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Abstract

A 1D-2D coupled numerical model is presented in this work. 1D and 2D

models are formulated using a conservative upwind cell-centered finite vo-

lume scheme. The discretization is based on cross sections for the 1D model

and with triangular unstructured grid for the 2D model. The resulting ele-

ment of discretization for the coupled model is analysed and two different

coupling techniques based on mass conservation and mass and momentum

conservation respectively are explored, considering both frontal and lateral

configurations. The interaction with the boundaries in each model is high-

lighted and the necessity of using the appropriate strategy according to the

flow regime is also justified. The coupled model is tested through academic

test cases where the numerical results are compared with a fully 2D model

as well as with experimental measurements in steady and unsteady scena-
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rios. It is also applied to a real world configuration, where the flood wave

propagation in the river bed is simulated by means of a 1D model and the

inundation of the riverside is dealt with a 2D model. The computational gain

is also analysed.

Keywords: 1D-2D coupled model, shallow water flows, numerical

modelling, conservation, boundary conditions

1. Introduction1

Growing population and economic activities near rivers have caused an2

increased flood risk to many urban regions. Computers and modelization3

help assess and manage flood risk. One dimensional (1D) hydrodynamic4

models have been widely used in modelling flood flows [1, 2, 3]. This type5

of models are computationally efficient for dealing with large river/channel6

systems and several other hydraulic structures. However, when modelling7

floodplain flows, their accuracy and appropriateness decreases. Quasi 2D8

models have been developed for that situation, in which the floodplain is9

discretized into a network of virtual river branches and spills linked with10

main river channels [4, 5, 6]. Although this approach has been successfully11

used for many flood studies, it is generally time-consuming in setting up the12

initial model and the accuracy of predictions varies with the way in which13

the floodplain is discretized. Depth-integrated two dimensional (2D) hydro-14

dynamic models have been used for many years for predicting free surface15

flows, but they are generally more computationally expensive when dealing16
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with channel networks and hydraulic structures. The increasing availability17

of digital topographic data in recent years provides this type of models with18

a wider scope of application. 1D approximations require less information19

and are computationally time saving while 2D models when the real flow20

pattern does not correspond with a 1D domain, give more precise results but21

are time consuming and more topographical demanding. Therefore, with the22

need to improve modelling accuracy and to gain computational time, coupled23

modelling approaches of 1D and 2D shallow water models are increasingly24

used.25

Coupled 1D-2D models have been developed in recent years and success-26

fully applied to large and complex river systems [7, 8, 9, 10]. Some authors27

[11, 12] propose using only the 1D model to predict flow velocity and water28

level within the main river network. If large areas are inundated owing to a29

breach of a section of river embankment, it is likely that the flows would no30

longer be 1D. In such case the 2D model is used to predict the flow velocity31

and inundation levels in the flooded area. The models are linked by a weir32

equation, in which the volume of flow from the 1D domain to the 2D domain33

is determined by the water level difference. Another form to couple 1D-2D34

hydrodynamic models consists of a transformation of 2D quantities to 1D35

quantities just averaging the 2D terms along the cross sections and imposing36

continuity at the interfaces. After that, a subdomain iterative procedure is37

carried out to solve the coupled 1D-2D problem [13]. This technique turns38

out to be a reliable strategy provided that a proper choice of the subdomain39
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is performed, only for simple configurations (e.g. a straight channel or a40

river bifurcation). Some recent works propose more sophisticated ways for41

’stitching’ both models. For example, they can be connected by internally42

coupling the 1D node with the center of the 2D grid cell [14], by considering43

the numerical fluxes of each model [15] and also by introducing several correc-44

tions in the momentum quantity transfer due to the occurrence of swirls [16].45

The concern of source terms and the possibility of linking both models in46

discontinuous topography is explored in [17].47

Most of these coupled model approaches, developed from previous existing48

1D and 2D models, require a deeply overview concerning how each model is49

perceiving the coupling by itself. The boundary conditions in each model50

play an important role within the modelization due to the fact that the end51

of the 2D domain is always interacting with the 1D model hence the boundary52

treatment should be continuously considered.53

Bearing this in mind, two coupling strategies based on a mass conser-54

vation and a complete mass and momentum conservation will be proposed55

in order to cover all possible flow situations and to approximate faithfully56

the results given by a fully 2D model. The formulation is presented in a57

general expression, covering both frontal and lateral coupling configurations58

with respect to the 1D model. The bed slope and friction source terms re-59

lating to the 1D and the 2D models are included in the formulation of the60

coupled scheme. Emphasizing the idea of a correct conservation philoso-61

phy and taking into account the information which leaves out the 1D or 2D62
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domains, the adequate use of each strategy according to the flow conditions63

will be inherently justified and subsequently corroborated. Both models built64

using a conservative upwind cell-centered finite volume scheme based on Roe65

Riemann solver across the edges [18]. The topography is represented with66

cross sections for the 1D model and with DTM (Digital Terrain Model) in a67

triangular unstructured grid for the 2D model.68

The main objective of this manuscript is to enhance the correct formu-69

lation of coupled models based on existing 1D and 2D models. One test70

has been chosen for calibration corresponding to a extreme dam break in71

a channel propagating into a flood plain [19]. Being a test case without72

almost influence of source terms, the hydrodynamic of the system can be73

deeply analysed when coupling both models. Then, a trapezoidal channel74

connected laterally with a floodplain area is used as validation test case in-75

cluding steady and unsteady flow scenarios and comparing the numerical76

results with a fully 2D model in terms of time evolution of several probes77

located at the domain. The behaviour of this coupled model is also per-78

formed in a Y-shape junction problem, with two geometry configurations79

that have an impact on the flow regime. Finally, it is applied to the Ebro80

river, a real meandering river with complex topography where the numerical81

results of the coupled model in terms of flooding extension and longitudinal82

profiles are compared with those obtained with a fully 2D modelization. The83

computational gain achieved by the proposed 1D-2D coupled model is also84

estimated in all the test cases presented, analysing the results in terms of85
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speed-up in comparison with a complete 2D model.86

2. Governing equations87

2.1. 1D model equations88

Equations can be derived from mass and momentum control volume ana-89

lysis:90

∂U(x, t)

∂t
+

dF(x,U)

dx
= H(x,U) (1)

U =




A

Q


 , F =




Q

Q2

A
+ gI1


 , H =




0

g [I2 + A (S0 − Sf )]




(2)

where Q is the discharge, A is the wetted cross section area, g is the acceler-91

ation due to the gravity, S0 is the bed slope92

S0 = −∂zb
∂x

(3)

where zb is the bed level. Sf is the friction slope here represented by the93

empirical Manning law94

Sf =
Q2n2

A2R4/3
(4)

being R the hydraulic radius and n the Manning’s roughness coefficient. I195

represents a hydrostatic pressure force term96
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I1(x) =

∫ h

0

(h− η)σ(x, η) dη (5)

in a section of water depth h = zs − zb, water surface level zs and width97

σ(x, η) at a position η from the bottom (see Figure 1). Therefore, the cross98

sectional wet area can be expressed as follows:99

A(x) =

∫ h

0

σ(x, η) dη (6)

On the other hand, I2 accounts for the pressure force due to the longitu-100

dinal width variations:101

I2(x) =

∫ h

0

(h− η)
∂σ(x, η)

∂x
dη (7)

2.2. 2D model equations102

The water flow volume and momentum conservation:103

∂U

∂t
+

∂Fx(U)

∂x
+

∂Fy(U)

∂y
= H(U) (8)

where the conserved variables:104

U = (h, qx, qy)
T (9)

qx = uh and qy = vh, and the fluxes of these variables:105
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Fx =

(
qx,

q2x
h

+
1

2
gh2,

qxqy
h

)T

, Fy =

(
qy,

qxqy
h

,
q2y
h

+
1

2
gh2

)T

(10)

The source terms of the momentum are due to the bed slope and friction106

H = (0, gh(S0x − Sfx), gh(S0y − Sfy))
T (11)

where the bed slopes of the bottom level zb are107

S0x = −∂zb
∂x

, S0y = −∂zb
∂y

(12)

and the friction losses are written in terms of the Manning’s roughness coef-108

ficient n:109

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√
u2 + v2

h4/3
(13)

3. Numerical scheme110

The numerical scheme applied in this work is the first order upwind finite111

volume model. In both 1D and 2D cases, the system can be written:112

∂U

∂t
+
−→∇E = H (14)

being E=F in the 1D model and E=(Fx, Fy) in the 2D case. Integrated in113

a volume or grid cell Ω :114
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∂

∂t

∫

Ω

U dΩ+

∫

Ω

−→∇E dΩ =

∫

Ω

H dΩ ⇒ ∂

∂t

∫

Ω

U dΩ+

∮

S

E ·n dS =

∫

Ω

H dΩ

(15)

where n is the outward normal direction, E · n is the normal flux and S115

denotes the surface surrounding the volume Ω.116

3.1. 1D numerical scheme117

It is possible to express the equations (1), (2) in a non-conservative form118

as in [20]:119

dF(x,U)

dx
=

∂F(x,U)

∂x

∣∣∣
U=const

+
∂F(x,U)

∂U

∣∣∣
x=const

∂U(x, t)

∂x
(16)

Using (16), the 1D shallow water equations can be formulated as follows :120

∂U(x, t)

∂t
+ J(x,U)

∂U(x, t)

∂x
= H′(x,U) (17)

being H′(x,U) the vector related with the sources expressed in the non-121

conservative form:122

H′(x,U) = H(x,U)− ∂F(x,U)

∂x
(18)

and J the Jacobian matrix of the original system123
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J =
∂F

∂U
=




0 1

c2 − u2 2u


 (19)

with u = Q/A and c =
√
g A/B (B is the top width at the free surface).124

Following the Leibnitz rule, it is possible to express the link between I1 and125

I2 in this manner [21]:126

∂I1
∂x

= I2 + A
∂h

∂x
(20)

As stated in [20, 22], the total derivatives accounts for the pure spatial127

variations in x. Moreover, it is worth remarking the difference between the128

partial and the total derivatives when discretizing the equation: the discrete129

increments approach actually the total derivatives and not the partial deriva-130

tives. Therefore, all terms have to be carefully expressed in total derivatives.131

In particular:132

dh

dx
=

∂h

∂x
+

∂h

∂A

∂A

∂x
=

∂h

∂x
+

1

B

∂A

∂x
(21)

From (20) and (21), the non-conservative source term is expressed as follows:133

H′(x,U) = H(x,U)− ∂F(x,U)

∂x
=




0

gA
(
S0 − Sf − dh

dx
+ 1

B
dA
dx

)


 (22)

where the equivalence between the partial and total x-derivatives of the con-134
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served variable A should be noted. The Jacobian matrix (19) can be diago-135

nalized136

J = PΛP−1, Λ = P−1 JP (23)

where the diagonal matrix Λ is formed by the eigenvalues of J, and P is137

constructed with its eigenvectors.138

P =




1 1

λ1 λ2


 , Λ =




λ1 0

0 λ2


 ,

ek =




1

λk


 , λ1 = u− c, λ2 = u+ c

(24)

The equations in non-conservative form can be discretized in a regular139

mesh by means of the first order explicit scheme. Roe’s linearization [18]140

allows one to express the differences in the conserved variables and in the141

source terms across the grid edge i+ 1/2 as a sum of waves:142

δUi+1/2 = Ui+1 −Ui =

2∑

m=1

(α̃m ẽm)i+1/2,

(H̃′ δx)i+1/2 =

2∑

m=1

(β̃m ẽm)i+1/2 (25)

with143
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λ̃1 = ũ− c̃, λ̃2 = ũ+ c̃, α̃1 =
λ̃2 δA− δQ

2c̃
, α̃2 =

−λ̃1 δA+ δQ

2c̃
,

β̃1 = − 1

2c̃

{
gÃ

[(
S̃0 − S̃f

)
δx− δh+

1

B̃
δA

]}
, β̃2 = −β̃1,

ũi+1/2 =

√
Aiui +

√
Ai+1ui+1√

Ai +
√
Ai+1

, c̃i+1/2 =

√
g
Ai + Ai+1

Bi +Bi+1

(26)

where the tilde variables represent an average state at each edge. An artificial144

viscosity is proposed to solve the entropy problem [20]:145

(ν̃m)i+1/2 =





1

4

[
(λm)i+1

− (λm)i
]
, if (λm)i+1

> 0 and (λm)i < 0;

0, otherwise;
(27)

The contributions due to the fluxes and the source terms can be expressed146

in a compact formulation including the entropy fix as follows:147

γ̃±

i+1/2 =

(
1

2

[
1± sign

(
λ̃
)]

γ̃ ± ν̃ α̃

)

i+1/2

(28)

where148

γ̃i+1/2 =
(
λ̃ α̃− β̃

)
i+1/2

(29)

Therefore, the first order explicit upwind numerical scheme is formulated149
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[23]:150

∆Un
i = −∆t1D

δx

[
∑

m

(
γ̃+
m ẽm

)
i−1/2

+
∑

m

(
γ̃−

m ẽm
)
i+1/2

]n

(30)

It illustrates that the in-going contributions from left and right walls are used151

to update the value of the conserved variables at every cell (see Figure 2).152

The scheme so built has been proved to be robust, conservative, well-balanced153

and positivity preserving [22].154

The time step ∆t1D is dynamically chosen following this expression155

∆t1D = CFL min
i,m




δxi∣∣∣λ̃m

∣∣∣
n

i


 , CFL ≤ 1 (31)

where CFL is the Courant-Friedrich-Lewy number.156

3.2. 2D numerical scheme157

In the same way, it is possible to define a Jacobian matrix of the normal158

flux in the 2D model:159

J =
∂(E · n)

∂U
=




0 nx ny

c2 nx − uu · n u nx + u · n u ny

c2 ny − v u · n v nx v ny + u · n




(32)

with n = (nx, ny)
T the outward normal vector, u = qx/h, v = qy/h, c =

√
g h160

and u ·n = u nx + v ny. Following the same philosophy, the Jacobian matrix161
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(32) is diagonalized in terms of matrices P and Λ, formed by its eigenvalues162

λm and eigenvectors em respectively:163

P =




1 0 1

u− c nx −cny u+ c nx

v − c ny c nx v + c ny




, Λ =




λ1 0 0

0 λ2 0

0 0 λ3




,

e1 =




1

u− c nx

v − c ny




, e2 =




0

−c ny

c nx




, e3 =




1

u+ c nx

v + c ny




,

λ1 = u · n− c, λ2 = u · n, λ3 = u · n+ c

(33)

Applying Roe’s linearization [18] it is possible to express locally the differ-164

ence in vector U across the grid edge k projected onto the matrix eigenvectors165

basis [24]:166

δUk = Uj −Ui = P̃kÃk (34)

where i,j are the indexes of the cells sharing the edge k and Ãk = (α̃1, α̃2, α̃3)
T
k167

contains the set of wave strengths. Following the linearization concept, the168

source term is included in the Riemann solver as a singular source. Consid-169

ering that source terms are not necessarily constant in time, the following170
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time linearization of the non-conservative term is applied [24]:171

Hn
k =




0

−gh̃(δz + Sf,n)nx

−gh̃(δz + Sf,n)ny




(35)

The source term is next projected onto the matrix eigenvectors basis [24]172

H̃k = P̃kB̃ (36)

where B̃k = (β̃1, β̃2, β̃3)
T
k contains the source strengths.173

α̃1 =
δh

2
− 1

2c̃
(δq · n− ũ · n δh) , α̃2 =

1

c̃
[δqy − ṽ δh)nx − (δqx − ũ δh)ny)],

α̃3 =
δh

2
+

1

2c̃
(δq · n− ũ · n δh),

β̃1 = − 1

2c
(δz + Sf,n), β̃2 = 0, β̃3 = −β̃1

ũk =

√
hi ui +

√
hj uj√

hi +
√

hj

, ṽk =

√
hi vi +

√
hj vj√

hi +
√
hj

, c̃k =

√
g
hi + hj

2

(37)

where ũ · n = ũ nx + ṽ ny, δq · n = δqx nx + δqy ny and the averages states174

at each wall k are represented with the tilde variables. The entropy fix for175

the 2D numerical scheme can be found in [24]. The contributions due to the176

fluxes and the source terms are combined in a compact expression as follows:177
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γ̃−

k =
1

2

[
1− sign

(
λ̃k

)]
γ̃k γ̃k =

(
λ̃ α̃− β̃

)
k

(38)

Therefore, the 2D numerical upwind explicit scheme is formulated using178

the finite volume approach for the updating of a single cell whose area is Ωi,179

dealing with the contributions that arrive to the cell:180

∆Un
i = −∆t2D

Ωi

NE∑

j=1

3∑

m=1

(
γ̃−

m ẽml
)n
k

(39)

In this expression, NE indicates the number of edges in cell i and lk is the181

length of each wall edge (see Figure 3). This scheme has been proved to be182

robust, conservative, well-balanced and positivity preserving even in presence183

of wet/dry fronts over irregular bed [24].184

When considering unstructured meshes in the 2D scheme, the equivalent185

distance to δx, that will be referred to as χi in each cell, is defined by using186

the area of the cell as well as the length of the k edges:187

χi =
Ai

maxk=1,NE
lk

(40)

Therefore, the time step is again chosen by using the following rule:188

∆t2D = CFL
min(χi, χj)

maxm |λ̃m|
CFL ≤ 1 (41)
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4. Coupling strategies189

The strategies presented here to couple the 1D and the 2D models are190

built forcing in all cases mass conservation. For the coupled model, a new ele-191

ment of discretization called coupling zone is defined as the region involving192

the 1D and 2D cells from the discretizations of each model. It always con-193

tains one 1D cell and a number NC of adjacent 2D cells. Figure 4 shows two194

examples of coupling zones composed by only one 1D cell and some unstruc-195

tured triangular 2D cells. As can be seen, two possible configurations may196

be defined with respect to the 1D model: frontal and lateral coupling. The197

discontinuous line represents the exact place where models connect between198

them in both configurations.199

4.1. Time step choice and model interaction200

A common element in both 1D and 2D models is the evaluation of the201

time step. When dynamically computed from the CFL condition, ∆t can be202

different in both models. The global ∆t taken is the minimum value of the203

two models, that is:204

∆t = min(∆t1D,∆t2D) (42)

Once ∆t is calculated, each model computes separately its own conserved205

variables according to (30) and (39). The resulting values, not including206

yet the interaction between the two models will be called from now on star207

variables. So, in each coupling zone, (A,Q)∗ and (h, hu, hv)∗ are provided208
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by the 1D and the 2D model respectively. Then, mass and/or momentum209

conservation is enforced so that the variables can be updated and finally ∆t210

is increased. The flowchart of the coupled model is summarized in Figure 5.211

Two different coupling strategies are presented on the basis that the com-212

putational domains connect at each coupling zone and the boundary condi-213

tions and their treatment must be continuously revisited. This is a strong214

point that justifies the novelty of this work in terms of mass and momentum215

conservation and that will be also important when choosing the adequate216

coupling strategy providing the flow regime at the boundary.217

4.2. Only Mass Conservation (OMC)218

This technique consists of imposing the same water level in the coupling219

zone considering the involved cells (1D and 2D computational cells) as a sin-220

gle domain where the water volume conservation is enforced. The common221

water level is based on a strict mass conservation. Both models are coupled222

by considering the information that crosses the internal boundaries of the223

coupling zone as relevant in terms of mass conservation [25]. Figure 6 illus-224

trates the contributions to be considered in a frontal coupling and in a pure225

lateral coupling.226

The total water volume of a coupling zone, VCZ can be written as follows:227

VCZ = A∗

1D δx +

NC∑

i

h∗

i Si +Qn
1D n1D ∆t +

NC∑

i

(Fn
1i · ni li) ∆t (43)
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where A∗

1D δx is the volume of water in the 1D cell,

NC∑

i

h∗

i Si accounts for228

the water volume in the NC 2D cells (Si is the 2D cell size), Qn
1D n1D ∆t229

represents the volume due to the 1D-flow that crosses the ’discontinuous line’230

separating the two models and

NC∑

i

(Fn
1i ·ni li) ∆t gives information about the231

water volume provided by the 2D-flow going across the boundaries, where232

Fn
1i = (qx, qy), ni the outward normal direction and li the length of each wall233

taking part in the coupling zone. It is easy to see that n1D = ±1 in the234

frontal coupling and n1D = 0 in pure lateral coupling.235

Once VCZ is computed, a new common water level surface zn+1
s is imposed236

in the coupling zone by distributing correctly the water volume in the 1D237

and the 2D system:238

VCZ = An+1

1D δx+

NC∑

i

hn+1
i Si (44)

where239

An+1

1D = An+1

1D (zn+1
s ) hn+1

i = zn+1
s − zbi (45)

The calculation of the new water surface level zn+1
s is not trivial when240

dealing with complex topography and is explained in Appendix A.241

4.3. Mass and Momentum Conservation (MMC)242

The aim consists of the extrapolation of the idea used in the OMC strat-243

egy in order to achieve, apart from the mass conservation, also the exact244
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global momentum conservation. For this purpose, not only a common water245

level surface is imposed at the coupling zone but also the velocities in x and246

y-direction are both shared.247

In the MMC strategy, the information about the flow direction is of248

interest, hence an angle θ is introduced in the 1D model in order to express249

the discharge Q1D as a vector:250

Q1D  (Qx1D, Qy1D) = (Q1D cos θ,Q1D sin θ) (46)

Using the same procedure as in OMC and also involving the same infor-251

mation, it is possible to define the amount of momentum in x-direction, Mx,252

as253

Mx = Qx
∗

1D δx+

NC∑

i

(qx)
∗

i Si + En
x n1D ∆t+

NC∑

i

(Fn
2i · ni li) ∆t (47)

where Qx
∗

1D δx is the momentum in the 1D-system,

NC∑

i

(qx)
∗

i Si in the 2D-254

system and En
x and Fn

2i accounts for the corresponding fluxes that cross the255

boundary shared by 1D and 2D models:256

En
x =

(
(Qx)

2

A
+ gI1

)n

1D

Fn
2i =

(
q2x
h

+
1

2
gh2,

qxqy
h

)n

i

(48)

The momentum considering the y-direction:257
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My = Qy
∗

1D δx+

NC∑

i

(qx)
∗

i Si + En
y n1D ∆t +

NC∑

i

(Fn
3i · ni li) ∆t (49)

where258

En
y =

(
(Qy)

2

A
+ gI1

)n

1D

Fn
3i =

(
qxqy
h

,
q2y
h

+
1

2
gh2

)n

i

(50)

It is clear again that n1D = ±1 in the frontal coupling and n1D becomes259

nil in pure lateral coupling.260

Once Mx and My are computed, common average velocity components261

in x-direction, u, and in y-direction, v, can be derived from the total water262

volume in the coupling zone VCZ using263

VCZ u = Mx VCZ v = My (51)

Finally, the conserved variables are updated as:264

(qx)
n+1
i = hn+1

i u (qy)
n+1
i = hn+1

i v

Qn+1

1D = An+1

1D (u cos θ + v sin θ)
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4.4. Boundary conditions and the choice of the adequate coupling strategy265

When detailing the coupling strategies presented before (OMC, MMC),266

the information that crosses the internal line that links both models has been267

included in order to contemplate a fully conservative method. However, it268

is not the only point to be considered. For example, in a frontal coupling269

configuration, where the end of the 1D domain connects with the beginning270

of the 2D system, the boundary conditions are entirely present and it is271

relevant whether a supercritical or subcritical flow is present at the coupling272

zone. Therefore, the boundary condition treatment must be analysed in order273

to achieve a complete 1D-2D coupling model.274

In the case of a hyperbolic system, the theory of characteristics provides275

clear information about the number of external boundary conditions to be276

imposed at the inlet or at the outlet domain [26]. The set of possibilities277

is illustrated for the 1D case in Figure 7 and can be summarized as follows278

[25, 27]:279

1. Subcritical inlet flow: One of the variables is enforced and the other280

are calculated numerically.281

2. Supercritical inlet flow: All the variables have to be imposed, no infor-282

mation is provided from the inner cells.283

3. Subcritical outlet flow: As in the subcritical inlet flow, one of the vari-284

ables is required to complete the information at the boundary cell.285

4. Supercritical outlet flow: No extra information apart from that com-286

puted numerically is needed.287
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This information must be carefully handled for building the coupled288

model. In order to distinguish the flow regime, the Froude number is evalu-289

ated separately in both models, at each coupling zone. When either the 1D290

or the 2D model contains a supercritical boundary, the MMC strategy, in-291

volving mass and momentum conservation must be imposed. Otherwise, the292

OMC strategy, where one of the variables (a common water surface level) is293

enforced, must be used. It can be summarized in the following procedure:294

for each CZ do

evaluate Fr1D at the 1D cell;

evaluate the average Froude number of all the involved 2D cells

Fr2D =
1

NC

NC∑

i

Fri ;

if ((Fr1D > 1.0) or (Fr2D > 1.0)) then

use MMC ;

else

use OMC ;

end

end

295

296

According to the previous algorithm, the adequate coupling strategy is dy-297

namically chosen at each coupling zone.298
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5. Numerical results299

5.1. Test case 1: Dam-break in a channel with a flood plain300

In this section, the simulation of a dam break in a channel that ends into301

a flood plain [19] is presented. The test case was designed and measured in302

the National Laboratory of Civil Engineering in the IST in Portugal. Initial303

conditions are h=0.504 m at the reservoir and h=0.003 m in the rest of the304

channel and flood plain [28]. Solid walls are all around except at the outlet305

that is free (see Figure 8). There is no elevation in the domain and the friction306

was previously calibrated with a Manning coefficient of n=0.009 s/m
1

3 . The307

time evolution of the water depth was measured at P1, P2, P3, P4, P5 and308

P6 displayed in Figure 8.309

Figure 9 illustrates the discretization used for both frontal and lateral310

configurations where the mesh used in the 2D domain of the coupled model311

is unstructured triangular grid. Apart from experimental data, the fully 2D312

model, used as reference solution whose discretization is composed by 8760313

unstructured triangular cells and the fully 1D model, discretized with δx=0.1314

m are also included in order to evaluate the relative behaviour of the proposed315

coupled model. It is worth emphasizing here that the main objective of this316

work is to evaluate whether the coupled model is able to produce numerical317

results at least equal to the those from the 2D numerical model but at a318

reduced computational cost.319

Despite the apparent simplicity, this test case represents a dambreak flow320

with large Froude numbers (near to 4) at the location of the wave front.321
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The measurements of the water depth contain an experimental uncertainty.322

As the water depth values are relatively small in this test case (around cen-323

timetres) the experimental error is rather noticeable in some probes showing324

oscillatory experimental data. As already noticed in [28], the numerical mod-325

els are sometimes unable to reproduce exactly these observances.326

Figure 10 shows the comparison of the numerical results obtained with327

the 1D-2D frontal and lateral coupling, the fully 1D model, the fully 2D328

model and the experimental measurements in time evolution of the depth of329

water at the gauge points. Attending to probes P2 and P6, both the 1D-330

2D frontal and lateral coupling models are able to reproduce faithfully the331

experimental measurements being very similar to the fully 2D approach. At332

probe P1, located within the narrow region, the predictions of all models333

almost coalesce but they are all unable to approximate well the experimental334

data. This was already noticed in the original work [28]. The same happens335

at probe P4, where unexpected oscillatory measurements are not reproduced336

by any model. The behaviour at probe P3 is slightly different. The 1D-337

2D lateral coupling model does not approximate accurately the experimental338

data at this probe due to the 1D cross section averaging and the 1D-2D339

frontal coupling strategy propagates the flood wave slower than the fully 2D340

model or the experimental data. Probe 5 is located near the lateral wall were341

the shock wave reflects so that it shows first the arrival of the front and then342

the arrival of the reflected wave. The fully 2D model and the 1D-2D frontal343

coupled model, with all the floodplain considered as a 2D domain, show the344
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best results. They compare to those reported in [28]. The 1D-2D lateral345

coupled model performs worse due to the forced average values introduced346

along the 1D domain.347

On the other hand, as expected, the fully 1D model, which represents348

the floodplain as a sudden enlargement, propagates a flood wave faster than349

the 2D model, giving unrealistic results and providing the worst numerical350

approximation.351

The coupling model designed is able to detect dynamically the Froude352

numbers at each side of the coupling zone and determine the adequate tech-353

nique at each moment. For example, the nature of this test case indicates354

that, during the simulation time, the coupling technique internally adopted355

by the model is always the MMC strategy due to the supercritical flow356

regime.357

It is worth emphasizing that boundary conditions play an important role358

in the coupling model proposed in this work. Therefore, a remarkable state-359

ment derived from the information needed at the boundaries is that not any360

strategy is valid for computing certain scenarios. For this purpose, the same361

dambreak test case is simulated enforcing a OMC strategy everywhere all the362

time. Results are shown in Figure 11, plotting the experimental measure-363

ments at the known gauge points against the OMC approach results. The364

OMC strategy is unable to approximate the experimental data at almost any365

of the gauge points, providing also non-physical results as a consequence of a366

wrong boundary treatment at the coupling zone where less information than367
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the necessary is provided.368

5.2. Test case 2: Channel with a lateral floodplain area369

This academic test case deals with a 2000 m long and 68 m base wide370

trapezoidal channel connected laterally with a floodplain area (Figure 12).371

A slope of 1/1000 is assumed and the friction is modelled by using different372

Manning coefficients: n=0.015 s/m
1

3 in the river bed and n=0.03 s/m
1

3 in373

the lateral floodplain.374

Being a synthetic test case, the numerical results obtained by the coupled375

model will be compared with a fully 2D model through 10 probes situated in376

the floodplain area. A sketch of the test case containing the location of the377

probes can be observed in Figure 13.378

The comparison with a fully 2D model is only a good measure of the379

behaviour of a new coupled model when the mesh is fine enough. Unless380

the previous test case, the channel and floodplain are not flat. The 2D grid381

refinement should follow the necessity to represent faithfully the topogra-382

phy. In this case, the topography is represented by the 2D model through383

computational cells covering all the domain and the representation of the384

terrain is as accurate as the mesh resolution. The trapezoidal cross section385

is represented by unstructured triangular cells (Figure 14) so that, if a fine386

discretization is not applied, some errors can be derived from this aspect.387

Another source of uncertainty is the meaning and the interpretation of388

the Manning friction coefficient in each model and the relative connection or389
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correspondence between the 1D or the 2D model [29, 30]. This topic is out of390

the scope of this work. However, it must be considered when the numerical391

results achieved by a 1D-2D coupled model would like to be compared with a392

fully 2D model and to determine what is the error associate to this parameter.393

Two scenarios involving lateral coupling are simulated in order to evaluate394

again the performance of the scheme: steady and unsteady flow.395

5.2.1. Steady flow396

A constant discharge of 600 m3/s is introduced as the upstream inlet397

boundary condition and the model is run until convergence to steady state.398

A gauging curve is used as outlet boundary condition at the end of the399

channel. The numerical results obtained by the coupled model are compared400

with a fully 2D model in terms of longitudinal profile along the channel center401

line once the steady state is reached (Figure 15) and also registering the time402

evolution of the water depth at each probe (Figures 16 and 17).403

Observing the results, an almost constant difference is appreciated be-404

tween the fully 2D numerical model and the proposed 1D-2D coupling model.405

As the difference is almost constant in all the probes it may indicate that the406

deviation is due to the Manning roughness coefficient in the river bed and its407

adjustment for each model. In both simulations, the choice of this coefficient408

has the same value but, however, it is underestimated by the 1D approach409

(included in the coupled model) achieving a lower water depth in the time410

evolution of each probe.411
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In order to corroborate this hypothesis, a new simulation has been carried412

out by tuning manually the Manning coefficient to n=0.01605 s/m
1

3 in the413

river bed for the coupled model. The results can be observed in Figure 18414

plotting the longitudinal profile all along the channel and in Figures 19 and415

20, where the water depth time evolution is registered for both models.416

As shown, the results obtained by the coupled model coalesce almost417

exactly with the same obtained with the fully 2D model. In particular, the418

behaviour at probe 6 that is always ’dry’ is emulated in both models.419

The Froude number is less than one in all the domain, so the test case420

is always developed in a subcritical regime. Therefore, the coupled model421

is automatically using the OMC strategy during all the simulation in order422

to compute the water surface level at each coupling zone. In order to check423

again the importance of the boundary treatment, the same case is simulated424

enforcing the MMC strategy. Results are shown in terms also of longitu-425

dinal profile and time evolution of water depth at each measurement point426

in Figures 21, 22 and 23. When using the MMC strategy in presence of427

a subcritical regime, more information than necessary is provided, and the428

numerical solution achieved by the coupled model is far from that obtained429

by the fully 2D model arriving to non-physical results.430

5.2.2. Unsteady flow431

Adopting the modified Manning roughness coefficient n=0.01605 s/m
1

3432

in the river bed for the coupled model, a new comparison is proposed by433
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using the same test case now considering unsteady flow. A triangular inlet434

discharge hydrograph (Figure 24) with a peak discharge of 600 m3/s is in-435

troduced to the system. The water depth time evolution at the gauge points436

(Figure 13) resulting from the coupled model is compared again with a fully437

2D model in Figures 25 and 26.438

A good agreement is achieved between both sets of numerical results.439

Not only the shape of the probes registering some water is respected but also440

the absence of water at probes 1, 6 and 7 is well reproduced by the coupled441

model.442

5.3. Test case 3: Convergence to steady state in a Y junction443

Two cases of numerical simulation of the evolution of flow towards steady444

state at a junction of three channels of large slope are next presented. The445

interest of this test case lies in the changing flow regime due to the configu-446

ration of the system hence the dynamically choice of the adequate strategy447

(OMC or MMC).448

A rectangular cross section channel 1m wide (channel 1) branching into449

two channels of the same geometry (channels 2 and 3) are considered. A450

constant discharge of 3 m3/s is assumed at the inlet point to channel 1 and451

a fixed Froude number of 0.14 is enforced at the outlet of channels 2 and 3,452

starting from the initial conditions of uniform water depth of 2 m.453

As experimental data are not available for this test case, a fully 2D model454

is used to compare with the results achieved by the proposed 1D-2D cou-455
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pled model. The comparison will be made through the longitudinal profiles456

achieved by each model as well as through several probes or gauge points457

placed all along the domain, including the three channels and the junction458

location. The exact position of the probes is shown in Figure 27.459

Two configurations are proposed by changing the bed slope of each chan-460

nel, leading to different flow regimes. The Manning roughness coefficient is461

uniformly chosen as n=0.009 s/m
1

3 .462

5.3.1. Supercritical junction463

In this example, the values of bed slope464

S01 = S02 = S03 = 0.01 (52)

The steady state is reached starting from a fully subcritical flow due to465

the initial condition. When convergence to steady state is achieved, the466

flow is supercritical all over the domain except for the downstream part of467

channels 2 and 3, in which identical hydraulic jumps develop to connect with468

the outlet boundary condition at these locations (Figure 28). The results in469

terms of water level surface at each probe are plotted in Figure 29 where the470

coupled model is represented in shadows symbols and the fully 2D model in471

empty symbols as before.472

As can be observed, there is a good agreement between both numerical473

approaches in all the probes.474
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5.4. Subcritical junction475

With another choice of the bed slope,476

S01 = 0.01 S02 = S03 = 0.001 (53)

the equilibrium flow reached is subcritical at the junction but discontinuous477

in channel 1, where a hydraulic jump connects the two regimes. Therefore,478

channels 2 and 3 remain always in a subcritical regime. The longitudinal479

profile for this configuration, when the steady state is reached, is plotted480

in Figure 30. Also numerical results concerning the evolution in time of the481

water level surface from the coupled model and the fully 2D model are shown482

in Figure 31.483

The results are almost the same in the fully 2D model and in the coupled484

model. In particular some oscillations appear in probes 3 to 8 due to the485

proximity of the hydraulic jump which are well reproduced by the coupled486

model.487

5.5. Test case 4: Real world configuration in a meandering river reach488

A case study based on a reach of the Ebro river near urban area (see Figure489

32) has been selected to evaluate the uncertainty in the flooding predictions490

introduced by the choice of the proposed coupled model. The Digital Ter-491

rain Model (DTM) used in this work was provided by the Ebro River Basin492

Administration (www.chebro.es). It had been obtained using the Laser In-493

duced Direction And Ranging (LIDAR) data, by means of a test programme494
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using a single pulse scanning sensor, with 0.10 m vertical accuracy and 1 m495

horizontal resolution. The DTM provides data of great accuracy, but does496

not furnish any information of the region covered by the water. However, the497

uncertainty on the particular shape of the river bed under the water surface498

has been eliminated by reconstructing the river able to convey the water dis-499

charge that was flowing in the moment of the LIDAR measurements and so500

that it reproduces the water surface extension and slope as measured. The501

DTM plus the river bed reconstruction were used as a full bed topography502

to provide information to both 2D and coupled models.503

Two scenarios have been carried out in order to see the performance504

of the coupled scheme: steady and unsteady flow. Not having an exact505

solution or measured data in this river reach, the numerical solution from506

a fully tested 2D simulation model with a fine grid of 200000 unstructured507

triangular cells (Figure 33 (left)) has been used as a reference solution. In the508

coupled model, the floodplain inundation is clearly complex hence requiring509

a 2D model when numerical simulation is sought as more than one flow510

direction are relevant. Therefore, the river bed will be simulated with a 1D511

model laterally connected with the 2D model. A detail of the coupling model512

domains is shown in Figure 33 (right). The discretization in the 1D model513

is made of 112 cross sections and the 2D domain is covered by almost 46000514

triangular cells.515

The 2D computations use a single Manning coefficient n = 0.035 s/m
1

3 all516

over the domain. However, the 1D scheme ’inside’ the coupled model needs517
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a greater coefficient in order to diminish the differences with a 2D model.518

For this purpose, n = 0.035 s/m
1

3 has been chosen all along the 2D domain519

and n=0.038 s/m
1

3 in the 1D sub-domain of the coupled model.520

5.6. Steady flow521

The generation of steady state conditions in the river reach has been522

achieved by convergence to the steady state starting from an empty or dry523

river. It consists of applying a constant upstream discharge of 600 m3/s until524

the river reach fills up and the outlet discharge is equal to the inlet discharge.525

Figure 34 illustrates the flooding map predicted by the 2D model (left) and526

by the 1D-2D coupled model (right). In the 1D-2D representation, the 1D527

sub-domain shows the cross sectional basis whereas the 2D sub-domain is528

meshed in triangles. A zoom view of the flooding area has been highlighted.529

The coupled model approaches very finely the results predicted by the fully530

2D model respecting the wet and the dry regions. Moreover, having a coarse531

representation of the information in the 1D domain (only 112 sections), the532

color scale for the river bed elevation is almost exactly reproduced. In order533

to corroborate this hypothesis, the longitudinal profiles along the river cen-534

terline, achieved by each numerical model is plotted in Figure 35. As can be535

appreciated, there is a good agreement between the 2D numerical model and536

the coupled scheme.537

The flooded area predicted by each model represents another measure-538

ment of the quality of the results. Table 1 contains the information about539
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the flooded area computed by the 1D-2D coupled model as well as by the 2D540

model. The relative error (less than 3%) shows that the proposed coupled541

scheme is able to approximate well the results achieved by the 2D model.542

5.7. Unsteady flow543

From a 75 m3/s steady state, unsteady calculations were performed by544

assuming a triangular shape inlet discharge hydrograph rising to 1300 m3/s545

in 12 hours. The predicted flood inundations at t=50000 s are shown in546

Figure 36, computed with a fully 2D model (left) and also calculated with547

the proposed 1D-2D coupled model (right).548

The numerical results indicate that there is a good adjustment between549

the fully 2D model and the coupled model, respecting mainly the wet and550

dry zones. Small differences are observed in the first part of the river reach,551

upstream the island, where the flooded zone predicted by the fully 2D model552

is larger than that provided by the coupled model. The overall color scale553

used shows a good agreement not only along the river bed but also over the554

floodplain. The longitudinal profile (see Figure 37) as well as the flooded555

area predicted by each model (Table 1) display the quality of the results556

obtained by the coupled model in comparison with the complete 2D model.557

The coupled model is able to reproduce all kind of flow situations and predict558

faithfully the water level surface as presented before hence it may be a 2D559

model overestimation of the flooding due to the spatial discretization of the560

river bed bathymetry.561
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6. Computational time562

As displayed in the previous test cases, accuracy is ensured by using the563

proposed coupled model. As seen, it is able to approach satisfactorily the564

results offered by the pure 2D model. However, the 2D model has a clear565

disadvantage associated to the topography discretization due to the fact that566

the computational time is governed by the cell sizes. Therefore, a compromise567

between the CPU time and the topography representation must be achieved.568

In particular, when dealing with a flood scenario, a wrong representation of569

the bottom bathymetry in the river bed entails wrong results concerning the570

extension of the flooding. Therefore, a fine discretization should be consid-571

ered in order to ensure reasonable results with the extra cost in terms of572

CPU time.573

The coupled model eliminates this fine discretization associate to the river574

bed topography since the 1D model is able to reproduce it very accurate,575

requiring less information and saving computationally time. Not only a lot576

of cells which discretized the river bed are discarded for the 2D domain, but577

also they are possibly the cells which limited the time step size. Therefore,578

the computational time should be reduced ’a priori’ when dealing with a579

1D-2D coupled model.580

In order to compare the CPU time consumed, Table 2 is attached where581

each test case enclosed its computational time is analysed for the simulations582

computed by the fully 2D model and also by the coupled model presented583

before. The maximum triangle cell area constraint in the fully 2D model584
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has been chosen equal from that of the 2D domain of the coupled model585

for each test case hence the uncertainty related with the choice of different586

computational cell sizes is eliminated.587

The results highlight a computational gain achieved by using the proposed588

coupled model. Test case 1 is the less representative in terms of speed-up589

than others due to the simulation time (only 10 seconds) as well as the num-590

ber of cells in the fully 2D model in comparison with the coupled model.591

However, when dealing with test cases 2,3 and 4, the speed-up reached by592

the coupled model is not inconsiderable at all. Furthermore in a real config-593

uration, where the 1D model represents only the river bed and the adjacent594

low-laying areas are covered by a 2D discretization, the gain observed is595

particularly noticeable, always achieved without essentially loss of accuracy.596

7. Conclusions597

A 1D-2D numerical coupled model built from existing both 1D and 2D598

models is presented in this work. The implementation of a complete 1D-2D599

model seems a good solution to eliminate not only the limitations of the 1D600

model related with the underlying mathematical hypothesis which introduce601

some errors when modelling flooding waves over 2D domains, but also the602

uncertainty in the 2D model associate to the discrete representation of the603

topography.604

Two possible coupling techniques are displayed. The OMC technique is605

derived from a total mass conservation in the coupling zone. A new com-606
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mon level surface is established from the total water volume existing at the607

coupling zone. The MMC strategy, considered as an extension of the OMC608

enforces not only a new common level at the coupling zone, but also the609

velocities u and v in x and y direction coming from a strictly mass and mo-610

mentum control. It is important to remark the importance of computing611

the exact mass and/or momentum conservation, considering the information612

that crosses the limits of the 1D or 2D domains.613

The use of each strategy is not transparent to the boundary conditions of614

the 1D and the 2D models. The boundary treatment must be revisited and,615

according to the flow regime, the OMC or MMC strategy must be used to616

avoid non-physical results.617

The effectiveness of the coupling model is tested trough diverse test cases618

where the performed numerical results of the coupling model are compared619

with a fully 2D model as well as with experimental data if existing. It has620

also been evaluated in a real world configuration, simulating a reach of the621

Ebro river by means of a 1D model connected with the riverside floodplain622

areas which are covered by a 2D domain.623

Finally, the computational gain achieved by this proposed coupled model624

is highlighted in comparison with the CPU time consumed by a fully 2D625

model.626
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Figure 1: Coordinate system in a cross section as used in the 1D model
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Figure 5: Flowchart of the coupled scheme
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Figure 6: Contributions to be considered in mass conservation: frontal coupling (left) and
lateral coupling (right)
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Figure 7: Type of open boundaries: a) Subcritical inlet, b) Supercritical inlet, c) Subcrit-
ical outlet, d) Supercritical outlet
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Figure 9: Test case 1: Upper: discretization of the frontal coupling domain. Lower:
discretization of the lateral coupling domain
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Figure 10: Test case 1: Comparison of numerical results and experimental measurements
for the water depth at the gauge point P1 to P6, from upper left to lower down respectively
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Figure 11: Test case 1: Comparison of numerical results with an OMC strategy and
experimental measurements for the water depth at the gauge point P1 to P6, from upper
left to lower down respectively
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Figure 12: Description of the test case 2: a channel connected laterally with a floodplain
area
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Figure 13: Test case 2: Position of the probes
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Figure 14: Test case 2: channel cross section geometry and 2D discretization into triangular
cells
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Figure 15: Test case 2 steady flow: longitudinal profile along the channel
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Figure 16: Test case 2 steady flow: probes 1-5. 1D-2D (shadow symbols) , fully 2D (empty
symbols)
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Figure 17: Test case 2 steady flow: probes 6-10. 1D-2D (shadow symbols) , fully 2D
(empty symbols)
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Figure 18: Test case 2 steady flow: longitudinal profile along the channel
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Figure 19: Test case 2 steady flow: probes 1-5. n=0.01605 s/m
1

3 in the river bed. 1D-2D
(shadow symbols) , fully 2D (empty symbols)
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Figure 20: Test case 2 steady flow: probes 6-10. n=0.01605 s/m
1

3 in the river bed. 1D-2D
(shadow symbols) , fully 2D (empty symbols)
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Figure 21: Test case 2 steady flow: longitudinal profile along the channel. MMC strategy
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Figure 22: Test case 2 steady flow: probes 1-5. n=0.01605 s/m
1

3 in the river bed. MMC

strategy. 1D-2D (shadow symbols) , fully 2D (empty symbols)
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Figure 23: Test case 2 steady flow: probes 6-10. n=0.01605 s/m
1

3 in the river bed. MMC

strategy. 1D-2D (shadow symbols) , fully 2D (empty symbols)
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Figure 24: Test case 2: Triangular inlet hydrograph
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Figure 25: Test case 2 unsteady flow: probes 1-5. 1D-2D (shadow symbols) , fully 2D
(empty symbols)
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Figure 26: Test case 2 unsteady flow: probes 6-10. 1D-2D (shadow symbols) , fully 2D
(empty symbols)
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Figure 27: Description of the test case 3. Location of the gauge points. Plain background:
1D zone in the coupled model. Gray background: 2D zone in the coupled model

58



 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0  50  100  150  200  250  300  350  400

le
ve

l (
m

)

time (s)

profile 2D profile 1D-2D bottom

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  50  100  150  200  250  300  350  400

le
ve

l (
m

)

time (s)

profile 2D profile 1D-2D bottom

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  50  100  150  200  250  300  350  400

le
ve

l (
m

)

time (s)

profile 2D profile 1D-2D bottom

Figure 28: Test case 3: Longitudinal profiles of channel 1 (upper), channel 2 (intermediate)
and channel 3 (lower). Supercritical junction
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Figure 29: Test case 3: Comparison in terms of water level surface between the coupled
model and the fully 2D model at each probe. Supercritical junction. 1D-2D (shadow
symbols), fully 2D (empty symbols)
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Figure 30: Test case 3: Longitudinal profiles of channel 1 (upper), channel 2 (intermediate)
and channel 3 (lower). Subcritical junction
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Figure 31: Test case 3: Comparison in terms of water level surface between the cou-
pled model and the fully 2D model at each probe. Subcritical junction. 1D-2D (shadow
symbols), fully 2D (empty symbols)
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Figure 32: Description of the test case 4

Figure 33: Test case 4: 2D model (left) and 1D-2D coupled model (right) for the Ebro
river reach
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Figure 34: Test case 4: Numerical simulation of a steady flow of 600 m3/s in the Ebro
river. Flooded area in the fully 2D model (left) and in the 1D-2D coupled model (right)
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Figure 35: Test case 4: longitudinal profile along the river bed for the steady case
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Figure 36: Test case 4: Numerical simulation of a unsteady flow in the Ebro river. Flooded
area in the fully 2D model (left) and in the 1D-2D coupled model (right) at t=50000 s
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Figure 37: Test case 4: longitudinal profile along the river bed for the unsteady case at
t=50000 s
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Flooded area 2D (m2) Flooded area 1D-2D (m2) Relative error

Steady 9.611965e+05 9.829719e+05 2.26 %

Unsteady 1.4602498e+06 1.4201994e+06 2.74%

Table 1: Test case 4: Flooded area computed by the 1D-2D coupled model and the 2D
model and relative error

Test case Time (s) fully 2D Time (s) 1D-2D coupled Speed-up

1 31 17 1.82

2 Steady 66341 2032 32.65
Unsteady 11155 376 29.66

3 Supercritical 38416 966 39.77
Subcritical 32521 1013 32.1

4 Steady 31952 117 273.09
Unsteady 50368 439 114.73

Table 2: CPU time consumed by the 2D model and the coupled model in each test case
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Appendix A. Computation of the common level surface at the cou-717

pling zone718

The proposed 1D-2D coupled model is based on imposing a common719

water level surface at the coupling zone. The conscientiously technique ex-720

plained before should also be combined with a carefully computation of the721

common level once the total water volume of the coupling zone, VCZ , has722

been calculated. The aim consists of building a level-volume table for each723

coupling zone in the pre-process and, during the computation, to assign the724

corresponding level of such water volume.725

Let consider a sliced sketch of a coupling zone as in Figure A.38. The726

irregular cross section represented by the 1D model in left side is connected727

through several short straight lines at the right side, representing the bottom728

or elevation of the 2D coupled cells.729

First of all, it is necessary to sort the vector generated with all the levels730

involved at the coupling zone, which are represented by the dashed lines. By731

traversing from lower to higher surface level in this vector, a table with the732

information included in (A.1)733

zk bk Sk Zk Vk (A.1)

must be built, where k indicates the index, z is the surface level, b is the734

corresponding width in the 1D model, S includes the accumulated 2D cell735

sizes, Z is the corresponding side slopes and V is the water volume. This736
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volume is achieved following the algorithm (A.2):737

Vk+1 = Vk + Ck(zk+1 − zk) +
1

2
Zkδx (zk+1 − zk)

2 (A.2)

being δx the 1D cell size and C = bδx+S. During the computation, a water738

volume VCZ is calculated at the coupling zone, whose corresponding correct739

level zn+1
s will be imposed there. In order to do this assignment, the second740

order (in zn+1
s ) equation (A.3) should be solved:741

VCZ = Vj + Cj(z
n+1
s − zj) +

1

2
Zjδx (zn+1

s − zj)
2 (A.3)

where j is the immediately lower index from that VCZ is located in the table.742

Finally, the only solution for zn+1
s which stays between zj and zj+1 is imposed743

as the common water surface level.744

It is important to remark that this technique provides good accuracy in745

the presence of irregular geometries, allowing to discern which are the 2D746

cells that must be wet when imposing a common level surface.747
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Figure A.38: Sliced sketch of a coupling zone
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