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Application of a coupled-surface time-dependent Hartree grid method 
to excited state optical spectroscopy 

Janet R. Waldeck, Jose Campos-Martfnez,a) and Rob D. Coalsonb) 

Department o/Chemistry, University 0/ Pittsburgh, Pittsburgh, Pennsylvania 15260 

(Received 10 September 1990; accepted 30 October 1990) 

The d~namics of ~ultidimensional wave packet motion on nonadiabatically coupled electronic 
pote~tlal surfaces IS explored b.y numerically exact time-dependent quantum mechanics and by 
the tIme-dependent Rartree gnd (TDRG) approximation. Excellent agreement is found 
betwee~ the. TO~G and the exact evolution of the wave packet; in particular, the 
approxImatIOn YIelds accurate total cross sections for electronic absorption, excitation profiles 
for resonance Rama.n scattering, and partial cross sections for photofragmentation in a two 
degree of freedom model of direct dissociation (which is qualitatively related to experimentally 
observed processes i.n methyl halides and ICN). 

I. INTRODUCTION 

There is currently great interest in understanding the 
dynamics of molecules in excited electronic states. Such phe­
nomena represent "quantum mechanics in action" in a var­
iety of ways, and have direct bearing on important natural 
and technological processes. Photodissociation events in iso­
lated molecules, for example, involve chemical bond break­
ing, and so provide glimpses of elementary chemical reac­
tions in progress. The abundance of experimental 
information about electronic absorption by laser spectro­
scopic techniques provides considerable impetus to the theo­
retician. In particular, frequ.ency domain techniques give ac­
curate, though somewhat indirect, information about the 
molecular dynamics which ensues following photoabsorp­
tion, I while recent advances in pump-probe technology 
promise direct snapshots of excited state evolution behav­
ior.2 

One of the more exotic features frequently encountered 
in photodissociation spectroscopy is the breakdown of the 
Born-Oppenheimer (BO) approximation. 3 This happens 
upon electronic excitation into energy regions occupied by 
BO potential surfaces associated with more than one elec­
tronic excited state of the molecule. These excited BO sur­
faces are often "mixed" by terms in the molecular Hamilto­
nian which are neglected sf the BO level of treatment, and 
this mixing alters spectral signatures associated with the en­
suing photodissociation dynamics.4 Computation of the 
spectroscopically relevant dynamics remains a challenge for 
all but the simplest model systems. Indeed, 2-3 spatial de­
grees offreedom are still the state of the art for exact compu­
tations, so the need for accurate approximations amenable to 
application in many-body systems is great. 

One class of techniques which has shown promise in 
single-surface wave packet dynamics applications derives 
from the time-dependent Hartree (TDR) approximation,5.6 
in which the wave packet is factorized into a product of sin-
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gle degree of freedom packets, and each of these packets is 
represented by a spatial grid (or some other convenient basis 
set). Upon utilization of a time-dependent variational prin­
ciple, appealing equations of motion are obtained. Each de­
gree of freedom evolves according to a one-dimensional 
Schrodinger equation involving a "mean-field" potential, 
i.e., the full (coupled many-body) potential energy function 
averaged over the instantaneous probability densities of all 
the other degrees offreedom. These equations are much easi­
er to integrate than the Schrodinger equation for the fully 
coupled system. The TOR evolution is, of course, approxi­
mate, but has been found to accurately describe a number of 
rapid (subpicosecond) processes involving the dynamics of 
coupled multidimensional systems.6.7 

A generalization of the TDR equations of motion to 
problems involving multidimensional wave packet motion 
on coupled electronic potential surfaces was given recently 
by Kotler, Nitzan, and Koslotf! (KNK), and in a related 
application to multidimensional tunneling dynamics by 
Makri and Miller (MM).9 Both sets of workers were inter­
ested in a relatively coarse measure of the underlying quan­
tum dynamics, namely, in nonadiabatic transition language, 
the net probability to be on one excited Born-Oppenheimer 
surface or the other. We wished to see if the multisurface 
TOR grid (TDRG) method was accurate enough to de­
scribe the detailed state of the nuclear degrees offreedom on 
each of these electronic surfaces, as probed by frequency 
domain electronic spectroscopy. In particular we have uti­
lized this method to compute total cross sections for elec­
tronic absorption, excitation profiles for resonance Raman 
scattering, and partial cross sections for photofragmentation 
in a two degree of freedom model of direct dissociation 
(which is qualitatively related to experimentally observed 
processes in methyl halides1(a) and ICN1(b) ). The results 
we have obtained are, in general, quite good; the purpose of 
this paper is to communicate some of our findings. 

In Sec. II we describe the excited state spectroscopy of 
interest to us. Theoretical modeling of these processes re­
quires knowledge of multisurface wave packet evolution, 
which leads naturally to consideration of multisurface Har-
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tree grid methodology. In Sec. III we discuss the appropriate 
equations of motion. In particular, for some applications 
(e.g., computation of Raman excitation profiles) we need 
the complete wave function on each surface, including its 
overall phase, and this has required an extension of the 
KNK/MM equations of motion to allow straightforward, 
variationally optimized evaluation of this quantity. In Sec. 
IV we present numerical results which summarize our expe­
rience with the two-surface Hartree gridmethod, and in Sec. 
V we sketch some ideas for further research in this area. 

II. EXCITED STATE SPECTROSCOPY 

We consider a system consisting of two degrees of free­
dom which move on two diabatic potential surfaces VI and 
V2 coupled by a nonadiabatic coupling function g. The Ham­
iltonian which governs this motion is lO 

He = lel>(eIIH I + le2 ){e21H2 

+ (/el)(e2 1 + /e2 ) (ed)g, (2.1) 

where le l ,2) are (structureless) diabatic electronic states, 
and H 1,2 = T + V I ,2 are the nuclear coordinate Hamilto­
nians for motion on isolated diabatic surfaces V I •2 , respec­
tively. (Tis, of course, the relevant kinetic energy operator.) 
If a molecule is excited by visible or uv light from a third, 
ground state potential surface into resonance with the sur­
faces V 1.2' then absorption into the excited states, Raman 
scattering of light through them, and photodissociation of 
the molecule on them, can take place. The details of the fre­
quency spectra associated with these events follow from the 
evolution of a particular two-component nuclear wave pack­
et according to the Hamiltonian (2.1). We consider here the 
commonly encountered case that only one of the zeroth or­
der excited surfaces, say leI)' is radiatively coupled to the 
ground electronic'state, and furthermore, that the nuclear 
coordinate dependence of the radiative dipole operator is 
weak (the Condon approximation4 (b) ). Then the essential 
wave packet evolution needed to extract frequency spectra is 
the vibrational eigenfunction cP ~o) (x,y) of the electronic 
ground state manifold, "placed" on surface VI at t= 0 and 
propagated subsequently according to the coupled surface 
Hamiltonian (2.1). (As. the superscript on ({! ~o) indicates, 
we consider for notational simplicity the case that the mole­
cule is prepared in its vibrational ground state in the elec­
tronic ground state prior to optical excitation; systems with 
initially excited vibrational motion can be treated analo­
gously.) To express this mathematically, we write a general 
two-component excited state wave packet as 

Starting from the initial state l'JIo) =cP~O)~x,Y)lel)' we 
propagate I'JIU» according to ia,I'JI(t» = Hel'JI(t» (in 
which we have set fz = I). The total absorption cross section 
at laser frequency W L is then given by4(a),IO(a),IO(b) 

. R 1'" (j(WL ) =~ dtexp[i(WL +EiO»t] 
1T 0 

X (cp ~O) (X,y) IcpI (x,y,t». (2.3) 

where E in) isthe vibrational energy eigenvalue correspond­
ing to cP in). The Raman cross section to scatter into the final 
vibrational state cp y> on the ground electronic state sur~ace 
is obtained as If,o (wL ) = IAr,o (wd 12

, with the scattering 
amplitUde Af,o given bylO(a),IQ(b) 

Ar,o(wd = 1''' dt exp [i(wL + EiO»t] 

X (cp y> (.x,y) IcpI (x,y,t». (2.4) 

Finally, if they coordinate of the system is dissociative, the 
partial cross section for dissociation: into the vth internal 
state of the vibrational coordinate x on'the electronic state 
leI) can be extracted from the overlap, 

uiv)(wc..) = I<k [V)(y)l<xIV)(x)/CPI(x,y,t-> (0»1 2
, (2.5) 

where xIV) is the appropriate vibrational eigenfunction on 
surface VI' and Ik IV» is an energy-normalized plane-wave 
state with wave vector determined by conservation of ener­
gy. !O(e) Cross sections for dissociation into electronic state 
lez) can be extracted in the same manner from the asympto­
tic wave packet CP2(X,y,t-> (0). 

III. THE TWO-SURFACE TIME-DEPENDENT HARTREE 
GRID METHOD (INCLUDING ALL PHASE 
INFORMATION) 

In order to obtairi an approximation to the two-surface 
wave packet state )'JI(t» which is both accurate and appli­
cable to systems with more than 2-3 degrees offreedom, we 
consider the Hartree trial state 

I'JIT(t» = exp{iSI}XI (x,t) YI (y,t) leI) 

+ exp{ISz}X2 (x,t) Y2 (y,t) lez), (3.1) 

where X I,Z' Y 1.2 are single degree of freedom wave packets 
and ,S 1,2 (t) are parameters with temporal but no position 
dependence. Explicit isolation of the phase/normalization 
parameter S 1,2 is inspired by the original single-surface anal­
ysis of McLachlan.5 In the single-surface case this parame­
terization of the trial wave packet results in simple, one­
dimensional mean field-type Schrodinger equations for the 
spatial packets and an explicit prescription for evaluating the 
overall wave packet phase. A similar development occurs in 
the two-surface case. 

We subject the trial function (3.1) to Frenkel's vari­
ational principle, 110 = <t5'J1~1 UB, - He) I'JIT). (Although 
there are several different variational principles, all reduce to 
Frenkel's version when the trial function is an analytic func­
tion of complex variational parameters, 12 as is true here.) By 
considering arbitrary variations in I II'T) within the con­
straints imposed by its assumed functional form. optimized 
equations of motion for the Hartree wave packets and the 
parameters S 1,2 can be <?btained. To state these in a concise 
way, it proves convenient to decompose the single-surface 
zeroth order diabatic potentials into "single degree of free­
dom" and "interaction" terms, e.g., VI (x,y) = U1x ex) 
+ u ly (y) + WI (x,y) , and then define single degree offree-
dom Hamiltonians, e.g., h lx = Tx + U 1x (x), Tx being the 
Cartesian kinetic energy operator associated with coordi­
nate x. With these definitions we obtain the following equa­
tions of motion for the Hartree wave packets: 
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'X -h X + (YI/W.(X,y)/YI) X 
1 I - Ix 1 < Y

I
/ Y

I
} I 

+ { '[S -S]} (Yt!g(x,y)IYz) X (3.2a) 
exp 1 2 I (Yt/Y

I
) 2 

iX =h X + (Y2IW2(x,y)/Y2) X 
2 2x 2 ( Y

2
/ Y

2
) 2 

+ { '[S -S]} (Y2Ig(x,y)IYI ) X. (3.2b) 
exp 1 I 2 ( Y

2
/ Y

2
) I 

The equations of motion for Y I ,2 are obtained from Eqs. 
(3.2) by replacing X++Yand x++y. The phase/norm factor 
SI evolves according to 

SI = [(Y.\YI ) {X.\X I } -I[ {Y'\ {X.! WI (x,y) IXI } IYI }] 

+ exp{i[S2 - SI]}( Y.J (Xllg(x,y) IXz} I Y2}]· (3.3) 

82 is analogous with 1++2. The equations of motion indicated 
in Eqs. (3.2) and (3.3) bear a strong resemblance to those 
derived by KNK/MM. 8,9 The main difference is the pres­
ence of the (complex) phase/norm parameters SI,2 in the 
present set. Our equations provide a straightforward pre­
scription for updating the system's state function if its cur­
rent state function is known. Therefore, they give an approx­
imation to the complete nuclear wave packet, e.g., 
exp{iSI} XI (x,t) YI (y,t) is the amplitude to be at nuclear po­
sition (x,y) and in electronic state I e I}' This prediction in­
cludes the overall phase of the nuclear wave packet associat­
ed with each electronic state, which was omitted in the 
KNK/MM treatment. For 'the applications considered by 
KNKlMM, this phase information was irrelevant. For the 
computation of Raman spectra, on the other hand, it must be 
accurately accounted for. 

The equations of motion introduced above have one 
quirk which is well known in Hartree-type coupled-surface 
wave packet propagation schemes. If the wave packet starts 
initially on one surface only, say VI' the evolution equations 
are ill-defined at t = 0 (since either X2 or Yz must be identi­
cally zero). This problem can be surmounted by "jump start­
ing" the wave packet on V2 using the short-time behavior 
predicted by the full Schrodinger equation.8

(a),13 It is clear 
that after a short-time interval 6.t 

tJl2(X,y,6.t) ~ - ig(x,y)XI (x,O) YI (y,O)6.t. (3.4) 

Thus, for nonadiabatic coupling functions g that factor into 
g(x,y) =gx(x)gy(y), wesetX2 (x,O) =gx(x)XI(x,O) and 
Y2 (y,O) = - igy (y) YI (y,O) at, and find that as 6.t is re­
duced all macroscopic-time wave packet dynamics quickly 
reaches a stable limit. 

IV. RESULTS AND DISCUSSION 

The wave packet equations of motion presented in the 
previous section were implemented for a simple Beswick­
Jortner l4 (BJ)-type model of molecular photodissociation. 
This model involves two coupled spatial degrees offreedom, 
both of which are bound in the electronic ground state, but 
one of which is dissociative upon electronic excitation. The 
model as introduced by Beswick and Jortner utilizes a single 
excited potential surface of the form 

VI (x,y) = Al exp{ - a l [y - rlX]) 

+ ~k1X2 + VIO), (4.1) 

which results in direct dissociation along the y coordinate 
and in the process induces vibrational activity in the x coor­
dinate. This model provides a qualitative representation of 
the photodissociation dynamics of both CH3Il(a) and 
ICN.I(b) It corresponds to a simple bond breaking mecha­
nism (e.g., via promotion of an electron from a bonding to an 
antibonding orbital) and couples the dissociative motion to 
an anharmonic vibration. For our calculations we use two 
BJ-type surfaces, one for VI and one for V2, with parameters 
chosen such that V j and V2 cross near the region where the 
initial wave packet is prepared on surface 1. 

It is less obvious what characteristics the nonadiabatic 
coupling function should possess. These details constitute an 
outstanding problem in electronic structure theory,4(a),15 
but the usual assumption invoked in simple dynamical theo­
ries (such as the Landau-Zener approximation 16) is that the 
strength of the nonadiabatic coupling function in the cross­
ing region is the salient feature. This will be the case if the 
coupling function does not vary too rapidly in the relevant 
region of nuclear coordinate space. It is also necessary to 
assume that the nonadiabatic coupling decays to zero as the 
molecule falls apart in order to trap the fragments on one 
diabatic surface or the other, as is usually observed experi­
mentally.1 Consistent with these assumptions is a localized 
coupling function, e.g., g(x,y) = go exp{ - a(y - YO)2}, 
where a- 112 is roughly the distance from the crossing point 
Yo at which the nonadiabatic coupling "turns off," and go is 
the coupling strength at the crossing. We find that the wave 
packet dynamics and corresponding frequency spectra are 
particularly simple in this case. We have also investigated 
the case where the nonadiabatic coupling is not localized in 
the crossing region, but instead becomes very large inside the 
crossing region. This is represented by the exponential form 
g(x,y) = go exp{ - a(y - Yo)}, The value of the coupling 
at the crossing is still go, but the function grows rapidly in­
side the crossing (depending on the value of a-I which sets 
the length scale of the exponential function). The spectra 
associated with exponentially growing nonadiabatic cou­
pling functions can be more elaborate than in the case of 
localized coupling. This is a reflection of the more compli­
cated wave packet dynamics which arises from the more ex­
tended non adiabatic coupling between diabatic potential 
surfaces. 

In Table I are listed the parameters used in the set of 
calculations to be presented next. We begin with the local­
ized coupling case. Cuts of the appropriate diabatic surfaces 
and nonadiabatic coupling functions through the asympto­
tic equilibrium point x = 0 are shown in Fig. 1 (a). The value 
of go was chosen to generate 50% transmission to the dark 
surface, i.e., the integrated probability is 0.5 on each surface 
(or, equivalently, the areas under the summed bright vs dark 
potential cross sections are the same). Two-dimensional 
contour plots of the initial wave packet (as well as subse­
quent wave packet dynamics to be discussed below) are 
shown in Fig. 2. This wave packet is of the form 9?1(X,y,O) 
= N exp{ - Ax(x - xs )2}exp{ - Ay(Y - Ys)2}, where N 

J. Chem. Phys., Vol. 94, No. 4,15 February 1991 
Downloaded 23 Aug 2013 to 161.111.22.69. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



2776 Waldeck, Campos-Martinez, and Coalson: Excited state optical spectroscopy 

TABLE I. Parameters used to generate the potential energy surfaces VI and 
V2, and the coupling function g. v" (x,y) = An exp{ - an [y - rnx]} 
+ ik"X2 + V~O), while g(x,y) = go exp{ - a(y - YO)2} (localized case) 

andg(x,y) = go exp{ - a(y - Yo)} (nonlocalizedcase). Thestartingposi­
tion for the wave packet along the dissociative coordinate is given by y,. 

Potential parameters (n = 1,2) 

A" a" r" k" V~O) 

(1) 13.71 0.4547 0.9850 43.28 4.0 
(2) 34.04 0.4547 0.9850 43.28 0.0 

Coupling parameters (resulting in 50% transmission) 
go a Yo y, 

Localized) 0.80 0.668. 3.5 2.5 
Nonlocalized) 5.7 0.668 0.0 2.5 

10.5 0.668 0.0 1.25 

is a normalization constant, A X,y prescribe the spread of the 
wave packet in the x,y directions, respectively, and x,,ys 
specify the location of the center of each Gaussian factor. In 
the calculations presented below we choose Ax = 3.29, Ay 
= 0.754, and Xs = 0.665 throughout. The parameter Ys 
which sets the starting location of the wave packet in the y 
coordinate is varied to explore various aspects of nonadiaba­
tic coupling. Factorization of the initial wave packet in this 
manner is necessary to assure asymptotic stability of the 
wave packets which emerge on both surfaces after the disso­
ciation. Formally this constitutes a weakness of the TDHG 
method as applied to photodissociation dynamics, but in 
practice the neglected correlation in qJ ~O) (x,y) is often small, 
due to disparities in the force constants appropriate to the 
vibrational motion in the ground electronic state. 7 

We focus now on the dynamics of the dissociating wave 
packet. A glance at the partial cross sections for dissociation 

o 
"I. 

o 
-2.5 

'" "I' 
\ 

a \. 
"I. 

0:0 

(a) g = go l'Xp( -"(.v-.Vo)') 

... --... ..... _-

g 
.. 

~-.- G.1()--- ,('-.;' 

.v 

VI 

V. 

10'.0 

(b) g go ~"p(-Ct(Y-Yo» 

VI 

g 

---2.5=- "'~'5'~'O" - -;:;:S-10t.O 

.v 

FIG. 1. One-dimensional cut of the diabatic potential surfaces, VI (solid) 
and Vz (dotted line), through the asymptotic equilibrium point x = O. The 
dashed line depicts the localized (a) and nonlocalized (b) non radiative 
coupling functions g(x,y) via which these potentials interact. 

(a) 1<I>,(x,y,t),Z 
TDHG 

EXACT -

C')-.-------i-----------, 

IX: 
M 
I 

C') r -
-5 5 15 25 

Y 

(b) j4»(x,y,l)j' TDlIG ._ ..... 

EXACT -
C') 

t=4 

7~--~---.--~--.--~~--r_~ 
-5 5 15 25 

y 

FIG. 2. Exact (solid) and TDHG (dashed line) probability densities for 
times = 0.0, 2.0, 4.0 on the (a) bright surface VI and (b) dark surface VI' 
for localized coupling g. The abscissa and ordinate are the dissociative and 
bound coordinates, respectively. The straight line denotes the V1- V2 cross­
ing seam. The starting position for the initial wave packet along the dissocia­
tive coordinate y, = 2.5. 

onto the dark surface presented in Fig. 3, shows that the two­
surface TDHG approximation is excellent for this problem. 
Recall that partial cross sections probe motion over the en­
tire dissociation trajectory, and, since they involve overlap of 
the outgoing wave packets with asymptotic eigenfunctions 
of the diabatic potential energy surfaces, are intricately de­
pendent on the details of the exiting wave packets. The fact 
that the dark surface partial cross sections are so well repro­
duced by the two-dimensional TDHG approximation in a 
case of strong nonadiabatic coupling (50% transmission) is 
encouraging. It also bodes well for the accuracy of shorter 

<0 
0 

v=l TDHG 0 

EXACT 
~ ... 
~o 

20 v=o '>N 
--0 

~ 
v=3 

g 
0 

'" J \ 
0 

0 
0.0 10.0 :2'0,0 :lO.O ·10.0 fiO.O 

CJI, 

FIG. 3. Exact (solid) and TDHG (dashed line) partial cross sections for 
popUlation of the asymptotic vibrational eigenstates Cu = 0-5) on the dark 
potential energy surface V2, for localized coupling and 50% transmission to 
the dark surface. 
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'" (a) total absorption g;. ] 

TDHG 

~l ~:M 
g .'~., . ___ ..... .,----r-"-J~, 
o 

0.0 20.0 
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0.0 20.0 

,»t 

'" ::; 
10 

'1 

·\0.0 60.0 

(bl raman ftlndamental 
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(el raman 
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FIG. 4. Exact (solid) and TDHG (dashed line) representing: Cal total ab­
sorption cross section, (b) Raman fundamental (f = 1), and (c) Raman 
ninth overtone C f = 10), in the case oflocalized coupling and 50% trans­
mission to the dark surface. In each panel, a dotted line denotes the results 
obtained when running the wave packet only on V, (i.e., 0% transmission to 
the dark surface). 

time dynamics associated with the same model parameters. 
That is indeed the case, as shown by looking at Raman 

excitation profiles in Fig. 4 corresponding to ground state 
vibrational transitions in the dissociative mode y. Succes­
sively higher electronic Raman overtones are sensitive to the 
dynamics of the initial wave packet on the excited potential 
energy surface at successively longer times.17 Consistent 
with this behavior we see, in: Fig. 4(a), that the total absorp­
tion cross section (which is equivalent to, but experimental­
ly more accessible than, the elastic or Rayleigh scattering 
cross section) is essentially unperturbed by nonadiabatic 
coupling effects. However, the Raman fundamental is clear­
ly suppressed by the nonadiabatic coupling, and this effect 
becomes more pronounced for higher overtones. 

All of these frequency domain results are qualitatively 
explained by the wave packet dynamics illustrated in Fig. 2. 
The most important feature derives from the localized na­
ture of g(x,y). Namely, the wave packet remains entirely on 
the bright surface until it passes through the crossing seam, 
at which point a piece is "shaved off," i.e., created on the 

'" o 
o 

OJ 
o 
o 

g 
o 

0.0 

OJ 
o o 

v=l 

10.0 20.0 

v=l 

10.0 20.0 

(a) y"",=2.5 

TDHG 

EXACT 

(b) y" .. ,=1.25 

TDHG 

EXACT 

v=5 

30.0 40.0 50.0 

FIG. 5. Dark surface partials cross sections, as in Fig. 3, but for nonloca­
lized coupling function g, Ca) y, = 2.5 and (b) y, = 1.25. Note how these 
cross sections become more complicated as y, is moved further inside the 
crossing region. 

dark surface. As the bright and dark surface wave packets 
pass beyond the crossing region, they are quickly trapped on 
their respective surfaces. Keeping this dynamics in mind, it 
is easy to see how the lower-order Raman overtones may be 
only weakly perturbed by the nonadiabatic coupling [de­
pending on where the Franck-Condon (FC) region is rela­
tive to the crossing seam]. On the other hand, higher-order 
Raman overtones, whose time kernels are large at times on 
the order of or later than the crossing time will be strongly 
perturbed by strong nonadiabatic coupling. Furthermore, 
the dominant nonadiabatic effect upon the Raman excita­
tion profiles is "suppression," since part of the wave packet 
leaks to the dark surface, and the Raman time kernel (fJi Cj) 
(x,y)lfJil (x,y,t» is correspondingly reduced.lO{a).IO(b) Fin­
ally, the appearance of fragments on the radiatively dark 
surface is a direct manifestation of nonadiabatic coupling. 
The fact that simple, Gaussianesque line shapes are obtained 
reflects the simple, nearly Gaussian shape of the wave packet 
(or more directly, the corresponding momentum distribu-, 
tion) which is created on the dark surface in the case of 
localized nonadiabatic coupling. 

It is interesting to compare the results just presented to 
analogous results obtained when the nonadiabatic coupling 
function is highly nonlocal. In particular, we utilized an ex­
ponential coupling function characterized by a = 0.668, 
Yo = 0.0, and go = 5.7. With these parameters we again ob­
tained 50% transmission, but the details of the various cross 
sections are somewhat different than for the localized case. 
Most noticeable is the more complicated structure of the 
dark partial cross sections, displayed in Fig. 5(a). Each of 
these has an extra shoulder on its high frequency side. Less 
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FIG. 6. Absorption spectrum and Raman excitation profiles, as in Fig. 4, 
but for nonlocalized coupling function and initial conditions associated 
with Fig. 5(a). 

dramatic differences are found for the absorption/Raman 
excitation profiles, although the presence of strong nonadia­
batic coupling inside the crossing region does appear to per­
turb the Raman profiles slightly more than in the case of 
localized coupling. [Compare the profiles in Figs. 6(a) and 
6(b) to those in Figs. 4(a) and 4(b).] In addition, we no­
ticed that wave packets in the presence of coupling tended to 
move more slowly along the dissociative coordinate: this 
could explain the slightly enhanced ninth Raman overtone 
for the nonlocalized coupling case, which experiences cou~ 
pIing further inside the crossing seam than in the localized 
case [cf. Figs. 6(c) and 4(c)]. 

To understand this frequency domain behavior, it is in­
structive to look at the associated wave packet dynamics 
depicted in Fig. 7. Because the nonadiabatic coupling is so 
large inside the crossing region, the initial wave packet un­
dergoes some leakage immediately, even though there is a 
sizable energy gap separating bright and dark surfaces in the 
FC region. Thus, the wave packet on the dark surface comes 
to consist approximately of two pieces, one of which is creat­
ed at early times by the strong non adiabatic coupling 
between the two energetically disparate zeroth order sur­
faces and a second component which is generated when the 
bright surface wave packet passes through the crossing re-
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FIG. 7. Probability densities, as in Fig. 2, but for the nonlocalized coupling 
function g and y, = 2.5. Note that the large valne of g inside the crossing 
region causes some population to leak immediately between surfaces, result­
ing in a bimodal structure for the wave packet by the time it reaches the 
crossing seam. 
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FIG. 8. Probability densities, as in Fig. 7, but now the initial wave packet is 
moved further inside the crossing, to the starting position y, = 1.25. 
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FIG. 9. Absorption spe<:trum and Raman excitation profiles, as in Fig. 6, 
but for the case where the initial wave packet is moved further inside the 
crossing to the starting positiony, = 1.25. 

gion. This noticeably non-Gaussian wave packet, whose mo­
mentum distribution is bimodal, gives rise to the bimodal 
partial cross sections displayed in Fig. 5 (a). Furthermore, 
the wave packet picture in Fig. 7 illustrates the surprising 
success of the two-surface TDHG approximation. The two­
surface TDHG wave packet dynamics is still quite accurate, 
even though it is much more intricate than the simple sur­
face-hopping scenario appropriate when the nonadiabatic 
coupling is localized. 

The nonlocalized coupling case implies strong interac­
tion between the wave packets on the two diabatic surfaces 
from the initial release of the wave packet on the bright sur­
face until a time when both wave packets have passed com­
pletely through the crossing. Thus it becomes more difficult 
to accurately propagate such wave packets as the Fe region 
moves further inside the crossing seam. This behavior is in 
fact observed. Figure 8 shows the wave packet dynamics on 
bright and dark surfaces when the initial wave packet is 
moved further inside the crossing, to the starting positionys 
= 1.25. We see some erosion in the quantitative accuracy of 

the TDHG method for evolution on the dark surface at long 
time.s. The dark surface partial cross sections are thus ex-

pected to be less accurate than in the previous examples. 
Nevertheless, as seen in Fig. 5 (b), they remain quite good, 
despite the increased complexity relative to those depicted in 
Fig. 5 (a). Furthermore, from Fig. 9 it is seen that the bright 
surface wave packet also remains accurate for times long 
enough to extract reliable Raman cross sections over a very 
wide variety of conditions, even though these spectra are 
strongly perturbed by the intense early-time coupling 
between diabatic surfaces 1 and 2. 

V. CONCLUSION 

In the Hartree approximation the overall system wave 
packet is forced to factorize into a product of single degree of 
freedom wave packets. A time-dependent variational princi­
pleS,l1 then prescribes "optimal" evolution of each single 
degree of freedom wave packet. The TDHG trial function is 
simple to use, yet flexible enough to properly represent many 
systems of interest. The accuracy of this approximation 
scheme has been demonstrated in a variety of previous appli­
cations.6-9 

We applied the TDHG formalism to a simple Beswick­
Jortner-type two degree offreedom model for molecular dis­
sociation, utilizing two potential energy surfaces which in­
teract nonadiabatically according to a coupling function 
g(x,y). Very good agreement between the TDHG and the 
exact evolution of a wave packet was found. In particular, 
the approximation accurately reproduced the total cross sec­
tions for electronic absorption, excitation profiles for reso­
nance Raman scattering and partial cross sections for photo­
fragmentation. The specific function g(x,y) by which the 
surfaces were coupled played an important role in governing 
the wave packet dynamics, and thus influenced the resulting 
spectra. The more extended nonadiabatic coupling between 
diabatic potential surfaces yielded more complicated wave 
packet dynamics, and thus more elaborate spectra than seen 
for the localized coupling case. When the magnitude of 
g(x,Y) was substantial prior to the crossing seam, we found 
slight degradation in the TDHG results, but overall the per­
formance of the approximation was very good. 

The only aspect of the dynamics which is improperly 
described by the TDHG approximation is the "direct corre­
lation" of the motion in various degrees offreedom, or more 
precisely, the nonfactorizability of the exact multidimen­
sional wave packet which describes the nuclear motion on 
each diabatic potential energy surface. This manifests itself 
geometrically as a twisting ofthe wave packet away from the 
x-yaxes, as is apparent when comparing the exact (solid) vs 
TDHG (dashed line) wave packets on VI and V2 in Fig. 8. 
Recently, the TDHG method was extended to include "con­
figuration interaction" for single surface problems. 18 To cor­
rect for the neglect of "direct correlation" in factorized Har­
tree wave packets, a time-dependent superposition of 
TDHG-type wave packets was constructed. The inclusion of 
configuration interaction, accomplished via the evolution of 
the basis coefficients, was shown to significantly improve 
control over the quality of the results. It is thus natural to 
contemplate using the TDHG-Ievel approximation studied 
in the present work as a starting point for construction of a 
two-surface configuration interaction scheme which can 
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produce essentially "ab initio" wave packet dynamics for 
multidimensional motion on coupled potential energy sur­
faces. 
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