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A quantum trajectory description of decoherence
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2 Departamento de Qúımica, C–IX, Universidad Autónoma de Madrid, Cantoblanco – 28049 Madrid, Spain

Abstract. A complete theoretical treatment in many problems relevant to physics, chemistry, and biology
requires considering the action of the environment over the system of interest. Usually the environment
involves a relatively large number of degrees of freedom, this making the problem numerically intractable
from a purely quantum–mechanical point of view. To overcome this drawback, a new class of quantum tra-
jectories is proposed. These trajectories, based on the same grounds as Bohmian ones, are solely associated
to the system reduced density matrix, since the evolution of the environment degrees of freedom is not
considered explicitly. Within this approach, environment effects come into play through a time–dependent
damping factor that appears in the system equations of motion. Apart from their evident computational
advantage, this type of trajectories also results very insightful to understand the system decoherence. In
particular, here we show the usefulness of these trajectories analyzing decoherence effects in interference
phenomena, taking as a working model the well–known double–slit experiment.

PACS. 03.65.-w Quantum mechanics (general) – 03.65.Ta Foundations of quantum mechanics; measure-
ment theory – 03.65.Yz Decoherence; open systems; quantum statistical methods – 03.75.Dg Atom and
neutron interferometry

1 Introduction

Among the different alternative mechanisms proposed to
explain how the behavior of a quantum system becomes
classical–like [1], decoherence is the most widely accepted
[2,3]. Decoherence is the irreversible emergence of classical
properties when an isolated system, namely the system of
interest, interacts with an environment [4]. The environ-
ment can be constituted by many randomly distributed
particles interacting with the system by means of scatter-
ing processes. When these events occur in a large number,
the off–diagonal elements of the system reduced density
matrix undergo an exponential damping [5], this making
the system to quickly lose its coherence. Coherence loss is
an important issue, for example, in quantum computation
[6], where long chains of atoms must be kept in a coher-
ent superposition for certain time in order to perform the
corresponding operations. Therefore, decoherence effects
must be considered seriously; they increase rapidly with
the length of the chain [7], thus decreasing the efficiency
of the latter in performing such operations.

At a first glance, Bohmian mechanics (BM) [8,9] seems
to be a suitable tool to study and shed light on decoher-
ence problems. Unlike the standard version of quantum
mechanics (SQM), the Bohmian formalism is based on
the concept of well–defined trajectories; particles are al-
ways regarded as particles, as in classical mechanics. The
particle motion, governed by the wave function, leads to

the same results provided by SQM when a sampling over
particle initial conditions is considered (see, for example,
reference [10]). This capability to conjugate motion and
statistical predictions within a purely quantum framework
has been widely used to describe, for example, interference
experiments with slits [11,12,13,14,15,16], where decoher-
ence can play an important role.

Nevertheless, despite the apparent suitability of BM to
the study of decoherence, in practice its application results
numerically prohibitive in problems where the number of
degrees of freedom involved becomes relatively large. To
overcome this computational drawback one can proceed as
in SQM when dealing with Markovian environments [17].
In these cases, decoherence effects can be studied by using
a master equation formulation, where the particular time–
evolution of the different environment degrees of freedom
is not taken into account explicitly. The Markovian mas-
ter equation, derived from the von Neumann equation for
the whole system (the system of interest plus the environ-
ment), is generally expressed as a sum of two contribu-
tions, which are responsible for: (1) the time–evolution of
the isolated system, and (2) the quenching leading to the
system coherence loss. All the information regarding the
physical properties of the environment as well as its in-
teraction with the system is contained within this second
term.

Starting from BM, one can proceed as in SQM and
consider the “average” action of the environment degrees

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36124209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/quant-ph/0310096v5


2 A. S. Sanz, F. Borondo: A quantum trajectory description of decoherence

of freedom in order to obtain a Markovian–like trajec-
tory equation of motion. We can thus define a new class
of quantum trajectories, the reduced quantum trajectories,
directly related to the system reduced density matrix, but
also influenced by the presence of the environment. Within
this formulation, the environment degrees of freedom come
into play through a time–dependent damping factor that
appears in the expression for the particle velocity field.
Avoiding to integrate explicitly the equations of motion
for the environment degrees of freedom allows to obtain
an important insight on the system dynamics at a low
computational cost.

To illustrate the applicability and interest of the re-
duced quantum trajectories, we will use them to ana-
lyze the effects of decoherence in interference phenom-
ena. These phenomena constitute an ideal framework to
study decoherence because of their simplicity as well as
their fundamental implications in quantum mechanics. In
particular, we will focus our discussion on the double–slit
experiment, which can be regarded as the paradigm of
quantum interference. In this experiment, in the absence
of “which–way” information, the measured intensity dis-
plays the well–known interference pattern with maximum
fringe visibility. On the other hand, the knowledge of the
particle pathway destroys such a pattern and the intensity
thus acquires classical features, i.e., it is simply given by
the sum of the intensities corresponding to each pathway1.
These two possible outcomes2, related to which aspect of
the particle we are interested in (wave or corpuscle, re-
spectively), are equivalent to consider two different exper-
imental contexts: both slits simultaneously open or each
one independently open. The choice of a quantum context
determines the intensity pattern, in sharp contrast to what
happens in classical mechanics in the analogous situation,
where both contexts give the same result. However, if the
action of an external environment (air molecules, thermal
photons, etc.) over the system is taken into account be-
tween the slits and the detector, a partial (or even total)
suppression of the quantum interference will be observed
in the intensity pattern. This means that a certain amount
of “which–way” information is being gradually revealed,
and the process can be thought as a smooth transition
from the context where both slits are simultaneously open
to the other one where they are independently open.

The organization of this paper is as follows. In Sec-
tion 2 we introduce the formal grounds of the reduced
quantum trajectory formalism as well as its theoretical
application to the double–slit problem. In Section 3 we
present an application of this formalism to the double–slit
experiment with cold neutrons performed by Zeilinger et

1 Except otherwise stated, throughout this work “classical”
refers to the lack of quantum interference, though in general
this does not mean necessarily lack of other quantum effects
(e.g., single–slit diffraction [14]).

2 Though in SQM textbooks these two situations are mutu-
ally exclusive, it has been shown both theoretically [18] and
experimentally [19] that it is still possible to determine certain
amount of “which–way” information without a full erasure of
the interference pattern.

al. [20]. Finally, in Section 4 the main conclusions arisen
from this work are summarized.

2 Decoherence and quantum trajectories

2.1 The reduced quantum trajectory approach

In order to extract useful information about the system of
interest, one usually computes its associated reduced den-
sity matrix by tracing the total density matrix3, ρ̂t, over
the environment degrees of freedom. In the configuration
representation and for an environment constituted by N
particles, the system reduced density matrix is obtained
after integrating ρ̂t ≡ |Ψ〉t t〈Ψ | over the 3N environment
degrees of freedom, {ri}N

i=1,

ρ̃t(r, r
′) =

∫

〈r, r1, r2, . . . rn|Ψ〉t

× t〈Ψ |r′, r1, r2, . . . rn〉dr1dr2 · · · drn. (1)

The system (reduced) quantum density current can be
derived from this expression [21,22], being

J̃t ≡
~

m
Im[∇rρ̃t(r, r

′)]






r
′=r

, (2)

which satisfies the continuity equation

˙̃ρt + ∇J̃t = 0. (3)

In equation (3), ρ̃t is the diagonal element (i.e., ρ̃t ≡
ρ̃t(r, r)) of the reduced density matrix and gives the mea-
sured intensity [23].

Taking into account equations (2) and (3), now we
define the velocity field, ṙ, associated to the (reduced)
system dynamics as

J̃t = ρ̃tṙ, (4)

which is analogous to the Bohmian velocity field. Now,
from equation (4), we define a new class of quantum tra-
jectories as the solutions to the equation of motion

ṙ ≡ ~

m

Im[∇rρ̃t(r, r
′)]

Re[ρ̃t(r, r′)]











r
′=r

. (5)

These new trajectories are related to the system reduced
density matrix, therefore we call them the reduced quan-
tum trajectories. In Section 3 we will see that the dynam-
ics described by equation (5) leads to the correct intensity
(whose time–evolution is described by equation (3)) when
the statistics of a large number of particles is considered.
Moreover, also observe that equation (5) reduces to the
well–known expression for the velocity field in BM when
there is no interaction with the environment. This can be
shown as follows. The decoupling from the environment

3 Throughout this work, we indicate time–dependence by a
subscript “t” (e.g., ρ̂t ≡ ρ̂(t)), while initial values do not carry
any label (e.g., ρ̂ ≡ ρ̂(0)).
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makes the system reduced density matrix to be just the
system density matrix. Making then use of the BM ansatz
for the system wave function (〈r|Ψ〉t = Rt(r)e

iSt(r)/~), we
can express the system density matrix as

ρt(r, r
′) = RtR

′

t ei(St−S′

t)/~, (6)

with R′

t = Rt(r
′) and S′

t = St(r
′). Finally, substituting

(6) into equation (5), one reaches

ṙ =
∇St

m
, (7)

which, effectively, is the well–known expression for the
particle equation of motion in BM.

As mentioned above, BM becomes numerically intrac-
table when the phenomena described involve a large num-
ber of degrees of freedom. Hence a wide range of alter-
native, approximate formulations rooted in this approach
have been proposed in the literature [24]. The reason be-
hind formulating these alternative formalisms is quite sim-
ple. BM is the only trajectory–based approach compati-
ble with SQM where no approximations are considered,
this leading to a straightforward interpretation of quan-
tum phenomena in terms of a self–consistent quantum the-
ory of motion (all the elements contained in the theory are
ruled by quantum laws). Therefore any approximation to
BM will also remain relatively close to SQM, reducing
at the same time the computational efforts implicated by
many degree–of–freedom systems. As we have seen, these
features also meet in our approach, whose mathematical
structure remains very close to that of BM.

Nevertheless, the aforementioned formulations are not
so widespread as those other based on the so–called semi-
classical approximation of the wave function, in partic-
ular, the semiclassical initial value representation (SC–
IVR) [25], which is one of the most successful approaches
to date. Unlike the previous prescriptions, the self–con-
sistency mentioned above breaks in SC–IVR schemes: on
the one hand we have the calculation of purely classical
trajectories; on the other hand, there is a (semiclassical)
wave function which is calculated from those classical tra-
jectories.

The intertwining between classical and quantum me-
chanics in a Feynman–like fashion [15,26] constitutes the
main difference with respect to Bohmian–like schemes,
such as the one described in this work. This difference
can be noticed, for instance, when looking at the dynam-
ics displayed by the trajectories representative of each
type of formalism. In semiclassical approaches trajecto-
ries will be just classical, not showing any particular ef-
fect typical of the quantum problem treated with them;
only when these trajectories are introduced into the semi-
classical wave function a quantum description of the phe-
nomenon that we are dealing with can be obtained. On
the contrary, in Bohmian–like schemes, the trajectories
display a topology that is in accordance (in a more or less
degree, depending on the approximation considered) with
the dynamics prescribed by quantum laws. In other words,
even considering the same initial condition for both types

of trajectories the differences between the motions de-
scribed by each one will manifest immediately. This com-
parison can be seen in reference [15], where classical and
Bohmian trajectories were obtained within the context of
the double–slit experiment with no coupling to an envi-
ronment (calculations applying the SC–IVR formalism to
the double–slit experiment can be seen in references (e)
and (f) in [25], for example, but no classical trajectories
related were explicitly shown).

2.2 Reduced trajectory dynamics in the double–slit
experiment

The implications and usefulness of equation (5) are bet-
ter appreciated when analyzing decoherence effects in the
double–slit experiment. Quantum mechanically the evolu-
tion of a particle after passing through a double–slit setup
(and without being acted by an external environment) can
be described at any subsequent time by a wave function

|Ψ (0)〉t = c1|ψ1〉t + c2|ψ2〉t, (8)

where |ψj〉t is the partial wave emerging from the slit j
(with j = 1, 2), and |c1|2 + |c2|2 = 1 at any time. In
configuration space, the density matrix associated to the
wave function (8) is

ρ
(0)
t (r, r′) = Ψ

(0)
t (r)

[

Ψ
(0)
t (r′)

]

∗

, (9)

with Ψ
(0)
t (r) = 〈r|Ψ (0)〉t. As said above, the diagonal of

equation (9) gives the measured intensity (or probability
density),

ρ
(0)
t (r) = |c1|2|ψ1|2t + |c2|2|ψ2|2t

+2|c1||c2||ψ1|t|ψ2|t cos δt (10)

where δt is the time–dependent phase shift between the
partial waves.

Under the presence of an environment, the wave func-
tion (8) does no longer describe the evolution of the iso-
lated system. To obtain an appropriate ansatz, first we
consider elastic system–environment scattering conditions,
which lead to a gradual suppression of the interference
terms in equation (10) without changing too much the
states describing the system (i.e., each partial wave). Un-
der these conditions, only the environment states, |Ej〉t,
associated with each partial wave will change during the
scattering process. In addition, we also assume that the
system is initially represented by a superposition of two
Gaussian wave packets (see Section 3); both partial waves
will then keep their Gaussian shape during their time–
evolution, this simplifying the analysis of the problem.
Taking this into account, a general initial separable co-
herent state

|Ψ〉 = |Ψ (0)〉 ⊗ |E0〉 (11)

(with |Ψ (0)〉 as in equation (8) at t = 0) will become en-
tangled,

|Ψ〉t = c1|ψ1〉t ⊗ |E1〉t + c2|ψ2〉t ⊗ |E2〉t, (12)
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at any subsequent time. Let us recall that the condition
of initial coherence also means that |E1〉 = |E2〉 = |E0〉 at
t = 0.

Provided elastic system–environment scattering condi-
tions as well as weak interactions are assumed the decoher-
ence process can be described by means of (12). However,
this assumption will no longer be valid as the system–
environment coupling becomes stronger and energy trans-
fer inelastic processes take place. Such processes would
imply a more complicated form for the wave function,
which could not be expressed in terms of two overlap-
ping, spreading Gaussians. Instead, the energy transfer
leads not only to a change of the shape of the diffracted
beams, but, more importantly, to a mixed state that can-
not be described in general as a simple wave function due
to the strong intertwining between the environment states
and the system ones. In such cases, one should to con-
sider either the language of density matrices commonly
used in the theory of open quantum systems [17,27], or
the stochastic wave functions that appear in the quantum
state diffusion prescription [28].

The effects induced by strong couplings can be better
appreciated, for instance, when using the SC–IVR formal-
ism mentioned above, where the environment is character-
ized by a certain spectral density of frequencies (in general
the environment is assumed to be a bath harmonic oscilla-
tors with an Ohmic spectral density). The aforementioned
intertwining between environment and system states leads
to a very appealing loss of interferences in both bound
systems (e.g., vibrating diatoms in solvents; see reference
(d) in [25]) and problems in the continuum (e.g., inelas-
tic scattering of He atoms from a Cu surface; see reference
(g) in [25]). Nonetheless, as the coupling strength increases
more, this type of descriptions may also lose their validity,
since the bath of harmonic oscillators will not longer de-
scribe properly the system–environment coupling, which
could be more complicated and lead to dissipation.

From (12) the measured intensity is obtained from the
system reduced density matrix, which is given by the trace
of the full density matrix over the environment states,

ˆ̃ρt =

2
∑

j=1

t〈Ej |ρ̂t|Ej〉t (13)

(notice that this expression is equivalent to (1)). Thus,
substituting the wave function (12) in equation (13) gives

ρ̃t(r, r
′) = (1 + |αt|2)

2
∑

j=1

|cj |2ψj,t(r)ψ
∗

j,t(r
′)

+2αtc1c
∗

2ψ1t(r)ψ
∗

2t(r
′) + c.c., (14)

where αt ≡ t〈E2|E1〉t and c.c. means conjugate complex,
and from this expression the measured intensity results

ρ̃t = (1 + |αt|2)
[

|c1|2|ψ1|2t + |c2|2|ψ2|2t
+2Λt|c1||c2||ψ1|t|ψ2|t cos δ′t] , (15)

with

Λt ≡
2|αt|

(1 + |αt|2)
(16)

being the coherence degree, which gives the value of the
fringe visibility in a good approximation [23]. For the sake
of simplicity, we have assumed that the phase difference
between the environment states (included in δ′t) is con-
stant.

The environment states are considered to be too com-
plicated for keeping mutual coherence as time increases
[29]; even if they are initially coherent, they will become
orthogonal along time. Thus, one can assume |αt| = e−t/τc ,
τc being the coherence time, a measure of how fast the
system looses its coherence. Introducing this value into
equation (16), we obtain

Λt = sech(t/τc), (17)

which establishes a relationship between the coherence de-
gree and the coherence time. Thus, although the value of
the coherence time can be derived analytically for inter-
fering waves by means of simple Markovian models [30],
equation (17) allows us to determine it from the empirical
value of Λt [23] (i.e., measured from the intensity pattern)
and the time–of–flight, tf , of the diffracted particles. Be-
cause of the empirical nature of τc (or, equivalently, the
value of Λt after a full flight) in our model, temperature
does not appear explicitly despite its important role in de-
coherence phenomena. Within the context of the double–
slit experiment, this issue has been treated in some the-
oretical [30,31] and computational (references (e) and (f)
in [25]) works in the literature. In this way, following refer-
ences [30,31], τc would already encompass the effects of the
temperature. Note that this dependence on temperature
is quite different from that in semiclassical treatments; in
the first case it is simply a parameter, where in the lat-
ter it appears as a consequence of considering the bath of
oscillators at the equilibrium at a given temperature (i.e.,
the oscillators follow a Boltzmann distribution).

As said above, equation (5) has been defined in such
a way that there is no an explicit dependence on the dy-
namical evolution of the environment degrees of freedom.
Nevertheless, the environment effects on the system will
still be present through αt, as seen when substituting (14)
into equation (5). This can be seen in the resulting equa-
tion of motion

ṙt =
(1 + |αt|2)~

2imρ̃t

2
∑

j=1

|cj |2
[

ψ∗

j,t∇ψj,t − ψj,t∇ψ∗

j,t

]

+
~

imρ̃t
αtc1c

∗

2

[

ψ∗

2,t∇ψ1,t − ψ1,t∇ψ∗

2,t

]

+ c.c. (18)

In the limit of total loss of coherence (i.e., t ≫ τc or
αt → 0), equation (18) becomes

ṙt =
|c1|2ρ(1)

t ṙ1 + |c2|2ρ(2)
t ṙ2

ρcl
t

(19)

where ṙj and ρ
(j)
t are, respectively, the velocity field and

the probability density associated to the partial wave |ψj〉t,
and

ρcl
t ≡ |c1|2ρ(1)

t + |c2|2ρ(2)
t . (20)
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Notice that both ρcl
t and the density current,

J
cl
t ≡ ρcl

t ṙt = |c1|2ρ(1)
t ṙ1 + |c2|2ρ(2)

t ṙ2, (21)

are properly defined in this limit; the former is a sum of
partial probability densities and the latter is the sum of
the density currents corresponding to each slit indepen-
dently considered. Moreover, in both cases these magni-
tudes are properly weighted with the coefficients |c1|2 and
|c2|2. Thus, from a SQM point of view, an experiment with
full decoherence is equivalent to another one performed
with each slit independently open. Something different
happens, however, when this situation is studied in terms
of reduced quantum trajectories. In this case, particles still
move under the guidance of both partial waves although
interference has already disappeared. This is because the
damping describing interference suppression does not ac-
count for the erasure of the information about the initial
presence of two slits.

It is important to note that within a purely BM ap-
proach the limit discussed above has to be such that the
corresponding Bohmian trajectories will behave as un-
aware of the existence of a double–slit. That is, particles
started with initial conditions in one of the slits will evolve
with basically no information about the presence of the
other slit. Since Bohmian trajectories cannot pass through
the same point in configuration space at the same time,
such behavior can be explained having in mind that the
trajectories describing the system–plus–environment in-
teraction are embedded in a 3(N+1)–dimensional configu-
ration space. In this sense, as the system–plus–environment
interaction takes place, the topology of these 3(N+1)–
dimensional trajectories will be such that the projection
of the system degrees of freedom onto the system subspace
will display crossings (at the same time). Of course, this
does not violate the single–valuedness condition of BM,
since crossings are only present in the projections. Some-
how this situation resembles what happens in classical
mechanics, where trajectories can pass through the same
point of the configuration space at the same time, but
not in phase space. Within our quantum–trajectory ap-
proach single–valuedness preserves; once the dynamics of
the environment degrees of freedom is not considered ex-
plicitly, the single–valuedness condition directly emerges
in the system subspace.

3 Decoherence in the double–slit experiment

3.1 Model and simulation conditions

The working model used here is based on the double–
slit experiment performed by Zeilinger et al. with cold
neutrons [20], which has also been analyzed elsewhere by
us from both an optical and a SQM point of view [23].
Following the prescription given in Section 2, our sim-
ulation models the behavior of the neutron beam from
the two slits to the detector. The double–slit arrange-
ment has dimensions a1–d

′–a2 = 21.9–104.1–22.5 µm (left
slit/gap/right slit), and is at a distance L = 5 m from the

detector. The wavelength of the incident neutron beam
is λdB = 18.45 Å, corresponding to a subsonic velocity,
v = 214.4 m/s.

Here interference is described by considering two Gaus-
sian slits on the xy–plane, with neutrons propagating along
the z–direction. As seen in [15,23], Gaussian slits repro-
duce fairly well the real experiment, avoiding at the same
time single–slit diffraction features [14]. To further sim-
plify, we have assumed ℓy ≫ ℓx, with ℓx and ℓy being
the dimensions of the slits. This allows us to neglect the
motion along the y–direction due to translational invari-
ance (thus describing the particle motion only along the
x and z coordinates). With this, |Ψ (0)〉 in (11) is given
by a coherent superposition of two Gaussian wave pack-
ets (here we consider that both contribute equally, i.e.,

c1 = c2 = 1/
√

2), each one described by

ψj(x, z) =

(

1

2πσxj
σzj

)1/2

e
−(x−xj)

2/4σ2

xj
+ipxj

x/~

× e
−(z−zj)

2/4σ2

zj
+ipzj

z/~
, (22)

with j = 1, 2. Regarding the initial environment state, it
is chosen as |E0〉 = | I 〉, such that |Ψ〉 = |Ψ (0)〉 ⊗ | I 〉.

The time evolution of the (system) partial waves is
carried out numerically by Heller’s method [14], which is
exact in our case because there is no external potential.
In the calculations, the Gaussian wave packets have been
centered at x1,2 = (a1,2 ∓ d)/2 and z1,2 = 0, and incoher-
ence has been introduced by taking into account different
propagation velocities for each wave packet [23], given by

px1,2
= ∓~/a1,2 and pz1,2

=
√

(2π~/λdB)2 − p2
x1,2

. In or-

der to minimize the spreading of the Gaussians along the
z–direction,

σz
t = σ

√

1 +

(

~t

mσ2

)2

, (23)

during the time propagation, we have chosen σ = 2ā (with
ā = (a1 +a2)/2) for both wave packets. This ensures σz

t ≃
σ for the whole propagation time. As for the spreading
along the x–direction, we have considered σxj

= aj/4, so
that for |x − xj | = aj/2 the intensity at the edge of slit
j amounts to |ψj(±aj/2)|2/|ψj(0)|2 = e−2 (about 13.5%
of the maximum value of the intensity, |ψj(0)|2, reached
when x = xj). In this way, only a very small portion of
the partial waves is out of the boundaries defined by the
edges of the slits. This assumption is in good agreement
with the error on the slit widths experimentally reported
in [20], according to which neutrons penetrating through
the boron wire (the physical gap between the two slits)
undergo a relatively strong attenuation.

According to Heller’s propagation method, both par-
tial waves are evolved independently. Then the parameter
αt is introduced whenever they are superposed in order to
obtain the intensity (15). The magnitude of |α|t was em-
pirically determined in [23] taking into account the coher-
ence degree of the experimental results (Λt = 0.632) and
the time–of–flight of neutrons (tf = v/L = 2.33×10−2 s),
resulting a value of 0.36. This value implies a coherence
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Fig. 1. (a) Comparison between experi-
mental data (◦) and the intensity obtained
from quantum trajectory (•) and SQM (full
line) calculations for a double–slit experi-
ment with cold neutrons [20]. (b) Sample of
trajectories illustrating the dynamics of the
results shown in part (a).

time τc = 2.26×10−2 s, slightly smaller than the time–of–
flight.

The reduced quantum trajectories were integrated ac-
cording to equation (18) at the same time that the par-
tial waves were propagated. To obtain the statistical re-
sults, about 5,420 trajectories were used in each calcu-
lation shown below, binning them in space intervals of
20 µm, which coincides with the experimental scanning
slit width [20]. These trajectories were initially distributed
according to the probability density ρ(0), thus ensuring the
agreement with SQM calculations through equation (3).

3.2 Numerical results

In Figure 1(a) the results obtained from the statistics of
trajectories (•) are plotted together with the experimental
values (◦). Also to compare, we have included the results
from SQM (solid line), as given by equation (15). The ex-
cellent agreement between the experimental results and
those theoretically calculated by means of the reduced
quantum trajectories shows the suitability of the latter
in describing decoherence in interference phenomena. The
dynamical behavior of neutrons within this approach is
illustrated in Figure 1(b), where a sample of trajectories
associated to the results in Figure 1(a) is displayed. From
this plot it is apparent that, after the wave packets get
close enough (at a distance of 1 m from the two slits,
approximately), some trajectories (mainly those closer to
the symmetry axis of the experiment) begin to show the
typical “wiggling” behavior characterizing true Bohmian
trajectories in interference processes with no decoherence
[14]. Obviously, this behavior is more attenuated in both
space and time than in the case of true Bohmian trajec-
tories (without decoherence) because of the interference
damping; in space because interference effects are relevant
only for the central channels, as can be seen in Figure 1(a),
and in time because tf > τc.

In Figure 2 the two limit cases of coherence for this
model are illustrated: (a) total coherence (τc = ∞) and (b)
null coherence (τc = 0). Similar to Figure 1, the statistical
results obtained by means of reduced quantum trajectories
and SQM (left) as well as a sample of representative tra-

jectories (right) are displayed. Notice that, despite null co-
herence (see Figure 2(b)), the trajectories do not cross the
symmetry axis that separates the regions covered by each
slit, as in the case of total coherence (see Figure 2(a)). This
is a manifestation of the contextual character of quantum
trajectories, which remains even under these conditions.
The absence of interference prevents the particles from
undergoing the typical “wiggling” motion that leads to
the different diffraction channels [14], but not from be-
ing non–locally correlated with particles coming from the
other slit. Thus, within the approach proposed here we
can see that decoherence leads to a suppression of quan-
tum interference, but not to loss of memory on the initial
context information (i.e., the existence of two slits). This
is somehow similar to what happens in BM when trying
to reach the classical limit without appealing to any deco-
herence mechanism [32]; classical–like statistical patterns
emerge, but contextuality does not disappear.

According to the preceding statement, the structure of
the reduced quantum trajectories allows to characterize
different situations by their contextuality. That is, a situ-
ation where two slits are independently open can be easily
distinguished from another where both are simultaneously
open but there is total decoherence. These cases are illus-
trated in Figure 3. Although the trajectories started close
to the outermost edges of each slit are identical in both
cases, as the initial positions approach the innermost edges
the behavior of the trajectories gets different. When the
slits are independently open (see Figure 3(a)), each set of
trajectories is associated to an independent wave, and the
crossing between trajectories coming from different slits is
allowed because their dynamics are totally uncoupled. On
the contrary, when the two slits are simultaneously open
(see Figure 3(b)), the dynamics are still strongly coupled,
leading to an apparent “repulsion” between both sets of
trajectories as they meet at about z ≈ 1 m. Note that
this effect can only be detected by means of the trajec-
tories, since the measured intensity does not reveal any
clue about it; in both cases it is a sum of the probabil-
ities associated to each slit, as given by equation (20).
Of course, true Bohmian trajectories would show that
this non–crossing takes place in the 3(N+1)–dimensional
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Fig. 2. Left: Intensity obtained from quan-
tum trajectories (•) and SQM (full line) for:
(a) total coherence (τc = ∞) and (b) null
coherence (τc = 0). Right: Samples of tra-
jectories illustrating the dynamics of the re-
sults shown in the left part.
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Fig. 3. Quantum trajectories for two differ-
ent contexts: (a) slits independently open
and (b) slits simultaneously open with τc =
0.

configuration space where the system–plus–environment
is described.

4 Conclusions

Realistic simulation of system–plus–environment interac-
tions from purely quantum–mechanical approaches consti-
tutes a hard computational task due to the many degrees
of freedom involved. Nonetheless, it has become a topic of
mayor interest in recent years [24] because of its impor-
tant in different fields in physics, chemistry, and biology.
Here we have proposed a quantum trajectory description,

based on BM, that allows to study such problems without
taking into account explicitly the evolution of the envi-
ronment degrees of freedom. For that, the trajectories are
directly obtained from the system reduced density matrix,
with the action of the environment arising from a damp-
ing term that appears in such reduced density matrix. In
this way, these trajectories reduce computational efforts
as well as provide a physical inside on the physics taking
place in phenomena where the system coherence is lost
because of environment effects.

To illustrate the feasibility of our trajectory approach,
we have applied it to the problem of decoherence in in-
terference phenomena, in particular, to the disappearance
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of interferences in the double–slit experiment. With this
model it is shown that, effectively, interference fringes dis-
appear, although the trajectory dynamics is still influ-
enced by both slits, despite what one would expect. This
is because the trajectory dynamics is constrained to the
system reduced subspace instead of the full system–plus–
environment configuration space, from which one can see
that the projection of the system degrees of freedom onto
the system subspace violates the non–crossing property of
BM. Furthermore, based on this fact, we have also shown
that the reduced trajectories can be used to distinguish be-
tween experiments that give identical SQM results. This
is the case, for example, of an experiment performed with
each slit independently open and another with both slits
simultaneously open but total decoherence.
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