7) and ( 10) in our calculations and the 
results were very similar. In summary, the working equa­
tions in the hybrid semiclassical/classical scheme are given 
by Eqs. (5) and (7) for R(t) and PR (t) and for r, andp" 
respectively, supplemented by Eqs. (8) and (9) for a, and 
YI' As for the potentials, V2 (r,t) is given by Eq. (2) and 
VI (R,t) in the Gaussian scheme is 

A 

VI (R,t) = (G(r,t)lV(r,R)IG(r,t)r' (11) 

The equations for R(t), PR (t), r" andp, are essentially of 

J. Chem. Phys., Vol. 96, No.3, 1 February 1992 
Downloaded 23 Aug 2013 to 161.111.22.69. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



2036 Alimi, Garcia-Vela, and Gerber: A combined semiclassical/classical algorithm 

the same form as the Newton equations. The equations for at 
and Yt are of the same type and the whole scheme can be 
handled essentially by existing molecular dynamics algor­
ithms and with similar efficiency. The main additional effort 
is to need to calculate a Gaussian integral over the potential 
[Eq. (11)], but this is computationally very simple. The 
scheme is less demanding than treating the full system by 
Heller's equations,20 since the latter inquire a matrix of coef­
ficients for the exponent of the multidimensional Gaussian. 
At the same time, the use of nonfrozen Heller wave packets 
as done here is important in cases where the local frequency 
of the potential changes appreciably over the pertinent re­
gion of the potential surface. We note that extension of the 
formulation to many (classical) degrees of freedom is quite 
straightforward and the application involves essentially the 
same level of effort as the usual classical molecular dynamics 
calculations. A system of one semiclassical plus N classical 
modes includes, of course, only two additional dynamical 
equations compared with classical MD for the same system, 
the equations for at and Yn which becomes negligible in 
relative importance when the number of classical modes N is 
large. It may be interesting to note that when the potential is 
quadratic in r over the width of the Gaussian, VI (R,t) re­
duces to the local potential at the center of the Gaussian (the 
potential experienced in classical dynamics) plus the local 
zero point energy. While this offers a simple interpretation of 
the methods, the applications we shall present involve, how­
ever, fairly anharmonic potentials. 

III. APPLICATIONS 

Test calculations will now be presented for two simple 
model systems to verify that the method proposed does in­
deed overcome the ZPE problem of classical dynamics in 
cases of a stiff vibration coupled to soft modes that can devel­
op large amplitude motions. The calculations will also exam­
ine whether the method proposed causes other unphysical 
effects and whether it involves undesirable numerical fea­
tures, such as instabilities. 

A. The collinear diatomic molecule-atom cluster 

The atoms were taken to have the masses of the 12" . He 
system atoms. We denote by r the 12 bond distance and by R 
the He to center of mass ofI2 distance. The potential is then 
written 

V(r,R) = VI (r) + V2 (r,R), (12) 

with 

V ( ) - (- 2{3,(r- rm) _ 2 - {3,(r- rm » 
I r - EI e e , (13) 

TABLE!. Parameters of the potentials used in the paper (see the text for 
details). 

V, V2 Va Vb Vc 

f (em-I) 4839.6 14.0 31606.5 7.6 139.5 
(J (A - ') 1.77 5.00 1.81 2.12 6.00 
rm (A) 3.01 4.00 1.41 2.96 4.00 

(a) 

~ 

5.53 'A A ~ ~ A A ~ ~ ~ A A ~ ~ t (b) 

5.50 !~VVVVVVV~V~VV 

5.470 2 4 6 8 10 
Time (psec) 

FIG. 1. Time evolution of the van derWaals mode R (a) classically and (b) 
semiclassically for the model 12 ... He system. 

V2 (r,R) = E2 {exp[ - 2/32 (R - 1/2r - r m)] 

- 2 exp [ - /32 (R - 1/2r - r m ) J} 

+ E2{exp[ - 2/32 (R + 1/2r - rm)] 

-2exp[ -/32(R+ 1/2r-rm)J}. (14) 

We chose for convenience potential parameters for which 
violation of ZPE in the classical case occurs on a short time 
scale. The system parameters (except for the masses) do not 
correspond to real 12 ... He. They are summarized in Table I. 

First classical trajectories were run with an initial ener­
gy of 1354 cm -I in the molecular bond, which corresponds 
to the ZPE. In Fig. l(a), we show the time evolution of the 
van der Waals mode R. After about 2 ps of stability, the bond 
enters into high vibrations which finally lead to the dissocia­
tion of the cluster at t = 4 ps. Figure 2(a) describes the evo-

75 

70 ,-., - (a) , 
S 65 u 
'-' 
"CI 60 s:: 
0 

,D 
55 ~ 

cu 
-5 
.S 75 (b) 
>. 

~---b.O 
~ 

J1 70 

2 4 6 8 10 
Time (psec) 

FIG. 2. Time evolution of the internal energy of the 12 mode (a) classically 
and (b) semiclassically for the model 12 ... He system. 

J. Chem. Phys., Vol. 96, No.3, 1 February 1992 
Downloaded 23 Aug 2013 to 161.111.22.69. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



Alimi, GarcIa-Vela, and Gerber: A combined semiclassical/classical algorithm 2037 

FIG. 3. Coordinate system for the model (HBr)2 system. 

lution of the internal energy of the 12 mode during the same 
amount of time. After some relative stability, energy is sud­
denly transferred between 2 and 4 ps from the chemical bond 
to the van der Waals bond, resulting in a final value below the 
ZPE limit. This is of course an unphysical process which 
would not have occurred in an exact quantum mechanical 
treatment. 

We now turn to the semiclassical description of the sys­
tem. An initially normalized wave packet is prepared for the 
Iz mode, with a wide a o consistent with the ZPE of the bond. 
The system is propagated within the same amount of time as 
the classical calculation, using the same integrator (Adams­
Moulton) to solve Eqs. (7)-(10). Figures l(b) and 2(b) 
show the time evolution of R and the internal energy of 12 , 

respectively. In contrast to the classical results, we see that 
(i) the van der Waals bond keeps showing stable oscillation 
of the vibrating complex and (ii) the energy stays constantly 
above the initial zero-point value, proving that no forbidden 
process occurs in the system. 

B. A cluster of two diatomic molecules 

The previous section has shown the successful applica­
tion of the semiclassical method to a single mode system. 
Hence, we turn now to a more complex model system where 
two vibrational modes are susceptible to relax below the 
ZPE and contribute to artificial dissociation. A collinear 
version of the HBr dimer was chosen for this purpose. This is 
shown, together with the coordinate choice in Fig. 3. 

The potential is given by 

V(rl ,r2 ,rJ ) = Va (r l ) + Va (r2 ) + Va (rJ ) + Vb (r l + r3 ) 

+ Vc(r2 +rJ ) + Va(r l +r2 +r3 ), 

(15) 

where Va' Vb' and Vc are Morse potentials with parameters 
summarized in Table I. Again we stress that except for the 
masses, this is merely a model system and does not represent 
real (HBr)z. 

As in the first case, we first let the system evolve com­
pletely classically with both r l and r2 modes chosen initially 
at the ZPE limit. Figure 4(a) shows the time evolution ofr3' 
After less than I ps, the complex undergoes one single colli­
sion and dissociates. We have computed the energy of the 
two stiff modes during the process and the result is shown in 
Fig. 5 (a). The initial straight line lies on the ZPE. After the 
collision (and also during it), the ZPE is violated seriously 
by both modes r l and rz . Again this is the forbidden relaxa­
tion which has led to the dissociation of the cluster. 

8.0 

4.0 (a) 

0$ O.0l---I---I'>_I---+-....... --j 

1-<"" 

4.0 

(b) 
2.0 

0.0 ~~---'_-'--~_"---I 
0.0 1.0 2.0 3.0 

Time (psec) 

FIG. 4. Same as Fig. 1 for the model (HBr)2 system. 

The semiclassical method is now applied to each of the 
stiff modes, starting with two Gaussian wave packets with an 
initial width compatible with the ZPE values. The system is 
then propagated using the same initial conditions as the clas­
sical simulation. Figure 4(b) shows that the rJ mode stays 
bonded after the collision has occurred and from Fig. 5 (b) , 
we see that both energies in r l and rz remain above the al­
lowed ZPE limit. The system has behaved correctly by con­
straining itself naturally not to "violate" the ZPE conserva­
tion principle. 

Both in the first and in the second examples, the total 
energy of the systems was conserved to good accuracy. Fin­
ally, in none of the calculations did there appear any numeri­
cal instability over the entire time scale studied. 

---- 20 ,-----.-----.-----, 
""s 

U 
<'I 
o 15 ...... 
~ '-' 10 ··············r······ .. ················· (a) 

1 1--------· 
1-<<'1 5 F=====~6===~======~ 

~ 17 , 
(b) 'I 

'I 
'I 
I, 
I, 

t1--------. 

13 ........................................ . 
0.0 1.0 2.0 3.0 

Time (psec) 

FIG. 5. Same as Fig. 2 for the model (HBr)2 system. The plain line and the 
dashed line are modes r, and r2 , respectively. 
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IV. CONCLUSIONS 

This paper was motivated by unphysical behavior in 
classical trajectory simulations of systems in which one or 
several high frequency vibrational modes are coupled to soft 
modes, which may undergo large amplitude motions when 
receiving energy. The undesirable behavior in classical dy­
namics addressed in this study is the flow of "zero point 
energy" initially put in the high frequency modes, into the 
low frequency vibrations, resulting in unphysical behavior 
such as dissociation. The new method proposed here treats 
the high frequency vibrations semiclassically, the soft modes 
classically, and the resulting scheme leads to equations simi­
lar in form and in computational complexity to the algor­
ithms of classical molecular dynamics. Two test cases were 
studied numerically and showed that the method proposed 
does indeed preserve the ZPE of the high frequency modes 
and eliminates the unphysical behavior of classical trajec­
tory calculations. It appears that the method conserves total 
energy, although some fluctuations of single-mode energies 
do indeed occur as they should, since the modes of the sys­
tem are coupled. Propagation in line of the proposed equa­
tions showed numerical stability over the entire time range 
studied. The method does seem to offer a valid physical de­
scription of the type of the system studied. 

Extension of the method to systems of many degrees of 
freedom seems quite straightforward. This should have use­
ful applications to systems such as impurity molecules in 
soft, low-temperature crystals, weakly bound molecular 
clusters, and flexible polyatomic molecules that have some 
stiff vibrational modes and low barriers for conformational 
changes. The new method appears an attractive tool for sim­
ulation of such systems at low temperatures. For this pur­
pose, it is desirable to develop a standard molecular dynam­
ics package based on the presen.t method, i.e., on 
semiclassical treatment of all stiff modes susceptible to lose 
their ZPE in the usual classical treatment. Such a project is 
in progress. At the same time, it should be stressed that the 
present method solves only a particular class of ZPE prob-

lems and there are certainly ZPE problems to which it does 
not apply. A case in point is when a system has many coupled 
vibrational modes of comparable frequencies that contribute 
all to the ZPE problem. Extensions of the method for such 
cases are currently being pursued. 
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