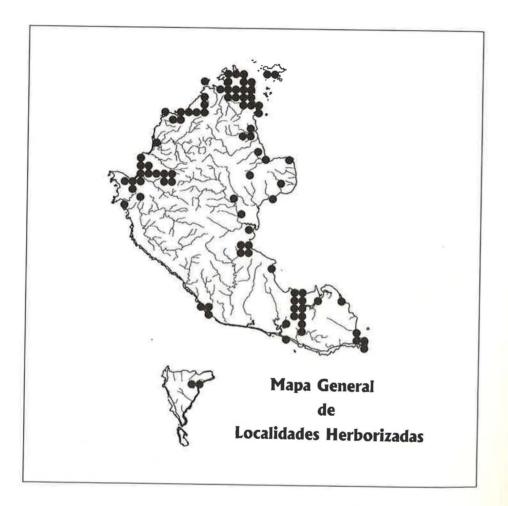

S. Castroviejo (Ed.)

FLORA Y FAUNA DEL PARQUE NACIONAL DE COIBA (PANAMÁ)

INVENTARIO PRELIMINAR

FLORA Y FAUNA DEL PARQUE NACIONAL DE COIBA (PANAMÁ)

Santiago Castroviejo
Editor científico



AGENCIA ESPAÑOLA DE COOPERACIÓN INTERNACIONAL

LOS INSECTOS DE LA ISLA DE COIBA (PANAMÁ) ABUNDANCIA Y DINÁMICA ESTACIONAL ANÁLISIS DEL CASO DE LOS HIMENÓPTEROS (HEXAPODA, HYMENOPTERA)

José Luis Nieves-Aldrey & Félix M. Fontal-Cazalla Museo Nacional de Ciencias Naturales (CSIC), Madrid

Abstract.— Insects: General Introduction. Abundance and seasonal dynamics of insects in Coiba. The case of the hymenoptera.

An introduction to the insects is presented within the global flora and fauna project of inventory of the National Park of the Island of Coiba (Panama). Preliminary results on entomology are contributed in four articles: One first work is devoted to investigate the abundance and temporal dynamics of insects, especially hymenoptera, as measured by Malaise traps catches, in North of Coiba island. A second work presents faunistical results of the inventory of selected families of Hymenoptera parasitica Cynipoidea and Chalcidoidea: Figitidae, Chalcididae, Encyrtidae and Eucharitidae. A third article deals with the butterflies of Coiba and finally, the fourth work, presents a list of Odonata from the island.

Field work data comes from three collecting trips to Coiba (two-five weeks long) between 1994 and 1996. Wet and dry seasons were sampled. Thirty one sites in the National Park were sampled representing almost all the main terrestrial habitats of Coiba. Sampling methods used were: Malaise traps, sweep net, yellow pan traps, pitfall traps and light trap, but most collected data come from the two first techniques.

Local abundance of insect orders and families of *Hymenoptera*, measured by Malaise traps samples from the north of the Coiba island, was investigated and the results compared with data from the literature and unpublished author's Malaise traps data from two sites in the centre of the Iberian Peninsula. Local abundance of insects was comparatively higher than that registered in other tropical localities and intermediate in relation to the two sites in the Iberian Peninsula. Local abundance of *Hymenoptera* was in average higher than those indicated by bibliographical data for other sites and countries but it was equal or lower in relation to the two sites in the Iberian Peninsula. Seasonal dynamics of the families of *Hymenoptera*: *Eucoilidae*, *Figitidae*, *Chalcididae*, *Eucharitidae*, *Pteromalidae* and *Symphyta* were investigated from samples of a single Malaise trap operating along the whole 1994 annual cycle. *Figitidae* and *Symphyta* showed short phenological cycles from May to August and the other families presented flight activity along the whole year. *Eucoilidae*, *Chalcididae* y *Eucharitidae* were, along one full year, more abundant in Coiba, as a whole, than the two sites in central Spain; *Pteromalidae* y *Figitidae* showed an intermediate abundance in comparison with that localities and *Symphyta* was much less abundant in Coiba island.

INTRODUCCIÓN

Para un total de un millón seiscientas mil especies de seres vivos descritas, los insectos representan, por sí solos, con un 59% y unas novecientas cincuenta mil especies, más que el conjunto de los restantes organismos. El número de especies nuevas de insectos que se describen anualmente se acerca al total conocido de especies de aves (ocho mil quinientas). Pero no sólo destacan por su diversidad sino también por su

abundancia. Wilson ha estimado que en la selva amazónica de Brasil la biomasa de hormigas supera a la del conjunto de vertebrados terrestres en una proporción de 4 a 1; y si consideramos el conjunto de hormigas, termitas, abejas y avispas sociales veríamos que superan al conjunto de los vertebrados en la proporción de 7 a 1 (Holden, 1989). Cada hectárea de suelo en el Amazonas contiene en exceso ocho millones de individuos de hormigas y un millón de termitas (Beck, 1971; Fittkau & Klinge, 1973).

La diversidad de los insectos es asombrosa; así, por ejemplo, un sólo género de himenópteros calcídidos parasitoides, *Conura*, tiene más de mil especies en el trópico. Los insectos constituyen el más importante de los grupos de organismos hiperdiversos. Las causas de esta hiperdiversidad son variadas; tienen características como el pequeño tamaño que les permite la subdivisión fina de nichos ecológicos; practican la fitofagia y el parasitismo con especialización de hospedadores entre las plantas vasculares y otros insectos; tienen ciclos de vida especializados que les permiten también ocupar múltiples nichos ecológicos o colonizar nuevas áreas con subsiguiente radiación adaptativa; poseen gran capacidad de dispersión, etc. (Ehrlich & Wilson, 1991).

La diversidad de los insectos se reparte fundamentalmente en cuatro grupos: Coleoptera, Diptera, Lepidoptera e Hymenoptera. Sobresalen los Coleoptera en una horquilla de trescientas a cuatrocientas mil especies con un porcentaje aproximado del 40% del total de los insectos.

Si impresiona la enorme cifra de especies de insectos descritas, asombra además conocer que la diversidad real de insectos puede ser de magnitud mucho mayor. En efecto, a tenor de las últimas estimaciones, la fracción conocida de la diversidad de insectos será una pequeña parte del total realmente existente. La mayor parte de esta diversidad desconocida estará en los bosques lluviosos tropicales. Erwin (1982), mediante el empleo de técnicas conocidas como "fogueo" o fumigación con insecticidas especiales del dosel forestal de bosques lluviosos tropicales en Barro Colorado (Panamá), llegó a estimar una cifra de treinta millones de especies de artrópodos. Este cálculo es muy cuestionable en algunas de sus presunciones y ha sido criticado posteriormente por distintos autores Stork (1988); Gaston (1991); Erwin (1991); Gaston & al. (1996), que corrigen a la baja la cifra estimada por Erwin a un intervalo entre cinco y diez millones de especies.

Sea cual sea la cifra final real del número de especies de insectos existentes, sí es cierto que la mayor parte de esta diversidad es aún desconocida y se encuentra en su mayor parte en los bosques lluviosos tropicales. A título ilustrativo se puede citar a Wilson (1987) que encuentra en un sólo árbol de la selva peruana tantas especies de hormigas como las que se encuentran en el conjunto de Gran Bretaña (pero ver el trabajo de microhimenópteros en este mismo libro para una matización). Los bosques tropicales son precisamente los ecosistemas más amenazados de desaparición. Se ha estimado la pérdida de bosques tropicales por incendio, tala o roturación en un 1.8% anual (Myers, in Ehrlich & Wilson, 1991). En sólo una década (1979-1989) se dobló la tasa de desaparición de los bosques tropicales. Si como hemos visto antes, las selvas albergan un mínimo de dos millones de especies de insectos, aplicando las tasas más conservadoras de extinción de especies de un 0.2%, se podrá estimar una cifra mínima de extinción anual de unas cuatro mil especies (Ehrlich & Wilson, 1991). A la vista de este problema, que se ha dado en llamar "Crisis de la Biodiversidad", hay un creciente reconocimiento de la urgente necesidad de un programa que acelere el inventario, descripción y cartografiado de la biodiversidad con vistas a programar su conservación y uso sostenible. En los últi-

ABUNDANCIA Y DINÁMICA DE INSECTOS

331

mos años están surgiendo numerosas iniciativas a gran escala para solucionar el problema, de las que son exponente destacado los proyectos Systematic Agenda 2.000 o los ATBI (All Taxon Biota Inventory), propuestos por Janzen & Hallwachs (1994).

LOS INSECTOS EN LA ISLA DE COIBA, PANAMÁ Y CENTROAMÉRICA

Los estudios científicos publicados sobre fauna y flora de Coiba son muy escasos. En lo referente a los insectos, no conocemos trabajos previos publicados de entomofauna. En la reciente obra sobre los insectos de Panamá (Quintero & Aiello, 1992) no se incluyen datos o citas de Coiba.

El gran tamaño de la Isla, su relativa cercanía al continente y antigüedad geológica, así como la diversidad y excelente estado de conservación de sus hábitats hacen presumir la existencia de una rica y diversa entomofauna. Es sabido, de acuerdo a la teoría de biogeografía insular (McArthur & Wilson, 1967), que el número de especies de una isla es una función positiva de su área. Por otra parte, cuanto mayor sea su cercanía al continente, mayor probabilidad existe de colonización e intercambio de biota entre las dos áreas geográficas. Sin embargo, no existe dato previo alguno publicado sobre la entomofauna de Coiba que permita confirmar o desmentir esta hipótesis previa. Los únicos datos con los que contamos para estimar la riqueza entomológica de Coiba son los existentes de Panamá continental y área centroamericana.

Durante millones de años Mesoamérica y el istmo de Panamá han servido de puente para el intercambio de fauna y flora entre América del Norte y del Sur, y han proporcionado centros de especiación y diversificación biótica. La mayoría de los intercambios han tenido lugar bastante recientemente en la escala geológica ya que el delgado brazo de tierra conectando ambas partes del continente americano no se formó hasta finales del terciario (Kimsey, 1992). Estos eventos geológicos y paleogeográficos son determinantes de que América Central posea una de las mayores diversidades de insectos de la Tierra (Quintero & Aiello, 1992). La región encierra, además, una inusual abundancia de especies endémicas de insectos. La mayoría de ellas se encuentran en Costa Rica y Panamá; algunos pueden ser artefactos (falta de muestreo), pero se encuentran también por ejemplo en grupos bien conocidos de ápidos. Estos táxones endémicos pueden ser el resultado de repetidos aislamientos y colonizaciones en la región al tiempo que el arco de islas volcánicas que conectaban América del Norte y del Sur gradualmente se fusionaban para formar un istmo (Kimsey, 1992).

El análisis biogeográfico de elementos de la fauna y flora de la región panameña varía considerablemente entre vertebrados, invertebrados y plantas. La influencia neártica parece ser mayor en el caso de los mamíferos; por el contrario, para plantas e insectos es más importante la influencia neotropical (Kimsey, 1992). En la región panameña, el origen suramericano se puede rastrear en numerosos géneros y categorías superiores de insectos, mientras que los elementos de origen neártico parecen ser más escasos. El factor limitante para muchos de estos elementos parece ser climático. Muchos de ellos aparecen en altitudes elevadas de la región panameña y algunos aparentemente no sobrepasan el límite sur de Panamá (Kimsey, 1992).

El antecedente más importante en el estudio de los insectos del área centroamericana, incluida Panamá, es la clásica y magna obra editada por Dulau & Co., en 1879-1888 "Biologia Centrali-Americana". Por lo que se refiere a Panamá, la mayor parte

de los estudios entomológicos se refieren o se han generado en la estación de Investigación de Barro Colorado de la Smithsonian Institution, situada en la zona de El Canal de Panamá. Recientemente Quintero & Aiello (1992) han publicado una obra que resume buena parte del actual conocimiento de la entomofauna de Panamá. El país centroamericano que, con enorme diferencia, está mejor estudiado en el aspecto entomológico es Costa Rica gracias a la encomiable labor desarrollada por el INBIO (Instituto Nacional de Biodiversidad) en colaboración con entomólogos especialistas de todo el mundo (Janzen, 1993; Hanson & Gauld, 1995).

OBJETIVOS

Básicamente, el objetivo general del Proyecto Científico en la isla panameña es el inventario biológico del Parque Nacional Coiba. Para el caso de los insectos, dada su enorme diversidad, es claro que este objetivo general de inventario completo de la entomofauna de Coiba está lejos de poder ser realizado siquiera de forma aproximada. Más realista es abordar el inventario de grupos seleccionados y tratar de extraer de ello conclusiones acerca de la Biodiversidad entomológica de la isla.

La mayor parte de la ingente cantidad de insectos colectada, especialmente mediante el programa de trampas Malaise, espera aún ser estudiada. La composición del equipo investigador ha determinado que el esfuerzo se concentre fundamentalmente en el orden Hymenoptera, en especial en familias parasitoides de Cynipoidea y Chalcidoidea. La contribución sobre los insectos de la isla de Coiba, para este libro, consta de cuatro artículos: en el presente trabajo después de esta introducción general al grupo, estudiamos la abundancia local y dinámica estacional de insectos, especialmente himenópteros, en la isla, comparándola con datos disponibles de localidades de la Zona Templada en España. Un segundo trabajo versa sobre faunística de familias seleccionadas de Hymenoptera de las superfamilias Cynipoidea y Chalcidoidea. La tercera contribución se refiere a mariposas diurnas de Coiba. Un último trabajo entomológico trata las especies de Odonatos encontradas en la Isla.

MATERIALES Y MÉTODOS GENERALES

Las contribuciones sobre entomología que se presentan en este libro se basan en el material colectado por los autores en las tres expediciones entomológicas realizadas hasta el momento a la isla de Coiba: 13 de Enero a 3 de febrero de 1994 (J. L. Nieves); 21 de julio a 10 de agosto de 1995 (Nieves y Fontal) y 27 de marzo a 10 de mayo de 1996 (F. M. Fontal).

El campamento base para el muestreo de la isla de Coiba se estableció, en todos los casos, en las instalaciones de la punta Gambute, al norte de la isla principal, denominadas genéricamente Estación Biológica. Desde la base se realizaban distintas expediciones de un día de duración a diferentes partes de las islas representativas de las distintas áreas naturales y ecosistemas reconocibles en el parque terrestre. Los métodos de muestreo entomológico utilizados han sido los siguientes: red entomológica de barrido, de diseño de Boucek (Noyes, 1982); trampas Malaise del modelo de Townes (Townes, 1972), de fabricación comercial (Marris House Nets (G.B.), del

tamaño estándar y luz de malla fina, de dos modelos de coloración: enteramente negra y negra con techo blanco; trampas pitfall (o de caída al hueco); trampas bandeja, coloreadas de amarillo y trampa de luz. La mayor parte de los resultados presentados aquí se refiere, sin embargo, a materiales colectados con los dos primeros métodos que probaron ser los más eficientes tanto en el aspecto colector y logístico para los grupos objeto principal de nuestro estudio. Una de las trampas Malaise, situada en las cercanías de la estación Biológica, se mantuvo operando sin interrupción hasta fin del año 1994, durante un total de once meses hasta completar un ciclo anual completo, con excepción de los veinte primeros día del mes de enero, permitiendo así investigar facetas de dinámica temporal y variación estacional de algunos de los grupos entomológicos seleccionados; en este caso las muestras eran retiradas a intervalos de 7-10 días completando un total de cuarenta y cinco periodos de muestreo.

La relación cronológica de muestreos realizados en las tres expediciones entomológicas se resume en la Tabla I y los datos geográficos y características de hábitat de las localidades muestreadas se presentan en la Tabla II. Ambas tablas se relacionan por el número que corresponde a los puntos de muestreo representados en el mapa de la Fig. 1.

ABUNDANCIA Y DINÁMICA ESTACIONAL DE INSECTOS EN COIBA. EL CASO DE LOS HIMENÓPTEROS

INTRODUCCIÓN

Es conocido el hecho de que para la inmensa mayoría de los grupos zoológicos la riqueza en especies se incrementa desde las zonas templadas hasta las tropicales y el ecuador, pero existen notables excepciones, por ejemplo entre los áfidos y en muchos himenópteros como los Symphyta y muchos Parasitica. Este anómalo patrón de riqueza ha generado en el caso de los himenópteros parasitoides, especialmente para Ichneumonoidea y Chalcidoidea, una abundante literatura (Janzen & Pond, 1975; Rathcke & Price, 1976; Morrison & al., 1978; Hespenheide, 1979; Owen, 1983; Gauld, 1986; Askew, 1990; Quicke & Kruft, 1995) constatando el hecho e intentando dar teorías explicativas. En este trabajo presentamos resultados preliminares del primer muestreo entomológico relevante realizado en la isla de Coiba (Panamá). El objetivo es documentar la abundancia relativa local de Insecta e Hymenoptera y estudiar la dinámica estacional de grupos seleccionados de himenópteros, fundamentalmente de la sección Parasitica. Los resultados se comparan con datos de la bibliografía y con los obtenidos por el primer autor en dos áreas templadas en España; se pretende así contribuir al conocimiento de las causas y los patrones diferenciales de abundancia y diversidad de insectos entre latitudes templadas y tropicales. Los datos del presente trabajo se refieren tan sólo a abundancia local de insectos pero esperamos en contribuciones sucesivas aportar también datos de riqueza y diversidad local en grupos seleccionados de insectos, especialmente himenópteros.

MATERIALES Y MÉTODO

Los datos de este apartado provienen de la primera expedición a Coiba realizada en enero de 1994, integrada por científicos del CSIC, miembros del Real Jardín Botánico, Estación Biológica de Doñana y Museo Nacional de Ciencias Naturales. Las colectas en la isla se extendieron a lo largo de 10 días efectivos de muestreo, del 19 al 29 de enero de 1994.

Para la consecución de los objetivos de este trabajo hemos utilizado únicamente datos parciales obtenidos del muestreo con trampas Malaise efectuado en el norte de la isla, cerca de la Estación Biológica. Los resultados de este tipo de trampas son susceptibles de tratamiento numérico y pueden permitir, dado que las trampas operan ininterrumpidamente y, a priori, no hay diferencia de intensidad o esfuerzo de muestreo entre ellas, la comparación de resultados entre ubicaciones, trampas o rangos temporales de muestras de una misma trampa.

En los alrededores de la estación Biológica se instalaron permanentemente dos trampas Malaise del modelo de Townes (Townes, 1972), ambas del tamaño estándar, coloración negra y luz de malla fina. Las dos trampas fueron ubicadas en una zona de vegetación secundaria y antiguos cultivos abandonados, en las cercanías de una mancha de bosque primario pero la primera (TM1) ubicada en una zona relativamente más abierta y con menor cubierta vegetal que la segunda (TM2). Las dos trampas estaban separadas por una distancia de unos 100 m. Durante la estancia del equipo científico en la isla, se retiraron las muestras de la trampa Malaise a intervalos de 48 horas. Con posterioridad, se dejó instalada la trampa Malaise nº 2 y, atendida por el recluso Mali destinado en la E. B., se mantuvo operando ininterrumpidamente hasta fin de año hasta completar un ciclo anual completo, con excepción de los 20 primeros días del mes de enero. Las muestras eran retiradas a intervalos de 7-10 días con lo que se completó un total de 45 periodos de muestreo.

Los datos utilizados para la comparación de resultados con zonas templadas en España provienen de un Proyecto de Inventario entomológico, realizado fundamentalmente con trampas Malaise, de dos áreas naturales de la Comunidad de Madrid: la estación Biogeológica de El Ventorrillo en el sector central de la Sierra de Guadarrama y el Monte de El Pardo (Nieves-Aldrey, 1995; inédito; Nieves-Aldrey & Rey del Castillo, 1991). Para la gráfica comparativa de abundancia relativa de órdenes de Insecta hemos utilizado, de El Ventorrillo, las muestras correspondientes al periodo de 9 de junio al 14 de julio, para un total de 36 días de trampa Malaise; en el Pardo las muestras de 40 días de trampa Malaise, desde el 1 de mayo al 9 de junio y en Coiba las correspondientes a 49 días de trampa Malaise en periodos no consecutivos desde el 21 de enero al 30 de junio. Para la gráfica comparativa de abundancia relativa de familias de Hymenoptera utilizamos las muestras de trampa Malaise de un periodo de 7 días de trampa en El Ventorrillo (9-16/VI, 1989), 8 en el Pardo (9-17/VI, 1991) y 10 en Coiba (19-29/I, 1994). Las cifras de número de ejemplares por muestra han sido uniformizadas a ejemplares por día de trampa Malaise en todos los casos. Las muestras elegidas para comparación de las localidades en España corresponden a una época del año en que la abundancia es alta, cercana al máximo (Nieves-Aldrey, inédito).

ABUNDANCIA Y DINÁMICA DE INSECTOS

335

RESULTADOS

ABUNDANCIA DE INSECTOS

Se ha investigado la abundancia relativa de ordenes de insectos, medida por las capturas de dos trampas Malaise, en dos ubicaciones distintas en las cercanías de la Estación Biológica de Coiba. Los resultados se muestran en las Tablas III y IV. Cada muestra en la Tabla corresponde a un periodo de 48 horas de trampa Malaise, con excepción del primero, correspondiente al periodo de 8 horas diurnas de mayor actividad.

La trampa instalada en la ubicación nº 2 solectó un 30% más de insectos en el mismo periodo de tiempo. En los dos casos el porcentaje mayoritario de las capturas está representado por los dípteros, pero el porcentaje relativo de este grupo es más alto en la ubicación nº 1 (75%) que en la 2 (57%). Los himenópteros son el 2º grupo mejor representado en las muestras, pero su porcentaje relativo es dos veces mayor en la ubicación 2 que en la 1. A bastante distancia de dípteros e himenópteros se sitúan *Homoptera*, *Lepidoptera* y *Coleoptera*, por este orden de abundancia, en las dos ubicaciones.

Las muestras analizadas son sólo parcialmente representativas de la comunidad de insectos voladores en la zona en el momento espacio-temporal estudiado por lo que, con objeto de robustecer los datos, incluimos un rango más amplio de variación temporal. Para ello analizamos 5 muestras semanales adicionales colectadas mediante la trampa Malaise en la ubicación 2 en meses subsiguientes; 2 en febrero, y 1 en marzo, mayo y junio respectivamente. Los resultados se reflejan en la Tabla V. La Fig. 2 muestra la variación porcentual relativa de los distintos órdenes de insectos en las diferentes muestras a través del tiempo. Los porcentajes relativos apenas experimentan variaciones en el mes de febrero; la muestra del mes de marzo muestra un ligera disminución de la abundancia de dípteros en beneficio de himenópteros y lepidópteros que aumentan ligeramente; a finales de abril los dípteros recuperan su porcentaje relativo inicial mientras que el de los himenópteros decrece y el de los homópteros aumenta de forma sensible. En la última muestra estudiada, correspondiente a finales del mes de junio se puede apreciar un incremento considerable del porcentaje relativo de los dípteros (que alcanza el 75% del total de la muestra) en detrimento de los del resto de los grupos de insectos. Este aumento de la abundancia de los dípteros parece coincidir con el final de la época seca y el inicio de las precipitaciones copiosas que favorecen su modo de vida.

COMPARACIÓN CON DATOS DISPONIBLES DE ESPAÑA Y OTROS PAÍSES

Es interesante contrastar los datos obtenidos en Coiba, a partir de las trampas Malaise, con otros comparables disponibles, inéditos o publicados, de otras localidades y países, tanto de zonas tropicales como templadas. Este tipo de datos comparativos son relativamente escasos en la literatura pero pueden ser útiles en el estudio de los patrones de abundancia regional y local de las poblaciones de insectos. En la Tabla VI hemos compilado algunos de estos datos. Las cifras de eficiencia colectora (nº de insectos por día de trampa) registrada en Coiba es intermedia entre la relativamente baja registrada en promedio en Sulawesi 161 y la más alta 9241 insectos/día capturados en un periodo de 4 días del mes más productivo en El Ventorrillo (España).

336

La representación gráfica proporcional comparativa de la abundancia de órdenes de insectos, medida por el número de ejemplares capturados por día de trampa Malaise, en Coiba y en las dos localidades de España, para los periodos señalados en el apartado de material y métodos, se puede ver en la Fig. 3. La abundancia total (1054 ejemplares/día) resultó en Coiba intermedia de la medida en las dos localidades templadas; ligeramente más alta que la de El Pardo, pero mucho más baja (casi tres veces menor) que la de El Ventorrillo. La abundancia relativa de los ordenes más abundantes de insectos: *Diptera, Hymenoptera, Homoptera* y Lepidoptera fue similar en las tres localidades; el porcentaje relativo de los dípteros resultó ligeramente más bajo (63%) en la trampa de Coiba que en las de España, mientras que el porcentaje de los himenópteros fue prácticamente idéntico en las tres localidades.

Cabe resaltar la uniformidad de los porcentajes de los ordenes mayoritarios en las muestras de las tres localidades. Este es un hecho generalmente constatado en los resultados obtenidos con trampas Malaise en diferentes hábitat de distintas regiones zoogeográficas (Matthews & Matthews, 1970; Owen, 1983; Finnamore, 1994; Nieves-Aldrey & Rey, 1991).

ABUNDANCIA DE FAMILIAS DE HYMENOPTERA

Los himenópteros colectados por las trampas Malaise en el periodo 19-29/I,1994, en las dos ubicaciones, fueron separados hasta el nivel taxonómico de familia. Los resultados numéricos, para las dos trampas, figuran en las Tablas VII y VIII. En las muestras de la trampa nº 1 aparecieron representadas un total de 31 familias y 35 en las de la trampa en la ubicación 2.

La Fig. 4 muestra la representación gráfica de las jerarquías de abundancia relativa de las familias de himenópteros colectadas en las dos ubicaciones. La abundancia total de Hymenoptera, como ya se ha indicado, fue un 41% más alta en las muestras de la trampa nº 2. En esta trampa las familias mejor representadas numéricamente fueron por este orden: Braconidae, Aphelinidae, Formicidae, Eulophidae, Encyrtidae, Mymaridae, Scelionidae y Eupelmidae. En la ubicación 1, las familias más abundantes resultaron: Scelionidae, Bethylidae, Formicidae, Braconidae y Apidae. Todas las familias fueron más abundantes en el 2º emplazamiento, con excepción de Apidae y Mutillidae de los Aculeata y de los Eucharitidae entre los Parasitica. En conjunto la abundancia fue mayor para los Parasitica en las dos ubicaciones, pero los aculeados, especialmente formícidos, betílidos y ápidos, son relativamente más abundantes en las muestras de la trampa nº 1.

Al igual que para los órdenes de *Insecta*, observamos la variación temporal en la composición de las muestras estudiando muestras adicionales de la trampa nº 2, colectadas en los meses de febrero y mayo. Los resultados obtenidos se muestran en la Tabla IX. La variación temporal de la composición porcentual en las muestras de las 7 familias relativamente más abundantes: *Braconidae*, *Scelionidae*, *Aphelinidae*, *Formicidae*, *Mymaridae*, *Encyrtidae* y *Eulophidae* se representa gráficamente en la Fig. 5. En los tres primeros periodos de muestreo los porcentajes relativos de las distintas familias no experimentan apenas variaciones, pero en el 4º correspondiente a la primera semana de mayo, se aprecia un incremento de la proporción relativa de los formícidos y, en menor medida, de los encírtidos, en detrimento de la de bracónidos y afelínidos.

ABUNDANCIA Y DINÁMICA DE INSECTOS

337

COMPARACIÓN CON ZONAS TEMPLADAS EN ESPAÑA

Del mismo modo que para los órdenes de insectos, hemos comparado los resultados obtenidos en Coiba con los datos del primer autor de dos localidades del centro peninsular y otros datos de la bibliografía correspondientes a distintos países y zonas biogeográficas que se muestran en la Tabla X. La representación gráfica proporcional del número de ejemplares capturado por día para las familias de himenópteros en Coiba y las dos localidades del centro de España se presenta en la Fig. 6. La cifra media total de himenópteros capturados por día fue en Coiba la más baja de las tres (303 ejemp/día), cercana a la cifra de El Pardo y más de dos veces más baja que la de El Ventorrillo. Cada una de las tres localidades tiene su propia jerarquía de abundancia relativa de familias de himenópteros. En común, tienen las tres el alto porcentaje de Braconidae, especialmente en El Ventorrillo donde integran el 23% de los ejemplares de la muestra y en Coiba en la cual es, junto a Aphelinidae, la familia relativamente más abundante. Los Scelionidae son también muy abundantes en las tres localidades destacando en El Pardo. Se puede observar que no hay mayor afinidad entre las dos localidades templadas entre sí que entre éstas y la muestra de Coiba sugiriendo que el factor latitudinal puede ser menos importante que otros, por ejemplo la composición y diversidad de la vegetación, en la determinación de la abundancia relativa de familias de Hymenoptera como ya ha sido señalado por algunos autores (Noyes, 1989; Askew, 1990).

ABUNDANCIA Y DINÁMICA TEMPORAL ANUAL DE FAMILIAS SELECCIONADAS DE HYMENOPTERA

La trampa Malaise emplazada en la ubicación nº 2 en la Estación Biológica se mantuvo operando todo el año 1994 y las muestras colectadas en este periodo ofrecen información sobre la abundancia y variación estacional de las comunidades de insectos voladores en la zona. En una primera aproximación a esta faceta del estudio seleccionamos y extrajimos de la totalidad de las 45 muestras colectadas a lo largo del año las siguientes familias de Hymenoptera: Figitidae y Eucoilidae de la superfamilia Cynipoidea, Chalcididae, Eucharitidae y Pteromalidae de los Chalcidoidea y el grupo de los Symphyta con objeto de estudiar su variación anual de abundancia. Los cifras de ejemplares colectados de cada familia en cada uno de los periodos de muestreo se muestran en la Tabla XI y en la Fig. 7 se representa la variación semanal de abundancia, a lo largo del año 1994, para cada una de las familias seleccionadas.

Symphyta.- El suborden Symphyta es un grupo parafilético de himenópteros primitivos que, en su gran mayoría, son fitófagos, ya sea defoliadores, minadores, gallícolas o xilófagos. Es un grupo que se distribuye preferentemente por las zonas templadas y la fauna tropical es escasa y poco conocida. Se conoce muy poco de la fenología de las especies tropicales, pero en latitudes templadas y en hábitats tropicales con una estación seca pronunciada, por lo general presentan una sola generación anual (Smith, 1995).

La gráfica de fenología anual de Symphyta en Coiba muestra la existencia de un único periodo de vuelo que va de mayo a julio. Estos datos parecen indicar la existencia de ciclos de una generación anual en las especies de la comunidad coincidiendo en lo apuntado por Smith (1995).

Figitidae.- La familia Figitidae engloba un conjunto parafilético de cinipoideos de distribución cosmopolita. La mayor parte de sus representantes son parasitoides de larvas de dípteros (Fergusson, 1995).

La variación semanal de abundancia (Fig. 7) indica un periodo principal de vuelo para la familia que va de mayo a septiembre con un máximo en julio; se detecta también presencia de ejemplares en los meses de diciembre a febrero.

Eucoilidae.- Al igual que la familia anterior se trata de un grupo de cinipoideos cuyos representantes son todos parasitoides de larvas de dípteros. Rivaliza con los *Cynipidae* en riqueza de especies pero, a diferencia de lo que ocurre con esta familia de inductores de agallas en las plantas, la mayoría de los eucoílidos se encuentran en zonas tropicales y es todavía un grupo muy deficientemente conocido.

Los Eucoilidae muestran actividad de vuelo en las muestras estudiadas de Coiba en todas las épocas del año, pero parecen ser más abundantes en mayo, agosto y noviembre. Se aprecia un mínimo anual de abundancia que coincide con la estación seca.

Chalcididae.- Es una familia de Chalcidoidea de distribución cosmopolita pero particularmente abundante en zonas cálidas tropicales y subtropicales (Delvare, 1995). El grupo es enteramente parasitoide de larvas y pupas de otros insectos, sobre todo lepidópteros, pero también dípteros, coleópteros, neurópteros e himenópteros.

La mayor parte de la fauna de Chalcididae colectada en Coiba pertenece al género *Conura* Spinola. Este es un género hiperdiverso en la región neotropical donde esta representado por unas mil especies (Delvare, 1995) todas parasitoides de pupas de Lepidoptera y *Chrysomelidae*.

La gráfica de variación semanal de abundancia, medida a lo largo del año, muestra para los Chalcididae colectados en Coiba actividad de vuelo todo el año. Se observan picos máximos de abundancia en agosto y en abril-mayo. De acuerdo a los hábitos termófilos del grupo, se puede apreciar una general disminución de abundancia coincidente con el recrudecimiento de las precipitaciones al final de la época de lluvias, en los meses de septiembre a noviembre. Con el comienzo de la estación seca se incrementa paulatinamente su número.

Eucharitidae.- Al igual que la familia anterior es una familia de Chalcidoidea que se encuentra en todas las regiones zoogeográficas pero es mucho más abundante y diversa en los trópicos. La mayoría de los eucarítidos son parásitos de Formicidae y el ciclo de vida es muy especializado incluyendo una fase larval móvil denominada planidium (Heraty, 1995).

La variación semanal de abundancia a lo largo del año, medida por las muestras de la trampa Malaise en Coiba, muestra máximos en enero y agosto. La curva de fenología anual presenta un máximo secundario en plena estación seca, en el mes de febrero; en los dos meses siguientes bajan las capturas para volver a incrementarse paulatinamente hasta alcanzar un máximo absoluto en el mes de agosto. A partir de aquí la abundancia decrece bruscamente coincidiendo con los meses más lluviosos del año para volver a aumentar con el comienzo de la estación seca en diciembre.

Pteromalidae.- Es una de las mayores familias de Chalcidoidea con más de tres mil especies conocidas. Aunque de distribución cosmopolita es una familia especial-

ABUNDANCIA Y DINÁMICA DE INSECTOS

339

mente abundante y diversa en la zonas templadas del globo. La fauna neotropical es aún muy poco conocida; una estimación reciente de la fauna de pteromálidos de Costa Rica cifra en unas quinientas el número de especies probablemente presentes en el país, en su mayor parte no descritas (Hanson, 1995). La biología es muy diversa; la inmensa mayoría son parasitoides incluyendo estrategias idiobiontes y koinobiontes, ecto y endoparasitismo, y parasitoides solitarios o gregarios. Los hospedadores se cuentan entre más de once órdenes distintos de insectos.

La curva de fenología de abundancia de pteromálidos estudiada en Coiba muestra incremento progresivo de abundancia desde el mes de diciembre hasta alcanzar un máximo en mayo-junio; a partir de aquí la abundancia decrece paulatinamente.

COMPARACIÓN CON LAS DOS LOCALIDADES EN ESPAÑA

La abundancia y dinámica estacional de las familias seleccionadas, observadas a lo largo de un ciclo anual completo en la isla de Coiba, puede ser comparada con la observada en las dos localidades templadas estudiadas en España utilizando trampas Malaise de idéntico diseño. Las cifras de resultados de las tres localidades y su representación gráfica se puede observar en la Fig. 8.

Los Eucoilidae, grupo que se supone más abundante y diverso en los trópicos (Nordlander, 1984; Fergusson, 1995) fueron comparativamente más abundantes en Coiba que en las dos localidades españolas. En el Ventorrillo el grupo es moderadamente abundante mientras que, por el contrario, es escaso en El Pardo. En el caso de las dos localidades españolas esta diferencia observada de abundancia es congruente con las características fitoclimáticas de las dos áreas, en razón a las preferencias de hábitat de los eucoilidos, con tendencia a ser más abundantes en zonas húmedas que favorecen la presencia de dípteros hospedadores.

Los Figitidae están relativamente poco representados en la muestra anual estudiada en Coiba mientras que son más abundantes en El Ventorrillo. La abundancia del grupo en esta localidad puede ser debida sobre todo a la contribución de especies de Aspicerinae (géneros Callaspidia Dahlbom y Aspicera Dahlbom) (Nieves-Aldrey, inédito) que son parásitos de larvas de dípteros sírfidos predadoras de pulgones (Homoptera, Aphidoidea). Estos homópteros son más abundantes en zonas templadas que en las tropicales lo que pudiera explicar la mayor abundancia también de los figítidos que integran su cadena trófica. Eucharitidae es una familia de calcídidos eminentemente tropical. Aunque esta representado en las zonas templadas, significativamente el grupo estuvo ausente en las muestras de las dos localidades estudiadas en España. Por el contrario resultó relativamente abundante en las muestras de Coiba.

La familia Chalcididae es también especialmente abundante y diversa en los trópicos y en las zonas templadas del globo muestran preferencia por latitudes meridionales y hábitats termófilos. En las muestras de Coiba su abundancia absoluta anual fue comparativamente mayor que en El Ventorrillo y El Pardo, pero la diferencia fue poco significativa con respecto a esta última localidad que presenta características mas acordes con las preferencias de hábitat del grupo.

La familia Pteromalidae muestra en Coiba una abundancia intermedia entre la de las dos localidades españolas siendo de destacar la extraordinariamente alta cifra

340

registrada en El Ventorrillo más de seis veces superior a la medida en Coiba y unas diez veces más alta que la de El Pardo.

Por último el grupo de los Symphyta, que se distribuye preferentemente por las zonas templadas y frías de la región holártica, resultó pobremente representado en la muestra de Coiba con cifras más bajas que en las dos localidades comparadas. El grupo es significativamente mucho más abundante en la más eurosiberiana de las dos localidades españolas: El Ventorrillo.

CONCLUSIONES

La abundancia local de *Insecta* en la isla de Coiba, medida por el número de insectos capturados por día de trampa Malaise, fue variable dependiendo del lugar de emplazamiento de la trampa. En el conjunto de dos puntos de muestreo, en la estación seca, la abundancia local resultó comparativamente más alta que la registrada en otras localidades tropicales de acuerdo a datos de la bibliografía e intermedia en comparación con datos propios medidos en dos localidades del centro de la Península Ibérica.

El orden de insectos mayoritario en las muestras de Coiba fue *Diptera* seguido de *Hymenoptera*, *Homoptera* y *Lepidoptera*. Esta jerarquía de valores es, en líneas generales, coincidente con la registrada a partir de trampas Malaise en otras localidades comparadas en distintas regiones zoogeográficas.

La abundancia local de Hymenoptera, medida también por el número de ejemplares capturados por día de trampa, fue en promedio más alta que la indicada por datos
de la bibliografía en otras localidades y países pero igual o más baja a datos propios
inéditos de dos localidades del centro peninsular. En las muestras de Coiba se encontraron representadas 35 familias de himenópteros. La abundancia relativa de las distintas familias es variable dependiendo del emplazamiento de la trampa; en la primera
ubicación las familias numéricamente mejor representadas resultaron ser por este
orden: Scelionidae, Bethylidae, Formicidae, Braconidae y Apidae; en el segundo
emplazamiento las familias más abundantes fueron: Braconidae, Aphelinidae, Formicidae, Eulophidae, Encyrtidae, Mymaridae, Scelionidae y Eupelmidae.

Investigada la abundancia relativa y dinámica temporal de abundancia a lo largo de un ciclo anual de las familias de Hymenoptera: Figitidae, Eucoilidae, Eucharitidae, Chalcididae y Pteromalidae y el grupo de los Symphyta se concluye que este último grupo y los Figitidae muestran ciclos fenológicos cortos, de tres a cuatro meses, de mayo a agosto; el resto de las familias presentaron actividad de vuelo a lo largo de todo el año; Eucoilidae y Pteromalidae muestran máximos de abundancia en mayo-junio mientras que Eucharitidae y Chalcididae los presentan en julio-agosto. Estas 4 últimas familias muestran descensos significativos de abundancia en los meses de septiembre a noviembre coincidiendo con el recrudecimiento de las precipitaciones de la estación lluviosa.

Eucoilidae, Chalcididae y Eucharitidae fueron globalmente más abundantes, a lo largo de un ciclo anual completo, en Coiba que en dos localidades del centro de España; Pteromalidae y Figitidae mostraron una abundancia intermedia en comparación con las 2 localidades españolas, mayor que en El Pardo pero mucho menor que en El Ventorrillo y los Symphyta resultaron mucho menos abundantes en Coiba que en España.

ABUNDANCIA Y DINÁMICA DE INSECTOS

341

AGRADECIMIENTOS

Este trabajo ha sido posible gracias a la colaboración de muchas personas a las que, desde aquí, queremos expresar nuestro agradecimiento. En primer lugar a Santiago Castroviejo a quien debemos la invitación para participar en el proyecto de inventario de Coiba y la ayuda prestada en todo momento. Carmen Moreno y Timoteo Guijarro de la AECI en Panamá pusieron los medios, en la financiación, y todo su esfuerzo, eficacia y amabilidad en la logística de las expedición a la isla. Raúl Brenes, director del Parque Nacional Coiba y Juan Cuadras, como guía de la expedición fueron de inestimable ayuda. En especial queremos agradecer la colaboración del recluso Mali Mali por atender la operatividad de la trampa Malaise instalada en la estación Biológica a lo largo de todo el año 1994. Elvira Mingo, Vicenta Llorente, Mª Paz Martín, Arabia Sánchez y Florita Tordesillas del MNCN colaboraron en la tarea de separación de ordenes de insectos en las muestras de Trampas Malaise, Carmen Rey en la separación de Hymenoptera Aculeata e *Ichneumonoidea* y Mª Luisa Hinojosa en el montaje de ejemplares.

REFERENCIAS BIBLIOGRÁFICAS

- Askew, R. R. (1990). Species diversities of hymenopteran taxa in Sulawesi. *In:* Knight, W.J. & J. D. Holloway (Eds), *Insects and the Rain Forests of South East Asia (Wallacea)*: 255-260. The Royal Entomological Society of London.
- Beck, L. (1971). Bodenzoologische Gliederung und characterisierung des amazonischen regenwaldes. *Amazoniana*, 3: 69-132.
- Darling, D. C. & L. Packer (1988). Effectiveness of Malaise traps in collecting Hymenoptera: The influence of trap design, mesh size, and location. *Can. Ent.*, 120: 787-790.
- Delvare, G. (1995). The chalcidoid families, Chalcididae. *In:* Hanson, P.E. & I. D. Gauld, (Eds). *The Hymenoptera of Costa Rica:* 289-297. Oxford Science Publications.
- **Dulau & Co.** (Eds.) (1879-1888). Biologia centrali-americana or contributions to the knowledge of the fauna and flora of Mexico and Central America. London.
- Ehrlich, P. & E. O. Wilson (1991). Biodiversity studies. Science and Policy. Science, 253: 758-762.
- Erwin, T. L. (1982). Tropical forests: their richness in Coleoptera and other Arthropod species. *Coleop. Bull.*, 36(1): 74-75.
- Erwin, T. L. (1991). How many species are there?: revisited. Conservation Biology, 5(3): 330 333.
- Fergusson, N. (1995). The cynipoid families, Figitidae. In: Hanson, P.E. & I. D. Gauld (Eds). The Hymenoptera of Costa Rica: 259-265. Oxford Science Publications.
- Finnamore, A.T. (1994). Hymenoptera of the Wagner natural area, a boreal spring fen in central Alberta. *Memoirs of the Entomological Society of Canada* 169: 181-220.
- Fittkau, E. J., & H. Klinge (1973). On Biomass and trophic structure of the Central Amazonian rainforest ecosystem. *Biotropica*, 5: 2-14.
- Gaston, K. J. (1991). The magnitude of Global Insect Richness. Conservation Biology, 5(3): 283-296.
- Gaston, K. J., I. D. Gauld & P. Hanson (1996). The size and composition of the hymenopteran fauna of Costa Rica. *Journal of Biogeography*, 23: 105-113.

- Gauld, I. (1986). Latitudinal gradients in ichneumonid species-richness in Australia. Ecological Entomology, 11: 155-161.
- Hammond, P. M. (1990). Insect abundance and diversity in the Dumoga-Bone National Park, North Sulawesi, with special reference to the beetle fauna of lowland rainforest in the Toraut region. In: Knight, W.J. & J. D. Holloway (Eds.), Insects and the Rain Forests of South East Asia (Wallacea): 197-254. The Royal Entomological Society of London.
- Hanson, P. E. (1995). The chalcidoid families, Pteromalidae. *In*: Hanson, P.E. & I.D. Gauld (Eds.), *The Hymenoptera of Costa Rica*: 355-368. Oxford Science Publications.
- Hanson, P. E., & I. D. Gauld (Eds). (1995). The Hymenoptera of Costa Rica. Oxford Science Publications. The Natural History Museum. 893 págs.
- Heraty, J. (1995). The chalcidoid families, Eucharitidae. In: Hanson, P.E. & I. D. Gauld (Eds.). The Hymenoptera of Costa Rica: 309-314. Oxford Science Publications.
- **Hespenheide, H. A.** (1979). Are there fewer parasitoids in the tropics?. *American Naturalist*, 113: 766-769.
- Holden, C. (1989). Entomologists wane as insects was. Science, 246: 754-756.
- Janzen, D. H. (1993). What does tropical society want from the Taxonomist?. In: LaSalle, J., & I. D. Gauld (Eds.). Hymenoptera and Biodiversity: 295-307. The Natural History Museum. C.A.B. International, Wallingford.
- Janzen, D. H. & W. Hallwachs, (1994). All Taxa Biodiversity Inventory (ATBI) of terrestrial systems. A generic protocol for preparing wildland biodiversity for non damaging use. Report of National Science Foundation, Workshop, 16-18 April 1993, Philadelphia, Pensylvania. 132 págs.
- Janzen, D. H. & Pond, C.M. (1975). A comparison, by sweep sampling, of arthropod fauna of secondary vegetation in Michigan, England and Costa Rica. Transations of the Royal Entomological Society of London, 127: 33-50.
- Kimsey, L. S. (1992). Biogeography of the Panamanian region, from an insect perspective. In: Quintero, D., & A. Aiello (Eds.). Insects of Panama and Mesoamerica (Selected Studies): 14-24. Oxford University Press.
- MacAarthur, R. H. & E. O. Wilson (1967). The Theory of Island Biogeography. Princeton University Press.
- Matthews, R. H. & J. R. Matthews (1970). The Malaise trap: its utility and potential for sampling insect populations. *The Michigan entomologist.*, 4 (4): 117-122.
- Morrison, G., M. Auerbach & E.D. Mc Coy (1978). Anomalous diversity of tropical parasitoids: A general phenomenon?. *American Naturalist*, 114: 303-307.
- Nieves-Aldrey, J. L. (1995). Abundancia, diversidad y dinámica temporal de cinípidos en dos hábitats del centro de España (Hymenoptera, Cynipidae). *In: Avances en Entomología Ibérica. Com. organiz. VI Congreso Ibérico de Entomología (eds). Madrid:* 113-136.
- Nieves-Aldrey, J. L. & C. Rey del Castillo (1991). Ensayo preliminar sobre la captura de insectos por medio de una trampa "Malaise" en la Sierra de Guadarrama (España) con especial referencia a los himenópteros (Insecta, Hymenoptera). *Ecología*, 5: 383-403.
- Nordlander, G. (1984). Vad vet vi om parasitiska Cynipoidea? (Hymenoptera). Entomologisk Tidskrift, 105(1-2):36-40.
- Noyes, J. S. (1982). Collecting and preserving chalcid wasps (Hymenoptera, Chalcidoidea). *Journal of Natural History*, 16: 315-334.
- **Noyes, J. S.** (1989). A study of five methods of sampling Hymenoptera (Insecta) in a tropical rain forest, with special reference to the Parasitica. *Journal of Nat. Hist.*, 23: 285-298.

- Owen, D. (1983). A hole in a tent or how to explore insect abundance and diversity. *Contrib. Amer. Ent. Inst.*, vol 20: 32-46.
- Quicke, D. L. J. & R.A. Kruft (1995). Latitudinal gradients in North American Braconid wasps species richness and biology. *Journal of Hymenoptera Research*, 4: 194-203.
- Quintero, D. & A. Aiello (Eds) (1990). Insects of Panama and Mesoamerica (Selectes Studies). Oxford University Press. 692 págs.
- Rathcke, B. J. & P.W. Price (1976). Anomalous diversity of tropical ichneumonid parasitoids: a predation hypothesis. *The American Naturalist*, 110: 889-893.
- Smith, D. R. (1995). The sawflies and woodswasps. *In:* Hanson, P.E. & I. D. Gauld (Eds.), *The Hymenoptera of Costa Rica*: 157-177. Oxford Science Publications.
- Stork, N. E. (1988). Insect diversity: facts, fiction and speculation. *Biological Journal of the Linnean Society* 35:321-337.
- Townes, A. (1972). A light-weigth Malaise trap. Ent. News., 83: 239-247.

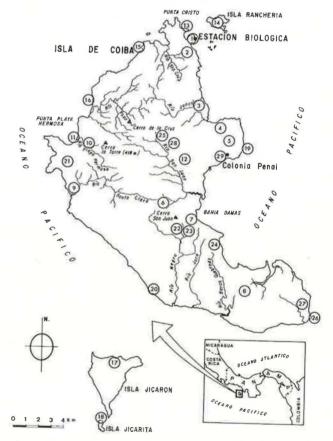


Fig. 1.- Mapa de La isla de Coiba e islas adyacentes mostrando la localización de los puntos de muestreo entomológico correspondientes a la lista de localidades del apéndice final de este trabajo.

Fig. 2.- Variación temporal de la frecuencia relativa de ordenes mayoritarios de insectos en las capturas de trampa Malaise (Estación Biológica, ubicación 2) en periodos de muestreo de 7-9 días en enero, febrero, marzo, mayo y junio de 1994.

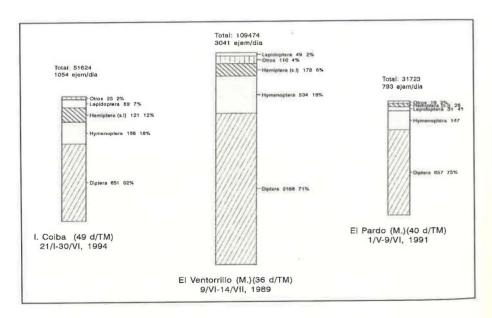


Fig. 3.- Gráfica proporcional comparativa de abundancia relativa de órdenes de insectos, medida por las capturas de trampas Malaise, en la isla de Coiba (Panamá) y dos localidades del centro de España (datos propios inéditos). Datos normalizados a número de ejemplares por día de trampa.

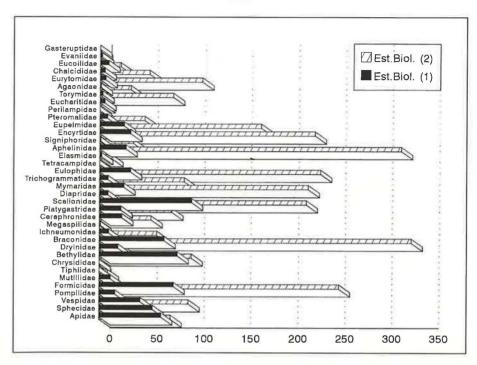


Fig. 4.- Abundancia relativa de familias de himenópteros (cifras absolutas) en las muestras de trampa Malaise de la estación Biológica de Coiba (2 ubicaciones distintas) en el periodo 19 a 29 de enero de 1994.

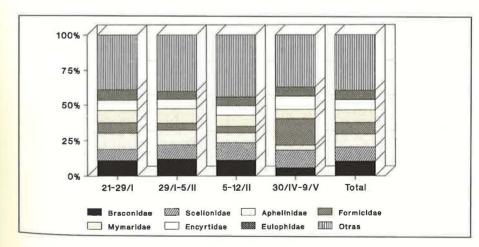


Fig. 5.- Variación temporal de la frecuencia relativa de las familias más abundantes de himenópteros en las capturas de trampa Malaise (Estación Biológica, ubicación 2) en periodos de muestreo de 7-9 días en enero, febrero y mayo de 1994.

Figura 6.- Gráfica proporcional comparativa de abundancia relativa de familias de himenópteros, medida por las capturas de trampas Malaise, en la isla de Coiba (Panamá) y dos localidades del centro de España (datos propios inéditos). Datos normalizados a número de ejemplares por día de trampa.



Fig. 7.- Variación semanal de abundancia, a través de las capturas de una trampa Malaise, a lo largo del ciclo anual de 1994, de las familias de Hymenoptera: Figitidae, Eucoilidae, Eucharitidae, Chalcididae, Pteromalidae y Symphyta en la isla de Coiba.

FECHA	LOCALIDADES	N° REF.	MÉTODO	COLECTOR	GRUPOS MUESTREADOS	N° EJEMP.
19-29/I/1994	Estación Biológica	1	Trampa Malaise (1)	J. L. Nieves	Insecta	9.567
19-29/I/1994	Estación Biológica	1	Trampa Malaise (2)	J. L. Nieves	Insecta	13.859
19-29/I/1994	Estación Biológica	1	Red barrido	J. L. Nieves	Col., Dip., Hom., Hym., Lep., Odo.	1271
20/I/1994	Playa Hermosa-Cerro de la Torre	10,11	Red barrido	J. L. Nieves	Col., Dip., Hom., Microhym., Lep.	230
21/I/1994	Cerro de la Equis	2	Red barrido	J. L. Nieves	Col., Dip., Hom., Hym., Lep., Odo.	23
21-23/I/1994	Cerro de la Equis	2	Bandejas amarillas	J. L. Nieves	Insecta	100
21-23/I/1994	Cerro de la Equis	2	Trampas Pitfall	J. L. Nieves	Insecta	150
21-29/J/1994	Estación Biológica	1	Bandejas amarillas	J. L. Nieves	Insecta	800
24/I/1994	Camp. Central-Quebrada Tusa	6	Red barrido	J. L. Nieves	Col., Hom., Hym., Lep., Odon.	71
25/I/1994	Campamento y Río Juncal	3	Red barrido	J. L. Nieves	Col., Dip., Hom., Hym., Lep., Odo.	324
26/1/1994	Río Playa Hermosa	10	Red barrido	J. L. Nieves	Hom., Hym., Lep., Odon.	18
26/I/1994	Río Santa Clara	9	Red barrido	J. L. Nieves	Lepidoptera	1
27/I/1994	Campamento Central	29	Red barrido	J. L. Nieves	Coleop., Dip., Homop., Hymenop.	96
27/I/1994	Las Salinas	7	Red barrido	J. L. Nieves	Col., Dip., Hom., Hym., Lep., Odo.	115
28/I/1994	Playa Blanca-Barco Quebrado	8	Red barrido	J. L. Nieves	Col., Dip., Hom., Hym., Lep., Odo.	620
29/I/1994-31/XII/94	Estación Biológica	1_	Trampa Malaise (2)	J. L. Nieves	Insecta	360.000
1/I-3/VIII/1995	Estación Biológica	11	T. Malaise (t. blanco)	J. L. Nieves	Insecta	220.000
25/VII/1995	Estación Biológica	1	Red barrido	Nieves y Fontal	Col. Heterop., Lepidop., Microhym.	17
26/VII/1995	Playa Hermosa	11	Trampa Malaise	Nieves y Fontal	Insecta	1.200
26/VII/1995	Playa Hermosa-Cerro de la Torre	10	Red barrido	Nieves y Fontal	Col., Dip., Lep. Microhym.	91
27/VII-2/VIII/1995	Estación Biológica	1	Trampa de luz	Nieves y Fontal	Insecta.	18.000
28/VII/1995	Campamento Central	29	Red barrido	Nieves y Fontal	Microhymenop.	23
28/VII/1995	Las Salinas	7	Red barrido, pinzas	Nieves y Fontal	Col., Lep., Microhym, Orthop., Arac	chnida 67
28/VII-3/VIII/1995	Las Salinas	7	Trampa Malaise	Nieves y Fontal	Insecta	10.500
29/VII/1995	Playa Blanca-Barco Quebrado	8	Red barrido, pinzas	Nieves y Fontal	Heterop., Lepidop., Hymenop., Orth	op. 51
29/VII-3/VIII/1995	Playa Blanca-Barco Quebrado	8	Trampa Malaise	Nieves y Fontal	Insecta	12.000
30/VII/1995	Camp. Juncal-Camp. Producción	3,4	Red barrido, pinzas	Nieves y Fontal	Heterop., Lepidop., Microhymenop.	37

31/VII/1995	Camp. Producción-Camp. Central	5	Red barrido, pinzas	Nieves y Fontal	Lepidop., Hymenop.	45
1/VIII/1995	Cerro de la Equis	2	Pinzas	Nieves y Fontal	Orthoptera	1
1-4/VIII/1995	Cerro de la Equis	2	Trampa Malaise	Nieves y Fontal	Insecta	500
3/VIII/1995	Playa Blanca-Barco Quebrado	8	Red barrido	Nieves y Fontal	Lepidop., Odonata	6
4/VIII/1995	Cerro de la Equis	2	Pinzas	Nieves y Fontal	Isoptera., Onicophora	5
30/III/1996	Playa Hermosa	11	Red barrido	F. M. Fontal	Hymenoptera	55
30/III/-4/IV1996	Playa Hermosa	11	16 Trampas emergencia	F. M. Fontal	Díptera e Hymenoptera	(Deteriorada)
30/III-4/IV/1996	Playa Hermosa	11	2 Trampas Malaise	F. M. Fontal	Insecta	13500
31/III/1996	Camp. Las Salinas-Camp. S. Juan	12	Red barrido	F. M. Fontal	Microhymenop.	5
1 y 30/IV/1996	Playa Blanca-Barco Quebrado	8	Red barrido, pinzas	Fontal & Sánchez	Coleop., Hymenop., Lep.y otros	146
2/IV/1996	Camp. Central-Camp. Las Salinas	12	Red barrido, pinzas	F. M. Fontal	Lepidop., Microhym., Odon, Ortho	op. 47
3/IV/1996	Cerro de la Equis	2	Pinzas	M. Sánchez	Coleoptera	1
6/IV/1996	Playa Machete	13	Red barrido, pinzas	Fontal & Sánchez	Coleop., Heterop., Hymenop.,	14
7/IV/1996	Isla Ranchería	14	Red barrido	F. M. Fontal	Lepidop., Microhymenop., Odona	ta 36
8-13/IV/1996	Río Escondido	15	Trampa Malaise	F. M. Fontal	Insecta	5000
8/IV/1996	Playa Brava	16	Red barrido	F. M. Fontal	Hymenoptera	1
8-13/IV/1996	Playa Brava	16	Trampa Malaise	F. M. Fontal	Insecta	8500
9/IV/1996	Playa Machete	13	12 trampa emergencia	a F. M. Fontal	Díp, Hymenop.	(Deteriorada)
10/IV/1996	Estación Biológica-Playa Machete	1,13	Red barrido	F. M. Fontal	Lepidop., Microhymenop.	40
11/IV/1996	Campamento Juncal	3	Red barrido	F. M. Fontal	Lepidop., Microhymenop.	95
13/IV/1996	Estación Biológica	1	Trampa de luz	M. Sánchez	Insecta	2000
13/IV/1996	Río Escondido y Playa Brava	15,16	Red barrido	Fontal & Sánchez	Coleop., Microhymenop.	24
14/IV/1996	Islas Afuerita, Brincanco		Red barrido	F. M. Fontal	Microhymenop.	31
14/IV/1996	Islas Canal afuera y Uva		Red barrido	F. M. Fontal	Microhymenop.	50
15-20/IV/1996	Isla Jicarita	18	Trampa Malaise	F. M. Fontal	Insecta	2500
15-20/IV/1996	Isla Jicaron	17	Trampa Malaise	F. M. Fontal	Insecta	3000
16-IV/1996	Punta Damas	19	Red barrido	F. M. Fontal	Microhymenop.	68
17/IV/1996	Cerro de la Equis	2	Red barrido	F. M. Fontal	Microhymenop.	7

18/IV/1996	Playa Machete	13	Red barrido	F. M. Fontal	Microhymenop.	5
19, 21 y 29/IV/1996;	2/V Estación Biológica	1	Red barrido	F. M. Fontal	Hymenoptera, Coleop.	125
19/IV/1996	Campamento La Producción	4	Red barrido	F. M. Fontal	F. M. Fontal Microhymenop.	
20/IV/1996	Isla Jicarita	18	Red barrido	F. M. Fontal	Microhymenop.	6
20/IV/1996	Isla Jicaron	17	Red barrido	F. M. Fontal	Microhymenop.	- 8
22/II/1996	Río Manila	20	Red barrido	F. M. Fontal	Lepidop., Microhymenop.	24
22-27/IV/1996	Río Manila	20	Trampa Malaise	F. M. Fontal	Insecta	3500
22/IV/1996	Río Santa Clara	9	Red barrido	F. M. Fontal	Microhymenop.	29
22-27/IV/1996	Río Santa Clara	9	Trampa Malaise	F. M. Fontal	Insecta	3500
23/IV/1996	Estación Biológica	1	Trampa picudo	M. Sánchez	Coleoptera	10
24/IV/1996	Playa Hermosa-Santa Clara	21	Red barrido, pinzas	Fontal & Sánchez	Coleop., Homop.	2
25/IV/1996	Camp. Las Salinas-Río Negro	23	Red barrido	Fontal & Sánchez	Coleop., Lepidop., Microhym., Odor	n. 108
26/IV/1996	Campamento María	24	Red barrido	F. M. Fontal	Lepidop., Microhymenop., Odonata	44
26/IV/1996	Punta Damas	19	Red barrido	F. M. Fontal	Microhymenop.	19
27-28/IV/1996	Río Manila	20	Red barrido	F. M. Fontal	Microhymenop,	1
27-28/IV/1996	Río Santa Clara	9	Trampa Malaise	F. M. Fontal	Insecta	500
29/TV/1996	Campamento Libertad	25	Red barrido, pinzas	F. M. Fontal	Lepidop., Microhymenop., Odonata	30
29/IV-4/V/1996	Campamento Libertad	25	2 Trampa Malaise	F. M. Fontal	Insecta	12000
30/IV-1/V/1996	Campamento La Galera	28	Pinzas	M. Sánchez	Coleoptera	1
3/V/1996	Punta Anegada	26	Red barrido	F. M. Fontal	Lepidop., Microhymenop.	1
3/V/1996	Río Amarillo	27	Red barrido	F. M. Fontal	Microhymenop.	10
4/V/1996	Camp. La Galera-Camp. Libertad	28,25	Red barrido	F. M. Fontal	Lepidoptera	10
					ESTIMACION TOTAL	700.000 (+)

Tabla I.- Relación cronológica de muestreos realizados en la Isla de Coiba por el equipo de Entomología con indicación del método, colector, grupos muestreados y estimación de número de ejemplares colectado. (Las estimas de capturas de trampa Malaise son solo aproximativas y pueden estar probablemente sujetas a un margen alto de error).

352

	LOCALIDAD	UTM	ALT(m)	HÁBITAT
i	Isla Coiba. Estación Biológica	17NMU196429	40	Bosque secundario y vegetación degradada
2	Isla Coiba. Cerro de la Equis	17NMU1841 100-200 Bosque		Bosque primario
3	Isla Coiba. Campamento Juncal	17NMU197367	7NMU197367 0 Vegetación degrada campamento.	
4	Isla Coiba. Campamento La Producción	17NMU2233	20	Bosque secundario
5	Isla Coiba.	17NMU2331	60	Bosque secundario alrededor de la
	La Producción-Central	111010101		pista. Zona de claros con pastoreo
				de ganado vacuno
6	Isla Coiba, La Quebrada Tusa	17NMU1524	100-200	Bosque primario
7	Isla Coiba, Campamento	17NMU1922	80-100	Bosque primario
	Las Salinas-Fuentes Termales			al borde del camino
				de las fuentes termales.
				Bosque secundario en
				las fuentes termales
3	Isla Coiba.	17NMU2615	0	Bosque primario rodeando
	Campamento Playa Blanca			sendero.
	Campamento Barco Quebrado			Claros con bosque secundario.
)	Isla Coiba, Río Santa Clara	17NMU0425	0	Bosque primario alrededor del río
10	Isla Coiba	17NMU0731	0-400	Bosque primario
	Playa Hermosa		265-00-0	* *
	Cerro de la Torre			
11	Isla Coiba. Camp. Playa Hermosa	17NMNO532	0	Bosque primario.
	y Río Playa Hermosa			Bordes de una pista de aterrizaje.
12	Isla Coiba.	17NMU1826	0	Bosque secundario y vegetación
	Central-Salinas			degradada en general
	(Diferentes campamentos:			
	Hato, Guanabanal, Catival,			
	San Juan, San Isidro)			
3	Isla Coiba. Playa Machete	17NMU1843	0	Bosque primario
	(Desde la Estación Biológica			
	hasta playa Machete por la			
	llamada Senda de Alex)			
4	Isla Coiba.	17NMU2244	0-100	Bosque primario.
	Ranchería (Desde la Playa			Bosque secundario y vegetación
	hasta la casa de Mani por			costera.
	el camino. Pista de aterrizaje)			
5	Isla Coiba. Río Escondido	17NMU1341	0-10	Bosque primario alrededor del río.
6	Isla Coiba. Playa Brava	17NMU0735	0-10	Bosque primario y vegetación
	190			herbácea en la costa
7	Isla Jicarón	17NMJ1205	0	Bosque primario
8	Isla Jicarita	17NMH1198	0	Bosque primario
9	Isla Coiba, Punta Damas	17NMU2530	0	Bosque secundario.y claros.
		*		Vegetación costera.
20	Isla Coiba. Manila	17NMU1413	0	Bosque primario alrededor
				del río. Vegetación costera.
21	Isla Coiba.	17NMU0328	100	Bosque primario
	Playa Hermosa-Santa Clara			
22	Isla Coiba, Río Negro	17NMU1720	100	Bosque primario
23	Isla Coiba. Salinas-Río Negro	17NMU1820	200	Bosque primario
24	Isla Coiba, María	17NMU2219	0-10	Bosque secundario.
				Vegetación costera.
	Isla Coiba, Libertad	17NMU1730	200	Bosque primario alrededor del río.
25				Claros alrededor del
25				Claros alrededor del
2.5				campamento.
2.5	Isla Coiba, Punta Anegada	17NMU3410	0	

ABUNDANCIA Y DINÁMICA DE INSECTOS

353

Isla Coiba. Río Amarillo	17NMU3211	0-10	Bosque secundario alrededor del antiguo campamento. Vegetación costera.
Isla Coiba. La Galera-Libertad	17NMU1728	100	Antiguos arrozales. Platanales. Limoneros y naranjos.
Isla Coiba. Campamento Central	17NMU2329	0	Antiguos cultivos y vegetación degradada.
	Isla Coiba. La Galera-Libertad Isla Coiba.	Isla Coiba. La Galera-Libertad 17NMU1728 Isla Coiba. 17NMU2329	Isla Coiba. La Galera-Libertad 17NMU1728 100 Isla Coiba. 17NMU2329 0

Tabla II.- Relación de localidades muestreadas en el Parque Nacional de la Isla de Coiba, incluyendo sus coordenadas UTM, altitud y las características del hábitat. Los números corresponden a los representados en el mapa de la Fig. 1.

OBSERVACIÓN: Otras tres localidades del parque han sido muestreadas, aunque no se las ha asignado un número por no quedar representadas en el mapa general que ha sido usado. Estas tres localidades son:

Isla Brincanco: Bosque primario. Isla Uva: Bosque primario. Isla Afuerita: Bosque primario

Insecta			Perio	odos de mue	streo		
ordenes	19	19-21	21-23	23-25	25-27	27-29	TOTAL
APTERIGOTA		-	17	10	27	9	63
ODONATA		-					0
EPHEMEROPTERA	(2)		120	20	-		0
PLECOPTERA	/E	20	130	-		100	0
ORTHOPTERA	(e)	1	(4)	2	145		3
DICTYOPTERA	-	1	1				2
ISOPTERA			(#0)		100		0
DERMAPTERA	1/2		120	20	140		0
PHASMIDA				-	1195		0
EMBIOPTERA	lies:		(40)		(e)		0
PSOCOPTERA	-	4	7	2	7		20
MALLOPHAGA			15.			•	0
ANOPLURA			(91)	-		(96)	0
SIPHONAPTERA		120	-		=	-	0
THYSANOPTERA	2	-	2		2	2	8
HOMOPTERA	21	152	85	82	86	84	510
HETEROPTERA	2	9	-	13	13		37
DIPTERA	188	1356	1226	1495	1432	1520	7217
TRICHOPTERA	-	4	3	5	1	~	13
LEPIDOPTERA	6	63	39	77	90	88	363
MECOPTERA		-	-	-	-		0
NEUROPTERA	-	1	2	11		3	6
COLEOPTERA	15	27	27	19	35	9	132
HYMENOPTERA	89	271	202	245	225	161	1193
TOTALES	323	1889	1611	1950	1918	1876	9567

Tabla III.- Resultados numéricos de ordenes de insectos (número de ejemplo colectados en periodos de 48 horas) correspondientes a la trampa Malaise nº 1 en la estación Biológica de Coiba, en el periodo inicial de muestreo de 10 dias en enero de 1994.

Insecta			Perio	odos de mue	streo		
ordenes	19	19-21	21-23	23-25	25-27	27-29	TOTAL
APTERIGOTA	1	3	2	3		*	9
ODONATA	-	-	447	2	12	-	0
EPHEMEROPTERA	-		17.1	-			0
PLECOPTERA							0
ORTHOPTERA	1	3	-	1	1	-	6
DICTYOPTERA	-			-			0
ISOPTERA				100			0
DERMAPTERA	-	-	-		2	120	0
PHASMIDA	-		-	100			0
EMBIOPTERA		200		-			0
PSOCOPTERA	6	5	12	4	2	4	33
MALLOPHAGA		-	-	(- -			0
ANOPLURA	-		-	-	320		0
SIPHONAPTERA	-		· ·	=	-2	200	0
THYSANOPTERA	7	14	8	8	10	1	48
HOMOPTERA	25	209	261	276	306	218	1295
HETEROPTERA	-	28	18	-	13	51	110
DIPTERA	524	1643	1221	1449	1571	1444	7852
TRICHOPTERA	-	1				-	1
LEPIDOPTERA	12	134	141	230	261	205	983
MECOPTERA	~	-	-			-	0
NEUROPTERA	-	1	-	1	1	e e	3
COLEOPTERA	13	45	50	53	28	39	228
STRESIPTERA	1		2				3
HYMENOPTERA	379	522	598	583	806	400	3288
TOTALES	969	2608	2313	2608	2999	2362	13859

Tabla IV.- Resultados numéricos de ordenes de insectos (número de ejemplares colectados en periodos de 48 horas) correspondientes a la trampa Malaise nº2 en la Estación Biológica de Coiba, en el periodo inicial de muestreo de 10 días de enero de 1994.

Insecta			Peri	odos de mues	treo		
ordenes	21-29/I	29/I-5/II	5-12/II	22-31/III	30/IV-9/V	21-30/VI	TOTAL
APTERIGOTA	5	21	3	19	24	3	75
ODONATA	~	2	-	12	-	2	-
EPHEMEROPTERA	-			-	=		-
PLECOPTERA	-	(F)	-		-	(*0)	-
ORTHOPTERA	2	5	1	4	6	2	20
DICTYOPTERA	-	1	2	-	1	-	4
ISOPTERA		-			14		14
DERMAPTERA	-	-	940	-	-	-	-
PHASMIDA	•				*	-	-
EMBIOPTERA		ii e			_		~
PSOCOPTERA		28	7	37	44	-	116
MALLOPHAGA		15		-	·	-	-
ANOPLURA		-		-		5 *	-
SIPHONAPTERA	8,	-	-	-			-
THYSANOPTERA	27	68	26	10	6	8	145
HOMOPTERA	1061	1277	316	782	1547	823	5806
HETEROPTERA	82	34	8	7	2	11	144
DIPTERA	5685	5895	1963	3300	4218	10864	31925
TRICHOPTERA	-	2		3	1		6
LEPIDOPTERA	837	799	252	655	263	600	3406
MECOPTERA		-	100	-	-		. *:
NEUROPTERA	2	14	3	3		3	25
COLEOPTERA	170	146	52	132	192	110	802
STRESIPTERA	2	1	473	2	1		6
HYMENOPTERA	2387	2302	717	1382	1092	1227	9107
TOTALES	10282	10594	3350	6336	7411	13651	51624

Tabla V.- Resultados numéricos de ordenes de insectos (número de ejmplares colectados en periodos de 7-9 días) correspondientes a la trampa Malaise nº 2 en la Estación Biológica de Coiba, en 5 periodos adicionales de muestreo de febrero (2, marzo, mayo y junio de 1994).

Localidad	Habitat	Feriodo de muestreo	Dias de	n de	n_/dia	Fuente
			trampa	ejemplares		
PANAMA					No.	
LCoiba (E.B)(2)	Bosque tropical secundario	21/I-30/VI,1994	50	51624	1032	presente estudio
ESPAÑA						
El Ventorrillo	Linde pradera-bosque mixto	20-V/6-X, 1988	137	49496	361	Nieves&Rey, 1991
El Ventorrillo	Linde pradera-bosque mixto	9/VI-11/XI,1989	155	405670	2617	Nieves&Rey, inéd.
El Ventorrillo (1)	Linde pradera-bosque mixto	9-17/VII, 1991	∞	48233	6029	Nieves&Rey, inéd.
El Ventorrillo (2)	Linde pradera-bosque mixto	9-13/VП, 1991	4	36966	9241	Nieves&Rey, inéd.
El Pardo	Encinar de llanura	8/IV-30/XI,1991	236	159202	674	Nieves&Rey, inéd.
UGANDA						
Kampala	Jardin suburbano	VII, 1964/VI, 1965	365	113538	311	Owen, 1983
SULAWESI						
Toraut	Bosque Iluvioso tropical		2674	429750	161	Hammond, 1990
EEUU						
New-York	Bosque mixto	2-VV31-VIII, 1967	155	40348	259	Mathews & Mathews, 1970

357

Hymenoptera	Periodos de muestreo								
Familias	19	19-21	21-23	23-25	25-27	27-29	TOTAL		
SHYMPHYTA	(-)		-			-	0		
PARASITICA	22	(12)	12		8		0		
Trigonalydae	-		~	-		-	0		
Stephanidae		-	-	-	-	-	0		
Aulacidae	-	-		-		-	0		
Gasteruptiidae				-		-	0		
Evaniidae	1		I			-	2		
Ibaliidae			2	2		-	0		
Figitidae			-	2	-	-	0		
Eucoilidae	-	3		4		2	9		
Cynipidae	-	-	- ~	_		-	0		
Charipidae			-	-		-	0		
Leucospidae			-	-		_	0		
Chalcididae			1	3		1	5		
Eurytomidae	1			1		4	6		
Agaonidae			1	-			1		
Torymidae	1.5	4	2	1	-		3		
Ormyridae			-	-	-		0		
Eucharitidae		-	1	4		-	5		
Perilampidae		-	-		-	-	0		
Pteromalidae	1	-	1	4		2	8		
Eupelmidae	5		14	1	-	6	26		
Encyrtidae	5		12	9		7	33		
Signiphoridae	-	-	1	_	2	-	1		
Aphelinidae	6	(2)	7	2	4	9	28		
Elasmidae	-		-	2	-	-	2		
Tetracampidae		-	_	-	-		0		
Eulophidae	2	2	13		1	15	33		
Trichogrammatidae	3	-	2	-	1	3	9		
Mymaridae	5		10	-	2	9	26		
Mymarommatidae	3	-	-		-	8	0		
Heloridae	-	2	_	-	_	-	0		
Proctotrupidae	-	947	_	2	_		Õ		
Diapriidae	1			3	3	2	9		
Scelionidae	8	21	13	14	23	19	98		
	4	4	5	4	3	3	23		
Platygasteridae Ceraphronidae	4	3	5	9	2	1	24		
	4	-	-	-	-	î	1		
Megaspilidae Ichneumonidae	1	2	3	2	1	i	10		
Braconidae	2	22	11	15	12	7	69		
ACULEATA	2	-	-	-	-		0		
	-	2	6	12	-	-	20		
Dryinidae	-	_	-	12			0		
Embolemidae	1	25	6	14	21	16	83		
Bethylidae	1	23		14	-	-	0		
Chrysididae	-		*	-		-	0		
Tiphiidae	-	-				1	12		
Mutillidae	•	2	5	1	3		0		
Sapygidae	-	-	-	-	=:	-	0		
Scoliidae	-	10	17	-	17	-	79		
Formicidae	8	12	17	20	17	5			
Pompilidae	2	2	1	6	4	2	17		
Eumenidae	-	-	7	-	*	-	0		
Vespidae	6	4	2	7	19	6	44		
Sphecidae	11	7	15	16	4	4	57		
Apidae	10	12	10	15	13	6	66		
TOTALES	87	123	165	169	133	132	809		

Tabla VII.- Resultados numéricos de familias de himenópteros (nº de ejemplares colectados en periodos de 48 horas) correspondientes a la trampa Malaise nº 1 en la Estación Biológica de Coiba, en el periodo inicial de muestro de 10 días en enero de 1994.

358

Hymenoptera				riodos de mues			
Familias	19	19-21	21-23	23-25	25-27	27-29	TOTAL
SHYMPHYTA			-	*:	**	-/	
PARASITICA			-				0
Trigonalydae				2	*		0
Stephanidae	-	060	-	2	2		0
Aulacidae	-			-			0
Gasteruptiidae	2	-	1		2		1
Evaniidae		27	1	1	1	1/4	3
Ibaliidae	-		-	-		-	0
Figitidae		2		-		-	0
Eucoilidae	3	5	3	4	6	1	22
Cynipidae				+2	-		0
Charipidae							0
Leucospidae	-		0.00			-	0
Chalcididae	3	9	17	10	8	6	53
Eurytomidae	13	27	18	13	16	22	109
Agaonidae	1	3	3	13	9	4	33
Torymidae	11	23	6	15	12	11	78
Ormyridae	-	- 23	0	13	12	- 11	0
Eucharitidae	2	-	-		-	2	4
Perilampidae	-	1			1	-	2
Pteromalidae	8	5	13	10	9	3	48
	28	22	32	41	31	18	172
Eupelmidae		20					
Encyrtidae	57		36	66 4	27	23	229
Signiphoridae	5	2	17		4	4	36
Aphelinidae	37	41	78	96	43	26	321
Elasmidae	4	2	3	3	1	*	13
Tetracampidae	1	1	1	-	-	•	3
Eulophidae	23	39	32	57	46	28	225
Trichogrammatidae	5	17	27	14	20	7	90
Mymaridae	24	21	52	78	26	21	222
Mymarommatidae	-	-		-	-	-	0
Heloridae	-	-	-		-	-	0
Proctotrupidae	-	-		-	-	-	0
Diapriidae	=	3	1	5	4	2	15
Scelionidae	19	36	34	30	59	42	220
Platygasteridae	21	12	9	12	4	19	77
Ceraphronidae	16	9	10	10	4	6	55
Megaspilidae	-	-	+:			*	0
Ichneumonidae	7	5	14	16	11	8	61
Braconidae	40	55	62	52	61	62	332
ACULEATA			**	(=)	(/E)	-	0
Dryinidae	4	2	5	4	5	6	26
Embolemidae			-	*1	-	9-	0
Bethylidae	6	14	14	1	35	28	98
Chrysididae	1			-	-	~	1
liphiidae	1	2	2	1	2	1	9
Mutillidae	1	-			2	7.	3
Sapygidae	-	12		-	-		0
Scoliidae		-	-	-	-		0
Formicidae	16	78	54	42	42	23	255
Pompilidae	1	3	2	6	2	3	17
Eumenidae	-	-	-	-	-	-	0
Vespidae	21	15	19	16	16	8	95
Sphecidae	4	5	3	2	7	2	23
Apidae	17	20	8	10	10	11	76
TOTALES	400	497	577	632	524	397	3027
TOTALES	400	47/	3//	032	324	391	3027

Tabla VIII.- Resultados numéricos de familias de himenópteros (nº de ejemplares colectados en periodos de 48 horas) correspondientes a la trampa Malaise nº 2 en la Estación Biológica de Coiba, en el periodo inicial de muestro de 10 días en enero de 1994.

ABUNDANCIA Y DINÁMICA DE INSECTOS

359

Hymenoptera			eriodos de muestro		
Familias	21-29/1	29/I-5/II	5-12/II	30/IV-9/V	TOTAL
SHYMPHYTA	*	-			0
PARASITICA			(F:		0
Trigonalydae	· ·		1.6	*	0
Stephanidae			-	*	0
Aulacidae			4		0
Gasteruptiidae	. 1		2		3
Evaniidae	3	1	-	2	6
	-	· 4		-	0
Ibaliidae		1	-		1
Figitidae	1.4	10	4	19	47
Eucoilidae	14		<u>.</u>	15	0
Cynipidae	*	-			0
Charipidae	-	-			
Leucospidae		< e:	S .	26	0
Chalcididae	41	38	14	26	119
Eurytomidae	69	67	20	4	160
Agaonidae	29	12	1	1	43
Torymidae	44	48	20	6	118
Ormyridae	*	-	C.	.5	0
Eucharitidae	2	14	72	3	19
Perilampidae	1	2	1	2	6
Pteromalidae	35	29	13	30	107
	122	108	47	38	315
Eupelmidae		138	45	103	438
Encyrtidae	152		3	7	47
Signiphoridae	29	8		40	546
Aphelinidae	243	216	47		29
Elasmidae	7	12	1	9	
Tetracampidae	1	1	•	1992	2
Eulophidae	163	120	42	73	398
Trichogrammatidae	68	32	11	35	146
Mymaridae	177	202	52	71	502
Mymarommatidae				-	0
Heloridae				*	0
Proctotrupidae		- 6			0
Diapriidae	12	18	2	2	34
Scelionidae	165	206	84	135	590
	44	63	32	30	169
Platygasteridae	30	33	17	14	94
Ceraphronidae			-		0
Megaspilidae	40	42	17	23	131
Ichneumonidae	49			66	628
Braconidae	237	249	76		0
ACULEATA	*	*	3	10	
Dryinidae	20	18	4	12	54
Embolemidae		5	-	390	5
Bethylidae	78	117	27	63	285
Chrysididae			25.		0
Tiphiidae	6	7	1	3	17
Mutillidae	2	2	1	1	6
Sapygidae			380	-	0
Scoliidae			-		0
Formicidae	161	101	32	209	503
		13	6	6	38
Pompilidae	13		-	2	2
Eumenidae	-	-			182
Vespidae	59	67	33	23	
Sphecidae	14	13	11	17	55
Apidae	39	49	15	37	140
TOTALES	2130	2062	681	1112	5985

Tabla IX.- Resultados numéricos de familias de heminópteros (número de ejemplares colectados en periodos de 7-9 días) correspondientes a la trampa Malise nº 2 en la Estación Biológica de Coiba, en periodos adicionales de muestreo de febrero (2), y mayo de 1994.

Localidad	Habitat	Periodo de muestreo	Dias de	n' de	n'/dia	Fuente
			trampa	ejemplares		
PANAMA	3 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
I.Coiba (E.B)(2)	Bosque tropical secundario	21/I-9/V,1994	32	5885	187	Presente estudio
ESPAÑA						
El Ventorrillo	Linde pradera-bosque mixto	20-V/6-X, 1988	137	8800	63	Nieves & Rey, 1991
El Ventorrillo	Linde pradera-bosque mixto	VI, 1989/VI, 1990	241	60716	252	Nieves & Rey, inédito
El Ventorrillo (1)	Linde pradera-bosque mixto	9-17/VII, 1991	00	7327	916	Nieves & Rey, inédito
El Ventorrillo (2)	Linde pradera-bosque mixto	9-13/VII, 1991	4	2850	712	Nieves & Rey, inédito
El Pardo	Encinar de llanura	8-IV/31-VIII, 1991	146	26961	185	Nieves & Rey, inédito
S. Pedro de Bedoya	Bosque mixto entre cultivos	17-30/VII, 1990	13	3428	264	Nieves & Rey, inédito
CANADA						
Ontario	Dunas con bosque mixto	VI, 1986	13	840	65	Darling & Packer, 1988
INGLATERRA						
Cheshire	Bosque mixto maduro	23-VII/5-VIII, 1986	13	1173	06	Askew, 1990
FRANCIA						
Dordoña	Seto antiguo	8-29/VII, 1985	20	1152	58	Askew, 1990
SULAWESI						
Torant	Bosque Iluvioso tropical	21-26/II. 1985	5	604	121	Askew, 1990

Tabla X.- Lista de datos de abundacia de Hymenoptera, medida con trampa Malaise. Datos propios, Coiba (Panamá) y España y comparación de algunos disponibles de otras localidades y países de diferentes regiones zoogeográficas.

Periodos	Eucoilidae	Figitidae	Eucharitidae	Chalcididae	Pteromalidae	Symphyta	Totales
Enero	14	1 igiddae	2	41	35		92
21-29/I	14		2	41	35	*	92
Febrero	18	1	17	86	72		194
29/I-5/II	10	1	14	38	29	-	92
5-12/II	4		-	14	13		31
12-19/II	1	25	2	14	14		31
19/28/II	3		1	20	16		40
Marzo	13	0	2	76	74		165
28/II-8/III	1		2	15	16		34
8-15/III	4	21		25	23	19	52
15-22/III	3		7.2	14	17	54	34
22-31/III	5		92	22	18		45
Abril	50	0	4	85	71	-	210
31/III-9/IV	8		1	30	29	-	68
9-16/IV	13			11	10	-	34
16-23/IV	10	-	1	19	14		44
23-30/IV	19		2	25	18		64
Mayo	122	6	17	88	119	34	386
30/IV-9/V	19		3	26	30	-	78
9-16/V	22	2	3	20	25	5	77
16-23/V	52	2	3	16	32	19	124
23/31/V	29	2	8	26	32	10	107
Junio	118	15	16	89	108	36	382
31/V-7/VI	25	2	4	26	47	4	108
7-14/VI	32	6	4	28	20	7	97
14-21/VI	32	6	4	17	17	12	88
21-30/VI	29	1	4	18	24	13	89
Julio	54	21	20	53	75	13	236
30/VI-9/VII	6	8	1	6	25	6	52
9-16/VII	20	9	8	19	23	1	80
16-23/VII	10	1	2	13	7	5	38
23/31/VII	18	3	9	15	20	1	66
Agosto	105	12	33	89	57	0	296
31/VII-9/VIII	14	4	9	17	18	*	62
9-16/VIII	32	-	6	42	13		93
16-23/VIII	31	5	13	16	12		77
23-31/VIII	28	3	5	14	14	(*)	64
Septiembre	67	0	6	62	34		169
31/VIII-8/IX	22	₩.	12	41	8		71
8-15/IX	20	-	3	11	10		44
15-22/IX	12	1	1	5	5	-	23
22-30/IX	13	3	2	5	11		31
Octubre	61	1	13	41	20		136
30/IX-9/X	21	1	6	10	7		45
9-16/X	21		3	*12	3		39
16-23/X	17		1	9	3		30
23-30/X	2		3	10	7	- 0	22
Noviembre	80	0	6	31	27	2	144
30/X-9/XI	18		3	7	8		36
9-16/XI	34		2	13	10		59
16-23/XI	27	-	1	11	9		48
23-30/XI	1		*				1
Diclembre	22	0	10	36	31		99
30/XI-9/XII	8		1	4	5		18
9-16/XII	1		1	9	2	(5)	13
16-23/XII	11		6	16	11	1.5	44
23-31/XII	2	2	2	7	13	1.0	24
Totales	724	56	146	777	723	83	2509

Tabla XI.- Resultados numéricos (número de ejemplares colectados en periodos de 7-9 días) de familias seleccionadas de himenópteros: Eucoolidae y Figitidae (Cynipoidea); Eucharitidae, Chalcididae y Pteromalidae (Chalcidoidae) y grupo de los Symphyta, correspondientes a la trampa Malaise nº 2 en la Estación Biológica de Coiba, en un ciclo.