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Application of the time-dependent Hartree grid-configuration interaction 
method to the desorption of diatomic molecules from solid surfaces 

Jose Campos-Martfneza) and Rob D. Coalsonb) . 

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvama 15260 

(Received 1 March 1993; accepted 12 July 1993) 

We study UV laser induced photodesorption of diatomic molecules from solid surfaces by means 
of the time-dependent Hartree grid-configuration interaction (TDHG-C~) method [J. Che~. 
Phys. 93, 4740 (1990)]. Converged partial and total absorption cross sectIOns a~e computed ill 
several cases to demonstrate the flexibility and accuracy of the method. Companson to TDHG 
results without CI corrections is also made. The failure of simple TDHG dynamics to reproduce 
state resolved rotational cross sections in various strong coupling limits is noted as a justification 
for the development of TDHG-CI algorithms. 

I. INTRODUCTION 

In recent years time-dependent methods have emerged 
as very useful tools in the field of quantum molecular dy­
namics. 1 Central to this growth has been the development 
of new propagation techniques2 as well as new approximate 
methods.3 Among these, the time-dependent Hartree 
(TDH) approach4 has become one of the most widely 
used3 and tested.s While the time-independent counter­
parts of these quantum methods are well established, they 
usually cannot be applied to more than 3 degrees of free­
dom. When the desired eigenfunctions are expanded in an 
appropriate basis, the number of these basis states (or 
channels) becomes prohibitively high, since the number of 
basis states needed grows geometrically with the spatial 
dimensionality of the problem, and computational effort 
scales as the number of basis states cubed. Besides, in deal­
ing with multidimensional or poly atomic problems, it is 
intuitively appealing to utilize a classical or semiclassical 
approach for most of the degrees of freedom, while the few 
for which quantum effects are most important are treated 
by some available quantum method.6,7 Time-independent 
methods are not easy to combine with other classical or 
semiclassical approaches,6,3(a) and therefore are not very 
useful for treating polyatomic molecules or condensed 
phase aggregates. 

Time-dependent methods are more flexible in this re­
gard. Since standard exact time-dependent methods are re­
stricted like their time-independent analogs to systems 
with no more than 2-3 spatial degrees of freedom, progress 
in treating multidimensional systems has to rely on ap­
proximate methods such as the time-dependent Hartree 
grid (TDHG) algorithm. This treatment is based on the 
enforced factorization of the time-dependent wavepacket 
for the whole system into a product of one-dimensional 
factors, one for each degree of freedom. Each of these is 
then evolved on a one-dimensional grid in its own (one­
dimensional) "variationally optimized" effective poten­
tia1.4

•5 In this framework, to solve aD-dimensional Schr6-
dinger equation using numerical grids, using N points to 
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span each dimension, requires N D points instead of the N D 

points needed in an exact propagation scheme. 
There are, nevertheless, processes for which TDH fails. 

This failure can be attributed to the "mean field" character 
of the propagation, which entails neglect of direct spatial 
correlation between degrees of freedom. 8 In previous pa­
pers,9 we have shown how to produce exact wavepacket 
propagation using a configuration interaction scheme 
based on TDHG trajectories, and applied our method to 
some model cases. However, in order to demonstrate real 
utility, this extension of TDHG, which we have termed 
TDHG-CI, should be tested on systems with more than 2 
degrees of freedom. It is the purpose of this paper to show 
how TDHG-CI performs in certain cases where propaga­
tion via standard grid-based exact wavepacket algorithms 
as well as time-independent methods is currently not fea­
sible. 

To this end, we study the photodesorption of a rigid 
rotor from a static solid surface. The desorption is induced 
by an ultraviolet (UV) photon that promotes the surface­
adsorbate complex to a repulsive electronically excited sur­
face. In this case, relevant experimental observables are the 
total photodissociation cross section and final rotational 
distributions. 

In Sec. II we review the basic TDHG-CI equations of 
motion and introduce the potential energy function via 
which the diatom interacts with the corrugated solid sur­
face in both ground and excited electronic states. Then in 
Sec. III, we present results for several parameter sets. The 
convergence of our CI results is demonstrated, and com­
parison to TDHG results is made. The paper concludes 
with a Discussion Section, IV, where our main results are 
summarized, and avenues for further research are 
sketched. 

II. THEORETICAL BACKGROUND 

A. Basic TDHG and CI equations 

Consider a rigid rotor with masses M A' M B' and 
(fixed) bond length r, adsorbed on a static surface. The 
system is completely specified by the coordinates of the 
center of mass of the diatom R= (x,y,z) and the polar 
angle e and azimuthal angle <p of the relative coordinate 
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vector (pointing fom MA to M B) with respect to the sur­
face. Then, the total Hamiltonian for motion on a given 
Bom-Oppenheimer potential surface V(R,e,c/J) can be 
written as 

where M=MA+MB is the total mass, J.L=MAMBI(MA 
+M B) is the reduced mass of the diatom, V~ is the La­
placian operator associated with the center of mass vector, 
and i} is the usual squared angular momentum operator 
(which depends upon the angular variables e, c/J). 

There are many mechanisms via which photodesorp­
tion of molecules from solid surfaces can occur. Here, we 
consider the simplest case, dynamically, in which the pho­
todesorption of the adsorbate-surface complex is achieved 
by UV photon induced excitation: the complex makes a 
direct transition from its ground electronic state to an ex­
cited electronic state that is purely repulsive along one or 
more coordinates. The standard prescription for studying 
the details of the frequency spectrum associated with this 
event requires the evolution of the ground state eigenfunc­
tion for the rovibrational nuclear motion '11 g(R,e,c/J) on the 
excited potential energy surface. 

Once this propagation has been carried out, the total 
absorption cross associated with continuous wave laser ex­
citation at frequency Q) L is given bylO 

x ('I1g(R,e,c/J) 1'I1(R,e,c/J,t», (2) 

where Eg is the energy eigenvalue corresponding to rovi­
brational eigenfunction '11 g(R,e,c/J) and Q) L is the laser fre­
quency. Finally, '11 (R,e,c/J,!) is the initial wavepacket prop­
agated according to the Hamiltonian, Eq. (1), with 
V(R,e,c/J) the potential surface associated with the excited 
elecronic state where the fragmentation takes place. 

Notice that, strictly speaking, the above equation gives 
photodissociation probability per unit time per unit electric 
field strength squared. For comparison with experiments it 
should be normalized by the incident photon flux, which 
leads to an extra factor Q) L' For electronic absorption, the 
effect of this extra term is small and hence for the purposes 
of this paper can be neglected. 

Partial cross sections are calculated by the usual as­
ymptotic projection11

,12 (again, neglecting a slowly varying 
factor of Q) L) : 

da(fm) (Q) L) 

dO 
1 (KR 1 (Y t'm 1 '11 (R,O,c/J,r) ) 12. 

lim'T-OO 
(3) 

Here (R I KR ) is an energy normalized outgoing plane 
wave corresponding to the center of mass momentum KR , 

and the Y t'm are normalized eigenstates of the free rotor 
(i.e., spherical harmonics). This quantity is a function of 
the wave vector KR , or equivalently its translational energy 
at given polar angle e and azimuthal angle c/J. The integra­
tion of these differential partial cross sections over all solid 

angles yields the partial cross section (PCS) for dis socia -
tion into diatomic rotational state (I'm) at a given incident 
laser frequency Q) L' that is 

(211' (" du(lm)(Q) ) 
a(fm)(Q)L) = Jo dcP Jo desine dO L . 

Finally, when we add up the contributions of all final 
rotational states, we will get the total cross section (TCS): 
a(Q)L) = ~t'ma(fm)(Q)L)' Cross sections obtained by this 
procedure must be equal to those extracted from Eq. (2) if 
the wavepacket 'I1(R,e,c/J,t) is propagated exactly for all 
times. 

Note that a TCS spectrum completely equivalent to the 
one obtained by summing all partial cross sections can be 
procured by Fourier transforming the "long-time correla­
tion function" ('I1(R,e,c/J,r) 1'I1(R,e,c/J,r+t» in a manner 
analogous to the transformation of the "short-time corre­
lation function" indicated in Eq. (2). This "long time cor­
relation function" provides a useful check on the complete 
and accurate enumeration of individual partial cross sec­
tions. 

For the initial ground state, we have utilized a Carte­
sian wavepacket to describe the motion of the diatomic 
center of mass, whereas its orientation has been described 
through a time-dependent superposition of spherical har­
monics. 13 More precisely, our TDHG trial wavepacket is 

'11 (R,e,c/J,t) = c/JAx,t)c/Jy(y,t)c/JZ<z,t)0( e,c/J,t) 

(
is(t) ) 

Xexp -,,- , (4) 

with Set) a phase factor isolated in order to simplify the 
equations of motion. Its explicit form for this case, as ob­
tained from the McLachlan variational principle,4 is Set) 
= fhdt' V(t'), with 

v(t)=3 f I c/JAyc/Jz0 I 2V(x,y,z,e,c/J)dx dydz sin ededc/J. 

(5) 

[The TDH equations of motion that govern the evolution 
of each of the factors are discussed below. Notice that the 
(e,c/J) motion is treated via one wavepacket. This is due to 
the strong intrinsic coupling between these coordinates; 
again, cf. below. The TDH approximation is very flexible 
as regards the way in which degrees of freedom are parti­
tioned.] 

The initial wavepacket is based on a scenario in which 
the diatomic molecule librates prior to electronic excitation 
around an orientation normal to the solid surface (0=0). 
It is further assumed, for simplicity, that the vibration of 
the diatom's center of mass about its equilibrium position 
above the surface is substantially higher in frequency than 
is the libration of the diatom's relative coordinate vector 
about the normal to the surface. Based on these assump­
tions we write the initial wavepacket as a product of one­
dimensional Gaussians for each center of mass coordinate, 
and an angular function which reflects the librational char­
acteristics of the angular motion on the ground state po­
tential surface. To be more specific, 0( e,c/J,O) is chosen to 
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be Gaussian-like in e (peaked about e=O); the associated 
probability density might be envisaged as a polar icecap on 
the unit sphere. The factorized wavepacket just described 
constitutes the "ground state" or "guiding" wavepacket of 
the traveling basis set that will be utilized to perform CI 
corrections to the TDH level dynamics. It is convenient to 
construct a basis set "on top of" the initial guiding wave­
packet, since our CI algorithm guarantees that an initially 
orthonormal basis will remain orthonormal, and this fea­
ture greatly simplifies the CI equations of motion. It is easy 
to build an orthonormal "harmonic oscillator" type "ex­
cited" basis function on top of the Cartesian Gaussian 
wavepackets associated with each of the three center of 
mass coordinates.9a,14 

For the angular degrees of freedom 8 and ¢ this task is 
a little subtler. We are dealing with a rigid rotor exhibiting 
restricted motion around 8=0, i.e., a hindered rotor. 
Hence, we assume that on the ground electronic potential 
surface the angular motion is described by the standard 
hindered rotor potential I5 Vo(1-cos 8). For small oscilla­
tions this potential reduces to a Vo8

2/2 harmonic oscillator 
type potential. The ground state eigenfunction of the (full) 
hindered rotor potential will therefore have the Gaussian­
like shape described in the previous paragraph. (The re­
duction to harmonic oscillation in the small librational 
limit also provides a way to determine Vo in terms of the 
experimentally measurable librational frequency of the hin­
dered rotor, as discussed below in Sec. III.) To determine 
the ground state of the hindered rotor we expand the 
Hamiltonian 

in a basis of spherical harmonics. In addition to the ground 
state angular eigenfunction, in which we assume the system 
to be prepared and which is used as the "guiding wave­
packet" in our TDHG-CI procedure, this calculation pro­
duces a naturally orthogonal set of excited eigenstates of 
the hindered rotor Hamiltonian which can be used as the 
initial "excited" basis packets in our expansion of the exact 
wavepacket for the overall system [cf. Eq. (6) below]. [Of 
course, the ground state, having azimuthal symmetry, will 
be a linear combination of m=O spherical harmonics only. 
Because of the nature of the excited state potentials as­
sumed in this work (cf. Sec. II B below), only basis wave­
packets with azimuthal symmetry will be required. Hence 
the expansion of the librational eigenfunctions in spherical 
harmonics can be restricted to an expansion in Legendre 
polynomials. ] 

Once we have an appropriate set of "excited states" 
(basis functions) for each degree of freedom, we then con­
sider a superposition of basis functions of the type given by 
Eq. (4), i.e., we have the following total wavepacket: 

'11 (R,8,¢,t) = I aijkICt)Wijkl(R,8,¢,t). 
ijkl 

Here 

(6) 

Wijkl(R,8,¢,t) = ¢~(x,t)¢~(y,t) ¢~(z,t) e l
( 8,¢,t) 

(
iSCt») Xexp -'li- , 

and the sum is taken independently over indices i,j ,k,! to 
generate a direct product basis set. (The index [labels the 
angular basis functions, which are, in general, functions of 
the angles 8 and ¢. It should not be confused with the total 
angular momentum index t'that appears in the spherical 
harmonic functions used to construct the angular basis 
functions.) In the limit that these indices have infinite 
range, the expansion becomes complete. In practice, we 
truncate the basis at a finite upper limit, and increase this 
limit until convergence of the wavepacket dynamics is 
achieved. By choosing all aijkl(O) =0, except one, say 
aifj'kflf(O) = 1, we select our wavepacket at time t=O. The 
relevant values of (i' j' k' l') needed to make the wave­
packet at t=O be equal to Ug(R,e,¢) are obvious for the 
examples presented below (cf. Sec. III). 

Now, as has been extensively discussed in Ref. 9(a), 
all the wavepackets associated with a particular coordinate 
are propagated under the same effective potential. Hence, 
the equations of motion become: 

. a¢~ fi2 a2¢~ _ _ _ _ _ _ . 
1'li7it=-2M ax2 + (¢/pze I V(x,y,z,e,¢) I¢/pze)¢~ 

(7) 

and analogously for y and z. Because of the nonseparable 
h2 

character of the L operator, the angular variables are 
treated together, in accord with the following equation: 

I h2 
. ae_L HI --- --- I 
1'Ii at - 2Jl? e + (¢X¢/Pz I V(x,y,z,8,¢) I ¢x¢/pz)e . 

(8) 

Here, ¢x'¢Y'¢Z,e are the "guiding" packets which deter­
mine the effective potentials that appear in Eqs. (7),(8), 
and the phase factor S(t). In this work, guiding packets 
evolve out of '11 g [the basis packet (i' j' k' l') discussed 
above]. The TDH equations of motion utilized for this 
purpose are essentially Eqs. (7) and (8) with the mean 
field potentials determined self-consistently in the course of 
the evolution. See Ref. 12 for details. 

In order to solve Eq. (8) numerically, the angular 
wavepackets, expanded in terms of spherical harmonics, 
ei(B,¢,t) = };t'mb~m(t) Yt'm(8,¢), are substituted into Eq. 
(8), yielding a set of first-order differential equations that 
governs the evolution of the angular part. 12,13 An alterna­
tive way to proceed would be to use a grid expansion over 
the unit sphere and track the angular basis functions via 
discretization on this grid. 16 This alternate route may 
prove advantageous for situations (such as those consid­
ered here) where there is extensive rotational excitation, 
and hence a large basis of spherical harmonics is required 
in the time-dependent expansion procedure just described. 

Now, when the trial wave function, Eq. (6), is substi­
tuted into the full time-dependent Schrodinger equation, 
i'li at'l1 =H'I1, with H given by Eq. (1), we get evolution 
equations for the coefficients aijkl(t): 
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TABLE I. Potential parameters for parameter set I. 

D (eV) r 

0.167 5.0 0.05 0.75 2.01 1.0 

(9) 

where the time-dependent matrix elements are computed 
according to 

., ., k' I' " k I 
Hi' j'k'I',ijkl= (cp~cp~ cpz e I a VI cp~cp~cpze ), (10) 

with 

LlV= V(R,8,cp) - [( V)XYz+ (V)Xye4>+ (V)xze4> 

+ (V)YZe.p-v(t)]. (11) 

The notation (V) a{3y6 indicates an average of the interac­
tion potential over the probability density associated with 
the guiding wavepackets in the subscripted variables. 

B. The potential 

For the numerical work to be presented in Sec. III, we 
have taken a heteronuclear diatomic with masses of 12 and 
16 amu, and a bond length of 1.1 A. The potential mimics 
the interaction of a CO rotor with a rigid LiF crystal on its 
(100) face, and for the excited electronic state has the 
functional form: 

with 

V(R,e,cp) = VI (8,cp) V2(R), (12) 

VI (e,cp) = 1 +yP2(COS e), 
(13) 

V2(R) = De- az{l-2[PI cos(€x) +P2 cos(€y) n, 
and €=2rr/a, where a is the lattice spacing. This type of 
potential has been widely used in gas surface scattering 
studies l7 and more recently in the context of UV photode­
sorption of molecules from surfaces at finite tempera­
tures. 12 It pertains to the case where the diatomic is ori­
ented perpendicular to the surface with the 12 amu mass 
pointing in. Note that the excited state potential we have 
adopted is independent of azimuthal angle cp. The initial 
ground state motion, in which the molecule librates about 
polar angle e=o, corresponds to an initial wavepacket 
which is also cp independent. These two features enable us 
to significantly simplify our description of the angular mo­
tion on both the ground and excited potential surfaces. In 
particular, all relevant angular basis functions can be ex­
panded in terms of m = 0 spherical harmonics, i.e., Leg­
endre polynomials in the polar angle e. The dependence of 
the dynamics on azimuthal angle cp is thus completely re­
moved, without loss of generality. 

III. RE5UL T5 

In order to demonstrate the utility of our algorithm we 
have carried out calculations on the system described 
above for several sets of potential parameters. Representa-

TABLE II. Potential parameters for parameter set II. 

D (eV) r 
0.167 7.0 0.05 0.05 2.01 0.8 

tive results are presented in this section for the two param­
eter sets listed in Tables I and II. All computations were 
based on the same ground state potential surface, assumed 
harmonic, and corresponding to an angular frequency WR 

= 500 cm -I in each of the diatom center of mass degrees of 
freedom. For the polar angle coordinate (which represents 
libration about the "polar icecap") the ground state has 
been taken such that the "harmonic approximation" yields 
We= 100 cm -I, where we= ( Voil-l?) 112. 

For direct photodesorption on a single electronically 
excited potential surface, the TDHG method often works 
quite well. This was found to be the case in Ref. 12, and 
consequently we have modified the potential parameters 
used in that work to "force" stronger interdimensional 
coupling. To further test the TDHG-CI algorithm, we 
have focused on the case that the initial wavepacket is 
vibrationally excited. We know from previous work that 
the time-dependent Hartree approximation is strained in 
propagating spatially extended wavepackets associated 
with excited vibrational states.s The necessity of computing 
spectra corresponding to vibrationally excited initial states 
that arise, for example, in finite temperature processes, pro­
vides further motivation for this choice. 

For the parameter set I, listed in Table I, there is 
strong coupling between the dissociative coordinate z and 
the angular coordinate e, as reflected in the value of the 
parameter Y= 1.0, and with the y coordinate (P2=0.75). 
The initial wavepacket considered was \{l(R,e,cp) 
=CP~(x)cp~(y)cp;(z)el(e). Note the excited vibrational 
motion along the z component of the center of mass and 
the libration of the diatom about the perpendicular to the 
surface. In Fig. 1 we show the total absorption cross sec­
tion computed from short time wavepacket dynamics in 

0.07 

0.06 

0.05 

0.04 

----,.., 
3 0.03 

b 
0.02 

0.01 , , 
0.00 

0.0 5.0 10.0 15.0 20.0 

WL (em-I) x 103 

FIG. 1. Total cross section with the parameters in Table I and initial 
conditions discussed in text. Solid line is the result for the TDHG-CI, 
while the dashed line represents a calculation with a single TDHG tra­
jectory. 
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0.10 

o 5 10 15 20 25 30 35 

£ 

FIG. 2. Rotational excitation measure P( t) defined in text. Circles 
(TDHG-CI), stars (TDHG). The calculation corresponds to the param­
eters in Table I and initial conditions discussed in text. 

the Franck-Condon region. Comparison is made between 
results extracted from TDHG wavepacket propagation 
(dashed line) and full TDHG-CI results (solid line). (De­
tails of basis size, etc., are given below.) The two curves are 
qualitatively similar, although not in complete quantitative 
accord. This situation is not surprising, since the TDHG 
result cannot go too far wrong in the short time period 
involved. We expect that ifTDHG dynamics develops de­
fects, it will do so at longer rather than shorter times. 
Hence the "acid test" entails examining the asymptotic, 
post-desorption dynamics. 

An indication that the details of the long time dynam­
ics may elude the TDHG approximation in this case is 
obtained by looking at the degree of rotational excitation 
exhibited in the asymptotic wavepacket. A measure of this 
property is provided by the square moduli of the coeffi­
cients in the Legendre polynomial expansion of the asymp­
totic angular wavepacket, summed over all "basis" contri­
butions [with each contribution weighted by aijkll

2 to 
account for the probability to find the system in basis state 
(ij kl)]. This quantity shall be denoted as P( t). It is shown 
in Fig. 2 for parameter set 1. Considerable discrepancy 
between TDHG with versus without CI is apparent: rota­
tional excitation is noticeably suppressed in an average 
sense when CI is performed. 

The most highly resolved state to state information 
that can be obtained from a photodissociation experiment 
is the fragment distribution at a particular incident laser 
frequency, i.e., the partial photodissociation cross section. 
PCS computations are expected to be sensitive to approx­
imations made in the wavepacket propagation, since they 
reflect the detailed shape of the wavepacket at long, post­
dissociation times. Indeed, extraction of various PCS's ac­
cording to Eq. (3) revealed large discrepancies between 
TDHG and TDHG-CI predictions. An example for the 
system studied in Figs. 1 and 2 is shown in Fig. 3, where 
results for angular momentum states f=7,8 are shown. 
The CI corrected results are thought to be nearly con­
verged (as discussed below), and hence the need for CI in 
this particular calculation is demonstrated. 
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FIG. 3. Partial cross sections for Table I parameters and initial conditions 
discussed in text. Panel (a) depicts results for t= 7: solid circles show 
TDHG-CI cross sections, open circles show TDHG cross sections. Panel 
(b) depicts results for t=8: solid squares show TDHG-CI cross sections, 
open squares show TDHG cross sections. 

Analogous computations carried out with the potential 
parameters indicated in Table II showed similar features. 
As an example, we present results for the initial ground 
state wavepacket 'I' g(R,e,l/J) =1/J~(x)I/J;(Y)I/J~(z)el (e). 
(Note the high degree of vibrational excitation in the cen-
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FIG. 4. Same as in Fig. 1 but for Table II and initial conditions discussed 
in text. 
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FIG. 5. Same as in Fig. 2 but for Table II and initial conditions discussed 
in text. 

ter of mass motion.) Figures 4-6 contain, respectively, re­
sults for the total absorption cross section [obtained from 
short-time wavepacket dynamics via Eq. (2)], the rota­
tional excitation measure P( C), and the rotationally re­
solved partial desorption cross sections as a function of 
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FIG. 6. Partial cross sections for Table II parameters and initial condi­
tions discussed in text. Panel Ca) depicts results for t= 18: solid circles 
show TDHG-CI cross sections, open circles show TDHG cross sections. 
Panel (b) depicts results for t= 19: solid squares show TDHG-CI cross 
sections, open squares show TDHG cross sections. 

incident laser frequency for final rotational states t= 18,19. 
We see from Fig. 6 that the resolved partial cross sections 
computed within the TDHG approximation are again in 
substantial disagreement with their CI-corrected counter­
parts. The errors in individual PCS's are much more pro­
nounced than the error in the TCS, which appears from 
Fig. 4 to be in reasonable agreement with the TDHG-CI 
result. The intermediate figure, Fig. 5, provides another 
measure of the errors accrued in TDHG dynamics at long 
times. 

What is the confidence level in our CI results? The 
ultimate indicator is convergence of the basis expansion. In 
the systems under study here the strongest coupling occurs 
between z and e coordinates. For the Table I results pre­
sented in Figs. 1-3, we used nine basis functions in z and 
eight in e, while for the Table II results presented in Figs. 
4-6, ten z basis functions and seven e functions were used. 
The motion in x and y was found to be largely decoupled 
from the z- e motion in the sense that the minimum basis 
set description of those coordinates sufficed. More pre­
cisely, for the Table I case, the minimum x-y basis set 
consisted of the Gaussian guiding wavepackets. In the Ta­
ble II case, the first excited state in the y direction is in­
cluded in the minimum basis set. We found that when the 
x-y basis expansion was "padded" with one extra func­
tion in each direction, (i.e., for the Table I case first excited 
states in x and y were added, and for the Table II case the 
first excited state in x and the second excited state in y were 
added), the coefficients of all "padded" basis functions in 
the complete 4-d basis set never grew beyond 10- \0 in 
magnitude. Adding a second padding function had the 
same negligible effect. 

To further check the accuracy of the CI corrections we 
compared the sum of all partial cross sections with the 
total cross section obtained via short-time wavepacket dy­
namics. The sum over partial cross sections was carried out 
by brute force, and checked by the "long-time" correlation 
function procedure discussed in Sec. II A. Essentially the 
same spectrum was obtained via both procedures. 18 Of 
course, if the wavepacket dynamics from which these cross 
sections are computed is exact for all times, then the total 
cross sections obtained by the two methods must be iden­
tical. However, any errors in the evolving wavepacket tra­
jectory can lead to discrepancies between the two predic­
tions. The comparison between short and long time TCS's 
is shown in Fig. 7 for the Table I system and Fig. 8 for the 
Table II system. The first of each pair shows TDHG-CI 
results and the second shows results for TDHG without CI 
corrections. It is clear for both parameter sets that the 
CI -corrected partial cross sections sum to a total cross 
section that is noticeably more consistent with the short­
time version than the PCS's obtained from uncorrected 
TDHG dynamics. This provides further evidence of the 
accuracy of the CI computations. 

IV. DISCUSSION 

We have applied our TDHG-CI wavepacket dynamics 
algorithm to a problem involving four coupled spatial de-
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FIG. 7. (a) Comparison of TCS for short-time (solid lines) and long­
time dynamics (dashed line) when TDHG--CI is used. (b) Same as (a) 
but using TDHG. Results are for parameters in Table I and initial con­
ditions discussed in text. 

grees of freedom, namely the photodesorption of a di­
atomic molecule from a corrugated solid surface (in a 
model where the diatom bond is frozen and azimuthal de­
pendence of the interaction potential is neglected). This 
system would be difficult to treat via traditional time­
independent methodologies due to the lack of periodicity of 
the ground state potential along the solid surfaceY How­
ever, it presents no particular problem to time-dependent 
methods that do not rely on channel expansions (e.g., in 
two-dimensional plane waves corresponding to motion par­
allel to the surface). We have checked for convergence of 
the CI corrections in two ways, namely (I) by padding the 
basis expansion with additional excited states and checking 
that these states, which are initially unpopulated, do not 
become populated during the course of the wavepacket 
trajectory, and (2) by comparing total absorption cross 
sections (TCS's) extracted from short and long time dy­
namics. As in previous work, we find here that uncorrected 
TDHG wavepacket dynamics can develop substantial er­
rors when the initial state is a spatially extended excited 
vibrationaillibrational state. Thus, in cases where it is nec­
essary to compute photodissociation cross sections of vi­
brationally excited molecules, for example, for systems pre-
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FIG. 8. (a) Comparison of TCS for short-time (solid lines) and long­
time dynamics (dashed line) when TDHG-CI is used. (b) Same as (a) 
but using TDHG. Results are for parameters in Table II and initial con­
ditions discussed in text. 

pared at finite temperature, inclusion of CI corrections 
appears to be essential to obtain accurate results. 

There are, naturally, a number of schemes for building 
correlation corrections into an expansion in product time­
dependent basis functions of TDH type. In our TDHG-CI 
scheme, a basis set of time-dependent wavepackets is con­
structed simply from a single "guiding" TDH type wave­
packet trajectory. Evolution of the basis functions is easy, 
preservation of orthonormality between them is automatic, 
the equations of motion for the time evolution of the coef­
ficients which prescribe the configuration interaction are 
elementary, and the computation of time-dependent matrix 
elements that drive the coefficient evolution is efficient. The 
disadvantage of the method is that the basis functions are 
predetermined: there is no feedback mechanism that would 
allow them to adjust to the CI coefficient evolution. Indeed 
the basis functions in our procedure are not even individ­
ually preoptimized, but rather are completely determined 
by the trajectory of a single guiding wavepacket. (Some 
progress in removing this restriction has been recently re­
ported by Gerber and Alimi. 19 ) 

A promising procedure in which all "single particle" 
basis functions are evolved in tandem along with the CI 
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coefficients has been developed by Manthe et at. 20 This 
method enables optimum tuning of the zeroth order basis 
set and eliminates the need to anticipate the evolution of 
the true wavepacket in any way. The disadvantage of this 
method is the complexity of the equations of motion, and 
the comparatively elaborate coupling between all single 
particle basis packets and CI coefficients that is entailed in 
the construction of the single particle evolution equations. 

In this work we have shown that our simple 
TDHG-CI scheme works well for direct photodissociation 
dynamics, even on spatially extended initial states. In par­
ticular, several important features of the algorithm have 
been demonstrated for the first time. These include feas­
ability in more than two spatial dimensions, and incorpo­
ration of internal motion described by non-Cartesian coor­
dinates. One of the strengths of the algorithm, namely, the 
ability to focus effort on the most strongly coupled degrees 
of freedom, has also been illustrated. In the photodesorp­
tion events studied herein, two degrees of freedom were 
strongly coupled, while two others could be treated satis­
factorily within the TDH approximation. The ability of the 
method to systematically check the adequacy of minimum 
basis representations in certain degrees of freedom is im­
portant. Due to the rapid growth in the number of product 
basis functions needed to span configuration space with 
spatial dimensionality, it will be essential to identify weakly 
correlated degrees of freedom that can be treated within 
the TDH approximation if the quantum dynamics of poly­
atomic molecules and condensed phase systems is to be 
treated accurately. 
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