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Abstract 10 

 11 

Reduced bioavailability to soil microorganisms is probably the most limiting factor in the 12 

bioremediation of polycyclic aromatic hydrocarbons PAH-polluted soils. We used sunflowers 13 

planted in pots containing soil to determine the influence of the rhizosphere on the ability of soil 14 

microbiota to reduce PAH levels. The concentration of total PAHs decreased by 93% in 90 days 15 

when the contaminated soil was cultivated with sunflowers, representing an improvement of 16% 16 

compared to contaminated soil without plants. This greater extent of PAH degradation was 17 

consistent with the positive effect of the rhizosphere in selectively stimulating the growth of 18 

PAH-degrading populations. Molecular analysis revealed that the increase in the number of 19 

degraders was accompanied by a dramatic shift in the structure of the bacterial soil community 20 

favoring groups with a well-known PAH-degrading capacity, such as Sphingomonas (α-21 

Proteobacteria), Commamonas and Oxalobacteria (β-Proteobacteria), and Xhanthomonas (γ-22 

Proteobacteria). Other groups that were promoted for which degrading activity has not been 23 

reported included Methylophyllus (β-Proteobacteria) and the recently described phyla 24 

Acidobacteria and Gemmatimonadetes. We also conducted mineralization experiments on 25 

creosote-polluted soil in the presence and absence of sunflower root exudates to advance our 26 

understanding of the ability of these exudates to serve as bio-stimulants in the degradation of 27 

PAHs. By conducting greenhouse and mineralization experiments, we separated the chemical 28 

impact of the root exudates from any root surface phenomena, as sorption of contaminants to the 29 

roots, indicating that sunflower root exudates have the potential to increase the degradation of 30 

xenobiotics due to its influence on the soil microorganisms, where sunflower root exudates act 31 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36122429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 2 

improving the availability of the contaminant to be degraded. We characterized the sunflower 32 

exudates in vitro to determine the total organic carbon (TOC) and its chemical composition. Our 33 

results indicate that the rhizosphere promotes the degradation of PAHs by increasing the 34 

biodegradation of the pollutants and the number and diversity of PAH degraders. We propose that 35 

the biostimulation exerted by the plants is based on the chemical composition of the exudates. 36 

 37 
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1. Introduction 43 

Bioremediation techniques are routinely applied to recover soils polluted by polycyclic aromatic 44 

hydrocarbons (PAHs). These techniques are based on the well-established capability of soil 45 

microorganisms to degrade PAHs through growth-linked or co-metabolic reactions (Kanaly and 46 

Harayama, 2010). However, a major limiting factor in the bioremediation of PAH-polluted soils 47 

is the reduced bioaccessibility that is often exhibited by these pollutants, which results in 48 

difficulty in predicting whether an acceptable end-point decontamination level can be achieved. 49 

Bioacessibility can be defined as the fraction of a pollutant that is potentially biodegradable over 50 

time in the absence of limitations to biodegradation other than restricted phase exchanges. 51 

Microorganisms can potentially overcome bioaccessibility restrictions through a variety of 52 

mechanisms, including biosurfactant production, attachment and chemotaxis (Tejeda-Agredano 53 

et al., 2011). Bioaccessibility can also be increased in the soil externally, for example, by adding 54 

surfactants (Bueno-Montes et al., 2011). 55 

Rhizoremediation, i.e., the use of ecosystem services provided by the plant rhizosphere to 56 

decontaminate polluted soils, has recently gained attention in relation to organic pollutants, such 57 

as PAHs. Translocation of dissolved contaminants in the rhizosphere and the microbial utilization 58 

of root exudates as co-substrates in the biodegradation of PAHs have been proposed as 59 

mechanisms through which plants contribute to the elimination of PAHs (Newman and Reynolds, 60 

2004). The sunflower (Helianthus annuus, L) has been used as a pilot system in 61 

phytoremediation assays for PAHs. The sunflower rhizosphere removes a greater quantity of 62 

fluorene, anthracene and pyrene from contaminated soil than the rhizospheres of other plant 63 

species, such as wheat, oat and maize and exhibits a better response to seed germination and root 64 

elongation in the presence of these PAHs (Maliszewska-Kordybach and Smreczak, 2000). Olson 65 

et al. (2007) reported the sunflower as the best plant among 11 dicotyledonous species to use in 66 

assays of PAH bioavailability. Further advantages of focusing on the sunflower as a model plant 67 

for use in PAH rhizoremediation studies are related to the importance of this species as an edible 68 

oil producer. The ability to investigate the root exudation process and the role of the exudates 69 

under natural conditions has been hampered by a number of significant quantification problems, 70 

due to interference by microbial metabolites and components of the soil (Grayston et al., 1996). 71 

These problems can be overcome through the development of appropriate in vitro techniques to 72 

obtain root exudates that allow analysis of the products secreted by the plant roots.  73 
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The research approach applied in the present study was to generate soils polluted with aged 74 

PAHs at concentrations that would be realistic for polluted soils that had undergone extensive 75 

bioremediation, and we used these samples to test the hypothesis that the germination and 76 

development of sunflower plants would enhance the bioaccessibility and biodegradation of PAHs 77 

in the soil. We used both culture-dependent and culture-independent (i.e., based on DNA) 78 

techniques to determine the effects of planting on the dissipation of the chemicals from the soil 79 

under greenhouse conditions and on the structure of the soil microbial communities. We also 80 

developed a method to produce sunflower root exudates, which were chemically characterized 81 

and tested for possible effects on biodegradation by soil microorganisms through a dual 82 

radiorespirometry/residue analysis method that allowed precise estimation of compound 83 

biodegradation. 84 

 85 

2. Materials and methods 86 

 87 

2.1. Soil  88 

Two soils were used in this study: a creosote-polluted clay soil and an agricultural soil. The 89 

polluted soil (Calcaric Fluvisol) constituted the source of aged contaminants as well as PAH-90 

degrading microorganisms for our greenhouse and laboratory experiments. This soil was 91 

provided by EMGRISA (Madrid, Spain) from a wood-treating facility in southern Spain that had 92 

a record of creosote pollution exceeding 100 years. The agricultural, non-polluted soil was a 93 

loamy sand soil from Coria del Río, Seville, Spain (Typic Xerochrepts). A PAH-containing soil 94 

mixture was obtained from these soils in two steps. First, the agricultural soil was mixed (67:33 95 

w/w) with washed sand (Aquarama), and subsequently autoclaved. Next, 6 Kg of this mixture 96 

(referred to as uncontaminated soil) was homogenized with polluted soil (1:1 w/w) in a cement 97 

mixer for seven days (9 hours per day), with regular changes in the direction of rotation. This 98 

homogenization period was necessary to allow reproducible results to be obtained. The mixture 99 

was then dried for 18 hours at 30°C, ground and sieved (2 mm mesh). The resulting material was 100 

used in all experiments as a source of polluted soil with the following composition: pH 8.1; 101 

15.9% CaCO3; 0.9 % total organic carbon (TOC); 0.055% organic nitrogen (Kjeldahl); 7 mg kg
−1
 102 

available phosphorus; 461 mg kg−1 potassium; particle size distribution 46.6% coarse-grained 103 

sand, 4.3% fine-grained sand, 15.8% silt, and 33.2% clay and 21.75 mgkg
−1
 of total PAHs (as the 104 
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sum of 6 PAHs: fluorene, phenanthrene, anthracene, fluoranthene, pyrene and chrysene; Table 1). 105 

The resulting profile of PAH concentrations was consistent with soils that have undergone 106 

extensive bioremediation (Bueno-Montes et al., 2011).  107 

 108 

2.2. Greenhouse experiments 109 

 110 

2.2.1. Experimental design 111 

For this study, we used sunflower (Helianthus annuus L. cv. PR 63A90) seeds from the 112 

University of California that were certified for agronomic crop production. The greenhouse 113 

experimental design consisted of 5 pots with 2 kg of soil per treatment. The treatments included 114 

uncontaminated soil planted with seeds (as a positive control for plant growth) and contaminated 115 

soil with or without seeds. Five seeds were used per planted pot. The experiment was carried out 116 

in a greenhouse at 23±1 ºC and 20% field capacity. After 45 and 90 days, soil samples were 117 

collected in each of three randomly chosen pots for each treatment for measurements of residual 118 

PAH contents and microbiological determinations. Soil samples (20 g) were carefully extracted 119 

from the rhizosphere zone with the aid of a glass tube (150x25 mm) used as a bore. Care was 120 

taken to avoid damaging the plants. Samples for the PAH analyses were stored at -20ºC, and 121 

samples for the microbiological analyses were stored at 4ºC. In both cases the samples were 122 

analyzed separately. At the end of the experimental period, the percentage of germination was 123 

evaluated for each treatment, and the fresh and dry weights of stems and roots were determined 124 

separately. Dried stems and roots were generated by incubating the separated plant materials in a 125 

desiccation oven (70 ºC) for 72 hours. 126 

 127 

2.2.2. PAH Analysis 128 

Triplicate soil samples (1 g of soil per sample) from the initial polluted soil (1:1 w/w) and 129 

from  the three pots with differet treatment at 45 days and 90 days after in the greenhouse 130 

experiment,  were dried completely using anhydrous sodium sulfate to grind the mixture in a 131 

mortar and pestle. Samples were extracted in a Soxhlet with 100 mL dichloromethane for 8 h. 132 

Once the extract was obtained, the organic solvent was evaporated in a vacuum to nearly 133 

complete dryness, and the residue was dissolved in 5 mL dichloromethane and cleaned by 134 

passing through a Sep-Pak Fluorisil cartridge. The purified extracts were evaporated with N2, and 135 
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the residues were dissolved in 2 mL of acetonitrile. Finally, the samples were filtered through a 136 

nylon syringe filter (0.45 µm, 13 mm Ø, Teknokroma, Barcelona, Spain). Quantification of PAHs 137 

was performed using a Waters HPLC system (2690 separations module, 474 scanning 138 

fluorescence detector, Nova-Pak C18 Waters PAH column, 5 µm particle size and 4.6 x 250 mm, 139 

1 mL min-1 flow and mobile phase with an acetonitrile-water gradient). The column was installed 140 

in a thermostatic oven maintained at 30ºC. 141 

 142 

2.2.3. Autochthonous microbiota 143 

2.2.3.1. Quantification of heterotrophic and hydrocarbon-degrading microbial populations 144 

Bacterial counts from triplicate soil samples were performed using the miniaturized most 145 

probable number (MPN) method in 96-well microtiter plates with 8 replicate wells per dilution 146 

(Wrenn and Venosa, 1996). Total heterotrophs were counted in diluted (1:10) Luria-Bertani 147 

medium; low molecular weight (LMW) PAH-degraders were counted in mineral medium (Grifoll 148 

et al., 1995) containing a mixture of phenanthrene (0.5 g L-1), fluorene, anthracene, and 149 

dibenzothiophene (each at a final concentration of 0.05 g L
-1
); and high molecular weight 150 

(HMW) PAH-degraders were counted in mineral medium containing pyrene at a final 151 

concentration of 0.5 g L
-1
. Hydrocarbon was added to the plates dissolved in pentane, and 152 

medium was added after solvent evaporation. MPN plates were incubated at room temperature 153 

(25ºC±2ºC) for 30 days. Positive wells were detected based on turbidity (heterotrophs) and 154 

observable coloration (brownish/yellow) for PAH degraders. 155 

2.2.3.2. DNA extraction and PCR amplification of eubacterial 16S rRNA genes  156 

Total DNA from soil and rhizosphere samples was extracted using a Power Soil DNA 157 

isolation kit (Mobio, Carlsbad, USA). Eubacterial 16S rRNA gene fragments were amplified 158 

from the extracted total DNA through PCR using pureTaq
TM

Ready-To-Go
TM

 PCR bead tubes 159 

(GE healthcare, United Kingdom) in a final volume of 25 µL containing 1 µl of DNA extract as 160 

the template and 25 pmol of each primer (Sigma-Aldrich, Steinheim, Germany). To obtain clone 161 

libraries, we used the primers 27f and 1492r (Weisburg et al., 1991), and for the denaturing 162 

gradient gel electrophoresis (DGGE) fingerprinting analysis, we used GC40-63f and 518r. After 163 

10 min of initial denaturation at 94°C, 30 cycles of amplification were carried out, each 164 

consisting of 30 sec of denaturation at 94°C, 30 sec of annealing at 56°C and 1 min (DGGE) or 2 165 
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min (clone libraries) of primer extension at 72°C followed by a final primer extension step of 10 166 

min at 72°C. All of the PCR amplifications were performed in an Eppendorf Mastercycler. 167 

 168 

2.2.3.3. DGGE analysis 169 

The 16S rRNA PCR amplification products were purified using the Wizard®SV Gel and 170 

PCR Clean-Up system (Promega, Madison, USA) and quantified in a NanoDrop® 171 

Spectrophotometer ND-1000 prior to DGGE analysis. Identical amounts of PCR products were 172 

loaded in 6% polyacrylamide gels with denaturing gradients ranging from 45% to 70% (100% 173 

denaturant contains 7 M urea and 40% formamide). Electrophoresis was performed at a constant 174 

voltage of 100 V for 16 h in 1x TAE buffer (40 mM Tris, 20 mM sodium acetate, 1 mM EDTA, 175 

pH 7.4) at 60°C in a DGGE-2001 System (CBS Scientific, Del Mar, CA, USA) machine. The 176 

gels were stained for 30 min with 1x SYBR Gold nucleic acid gel stain (Molecular Probes, 177 

Eugene, OR, USA) and photographed under UV light using a Bio-Rad molecular imager FX Pro 178 

Plus multi-imaging system (Bio-Rad Laboratories, Hercules, CA, USA) in the DNA stain gel 179 

mode for SYBRGold at medium sample intensity. DGGE bands were processed using Quantity-180 

one version 4.5.1 image analysis software (Bio-Rad Laboratories) and corrected manually. 181 

 182 

2.2.3.4. Construction, sequencing and phylogenetic analysis of 16S rRNA gene clone libraries. 183 

Amplified 16S rRNA gene fragments were purified as described above and were cloned using 184 

the pGEM®-T Easy Vector System (Promega, Madison, USA). Transformants were selected 185 

through PCR amplification using vector PCR primers. The PCR mixture contained 1.25 U of Taq 186 

DNA polymerase (Biotools B&M Labs, Madrid, Spain), 25 pmol of each primer (Sigma-Aldrich, 187 

Steinheim, Germany), 5 nmol of each dNTP (Fermentas, Hanover, MD) and 1x PCR buffer 188 

(Biotools B&M Labs) in a total volume of 25 µL. The obtained PCR products were purified, and 189 

inserts were sequenced using the ABI Prism Bigdye Terminator cycle-sequencing reaction kit 190 

(version 3.1) with the amplification primers 27f and 1492r and the internal primers 357f and 191 

1087r (Lane, 1991). The sequencing reactions were performed using an ABI prism 3700 Applied 192 

Biosystems automated sequencer at Scientific-Technical Services of the University of Barcelona. 193 

DNA sequencing runs were assembled using BioEdit Software. Sequences were aligned using the 194 

BioEdit software package and manually adjusted. The resulting DNA sequence was examined 195 

and compared with BLAST alignment tool comparison software  and the classifier tool of the 196 



 

 8 

Ribosomal Database Project II at http://rdp.cme.msu.edu/. The 16S rRNA gene sequences 197 

obtained for the bacterial clones were deposited in the GenBank database with accession 198 

numbers (JQ771957-JQ772014).  199 

 200 

2.3. Experiments with exudates 201 

 202 

2.3.1. In vitro production  203 

In vitro production of sunflower root exudates was performed by placing 50 seeds in an 204 

inorganic salt solution (MM, pH 5.7) described elsewhere (Tejeda-Agredano et al., 2011). To 205 

avoid the introduction of alternative sources of organic carbon in the biodegradation experiments, 206 

the solution did not contain sucrose, vitamins or plant growth regulators. The medium was 207 

prepared using ultrapure water (MILLIPORE). We transferred 500 mL of MM to glass jars 208 

(1,000 mL capacity, 28 x 11.5 cm) previously sterilized for 20 min. (121 ºC, 1 atm. of pressure). 209 

Inside these glass jars, we installed a square piece of stainless steel wire cloth (0.98 mm light and 210 

0.40 mm in diameter), held in place by four stainless steel wires extending from the edge of each 211 

jar. The length of these wires was calculated such that the seeds on the mesh were in contact with 212 

the surface of the MM without sinking into the solution to avoid producing anoxia. The jars were 213 

closed firmly with a pressure system using a glass lid.  214 

To sterilize the seeds, a batch of 50 seeds was surface-sterilized in 250 mL of absolute 215 

ethanol for 3 minutes in sterilized Erlenmeyer flasks at 550 rpm. The ethanol was subsequently 216 

removed, and 250 mL of a solution of 57% sodium hypochlorite (14% active chlorine) was added 217 

for 25 min. Finally, the hypochlorite was eliminated, and the seeds were rinsed 3 times with 218 

sterilized distilled water for 5 min each time, working in a laminar flow biosafety cabinet. Next, 219 

the sterilized seeds were distributed on square cloth mesh. The size of the mesh allowed root 220 

growth to occur and kept the seeds in place. The jar was closed, sealed with Parafilm and placed 221 

in a culture room at 25 ± 1ºC, 65.24 µEm
-2
s
-1
 and with an 18-hour photoperiod for 30 days. After 222 

this period, the MM with the excreted exudates was collected under sterile conditions and 223 

centrifuged for 3 h at 31,000 x g to obtain a solution that included the organic matter present, 224 

removing the pellet as the method of Haftka et al., 2008. These samples were stored at -20ºC until 225 

further use in the mineralization experiment. It is of particular note that the seeds were situated on 226 
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the medium surface and never submerged such that only the developed roots were responsible for 227 

exudate production. 228 

In vitro exudate extraction was repeated 6 times, and at the end of each repetition, we 229 

quantified the number of plants, determined the fresh and dry weight of the roots and assessed the 230 

relative growth rate (RGR) of whole plants calculated according to the equation RGR = (ln Bf - 231 

ln Bi) D
-1 
(Merckx et al., 1987), where Bf is the final dry biomass; Bi is the initial dry biomass 232 

(average of 5 seedlings dried 3 days after germination of seeds); and D is the number of days of 233 

the experiment. The plants acquired at the beginning and end of the greenhouse experiment were 234 

dried by placing the plant material in the desiccation oven at 70 ºC for 72 hours.  235 

 236 

2.3.2. Chemical analyses of sunflower root exudates 237 

Total organic (TOC) and inorganic carbon estimations were carried out at IRNAS-CSIC 238 

based on measurements performed in a TOC Analyzer (TOC, model TOC-V CPH, Shimadzu, 239 

Japan) using a non-purgeable organic carbon (NPOC) analysis. The analyses of amino acids, 240 

organic acids and sugar were carried out at Scientific-Technical Services of the University of 241 

Barcelona. Prior to analysis, the exudate sample was concentrated by freeze drying. The amino 242 

acid content was analyzed through cationic exchange chromatography (Amino acids analyzer, 243 

Biochrom 30, Biochrom, UK) and post-column derivatization with ninhydrin. The 244 

chromatograph was equipped with a polysterene-divinylbenzene sulphonate column (200x4 mm) 245 

with a 5 µm film thickness. Elution was carried out using lithium citrate buffer with a pH and 246 

ionic strength according to the manufacturer’s instructions. 247 

Low-molecular-weight organic acids were analyzed using a Water Alliance 2695 248 

chromatograph coupled to a PE SCIEX API 365 triple quadruple mass spectrometer. The column 249 

was an Aminex HPX-87H (300x7.8 mm) column (Bio-Rad, CA). The oven temperature was held 250 

at 40°C. The sample (100 µL) was injected with a flow rate of 0.8 mL min
-1
 of water acidified 251 

with acetic acid (0.1%) and subjected to a post-column addition of methanol acidified in the same 252 

manner. The analyses were performed using a Turbo Ion spray ionization source in negative 253 

polarity with the following parameters: capillary voltage −3500 V, nebulizer gas (N2) 10 254 

(arbitrary units), curtain gas (N2) 12 (arbitrary units), declustering potential -60 V, focusing 255 

potential −200 V, entrance potential 10 V. The drying gas (N2) was heated to 350°C and 256 
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introduced at a flow-rate of 7000 mL min
-1
. The results were analyzed in both Full Scan (40-400 257 

Da) and SIM (selected ion monitoring) modes.  258 

The sugar content was analyzed in a Waters Alliance 2695 chromatograph equipped with 259 

Aminex HPX-87P (300 x 7.8 mm) and Aminex HPX-87C (300 x 7.8 mm) columns (BioRad, 260 

CA) connected to a refraction index detector (Waters 2414) at a temperature of 37°C. The solvent 261 

system consisted of purified water at a flow rate of 0.6 mL min
-1
. The oven temperature was held 262 

at 85°C.  263 

Aromatic carboxylic acids and fatty acids were detected using GC-MS analysis based on 264 

methylated derivatives. After acidification with 1 M HCl (pH 2), 50 mL of the exudates was 265 

extracted with ethyl acetate (5 x 20 mL), and the extracts were concentrated under vacuum to 1 266 

mL and derivatized via treatment with ethereal diazomethane. Analyses were performed on a 267 

Hewlett Packard HP5890 Series II gas chromatograph coupled to an HP 5989 mass spectrometer 268 

using a DB5 (J&W Scientific, Folsom, CA) capillary column (30 x 0.25 mm i.d.) with a 0.25-µm 269 

film thickness. The column temperature was held at 50°C for 1 min and increased to 310°C at 270 

10°C min-1, and this final temperature was maintained for 10 min. The mass spectrometer was 271 

operated at a 70 eV electron ionization energy. The injector and analyzer temperatures were set at 272 

290°C and 315°C, respectively. The samples (1 µL) were injected in splitless mode using helium 273 

as the carrier gas at a flow rate of 1.1 mL min
-1
. When possible, products were identified and 274 

quantified through comparison of their MS spectra and GC retention times with those obtained 275 

for authentic commercial standards. When authentic products were not available, identification 276 

was suggested on the basis of data in databases (National Institute of Standards and Technology). 277 

 278 

2.3.3. Bioaccessibility experiments with exudates 279 

The bioaccessibility estimations relied on the determination of residual concentrations of 280 

native PAHs when 
14
C-tracer biodegradation decreased in radiorespirometry assays performed in 281 

parallel (Bueno-Montes et al., 2011). To measure pyrene mineralization by indigenous bacteria in 282 

the presence or absence of sunflower root exudates, 1 g of soil was suspended in 70 mL of MM 283 

or sunflower root exudates. The suspensions were placed in 250 mL Erlenmeyer flasks under 284 

sterile conditions, and each treatment was performed in duplicate. Each of the flasks contained 285 

30000 dpm of radiolabeled pyrene (58.7 mCi·mmol
-1
, radiochemical purity >98%) in 1 mL of 286 

MM. The flasks were sealed with Teflon-lined stoppers and were maintained at 25ºC on a rotary 287 
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shaker operating at 80 rpm. The
 
production of 

14
CO2 was measured as the radioactivity appearing 288 

in an alkali trap. The trap consisted of a 5 mL vial suspended from the Teflon-lined stopper; the 289 

vial contained 1 mL of NaOH (0.5 M). Periodically, the solution was removed from the trap and 290 

replaced with fresh alkali. The NaOH solution was mixed with 5 ml of a liquid scintillation 291 

cocktail (Ready Safe; Beckman Instruments), and the mixture was maintained in darkness for 292 

approximately 8 h to allow dissipation of chemiluminescence. Radioactivity was then measured 293 

with a liquid scintillation counter (model LS5000TD; Beckman Instruments). 294 

To determine the biodegradation of the native PAHs present in the soil, separate duplicate 295 

flasks (with and without exudates) were incubated under the same conditions, but without 296 

addition of the 14C-labeled compound. At the end of the incubation period (250 h), extraction and 297 

analysis of the PAHs present in the soil mixture suspension were conducted by Soxhlet and then 298 

by HPLC (residual contents in aqueous phase are under the detection limit) by the same method 299 

as described in section 2.2.2. Analysis of microbial communities from cultures with and without 300 

exudates was performed as described previously in sections 2.2.3.2. and 2.2.3.3. 301 

 302 

2.4. Statistical methods 303 

Analysis of variance (ANOVA) and Tukey honest significant differences (HDS) were used to 304 

assess the significance of means, and Student’s t-test was used to determine the significance of 305 

percentages. These statistical analyses were performed using SPSS v. 19 software. Differences 306 

obtained at the p≤0.05 level were considered to be significant. 307 

  308 

3. Results  309 

 310 

3.1. Greenhouse experiment 311 

 312 

3.1.1. Plant response 313 

All of the sunflower seeds germinated in both contaminated and uncontaminated soils within 314 

15 days of the beginning of the experiment. However, after 90 days, the average stem height (67 315 

cm) and dry weight of whole plants (6.51 g) were significantly higher (p≤0.05) in plants grown in 316 

contaminated soil than in those developing in uncontaminated soil (57.9 cm and 4.46 g, 317 

respectively). These differences may be related to the autoclaving procedure used for the 318 
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uncontaminated soil. The activity of microorganisms introduced into the soil mixture with the 319 

creosote-polluted soil may have been beneficial for the plants due to detoxifying contaminants 320 

and mobilizing soil nutrients. Therefore, the good development of plants in contaminated soil is 321 

an indirect indicator of the origin of the microbial populations developed during the greenhouse 322 

experiment. 323 

 324 

3.1.2. Dissipation of PAHs in pots with polluted soil 325 

Measurement of residual PAH concentrations showed the promoting effect of planting H. 326 

annuus on the dissipation of these chemicals from soil (Table 1). The concentrations of 327 

anthracene, fluoranthene, pyrene and crysene in planted soils decreased significantly below the 328 

levels detected in the unplanted controls after 45 and 90 d. A positive effect of planting on the 329 

dissipation of fluorene was only observed after 45 d, and its concentration remained below the 330 

detection limit in both planted and unplanted soils after 90 days. The presence of sunflower 331 

plants had no significant effect on the dissipation of phenanthrene in any of the sampling periods. 332 

The absence of effect may be connected to the higher solubility in water of this compound (1.8 333 

mg L
-1
), as compared with anthracene (0.045 mg L

-1
), fluoranthene (0.206 mg L

-1
), pyrene (0.13 334 

mg L
-1
) and chrysene (1.8·10

-3
 mg L

-1
), what may have caused less bioavailability restrictions to 335 

biodegradation of phenanthrene. The increased dissipation was reflected in the significantly 336 

lower (P≤0.05) concentration of total PAHs in planted pots compared to the unplanted controls, 337 

which resulted in a 60% additional decrease in the total PAH content in both sampling periods. 338 

With the exception of fluorene, extending the experimental period to 90 days did not result in a 339 

significantly lower residual concentration of any of the PAHs in the soils. The chemical analysis 340 

of major soil characteristics (e.g., pH, texture) did not reveal significant differences after planting 341 

with sunflowers, with the only difference being found in the content of total organic carbon, 342 

which increased in the planted soils from 0.9 to 2.1% after 90 days.  343 

 344 

3.1.3. Analysis of the autochthonous microbiota and its population dynamics  345 

Microbial counts indicated that the soil used in this study was highly enriched in PAH 346 

degraders (Fig. 1). The heterotrophic microbial populations increased more than two orders of 347 

magnitude between days 0 and 45 under all the conditions. The treatments with plants did not 348 

seem to produce an additional enhancement of the growth of the heterotrophs in comparison to 349 
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the untreated soil. These populations decreased slightly between days 45 and 90, except in the 350 

treatment with plants, where they remained at similar levels. This finding could be explained by 351 

general depletion of the available carbon sources, which would be compensated for by the 352 

rhizosphere in the plant treatment. The LMW PAH-degrading populations also increased in size 353 

by approximately two orders of magnitude between 0 and 45 days under all conditions but 354 

decreased thereafter in the control soil, while remaining approximately constant in the plant 355 

treatment. Interestingly, HMW PAH degraders experienced a substantial increase by 45 d, 356 

especially in the plant treatment, and remained at high levels until the end of the experiment. 357 

Because at 90 days, the ratio between the HMW PAH degraders and total heterotrophic 358 

populations was substantially higher in the treated than in the untreated soil, it could be 359 

concluded that in addition to stimulating the general growth of the heterotrophic populations 360 

(including that of PAH degraders), the rhizosphere treatment had an additional selective effect of 361 

enhancing the growth of the HMW PAH-degrading populations. In addition, these results show 362 

that an increase in microbial growth can be obtained by supplementing soil with carbon sources 363 

and nutrients (present in exudates) and by improving the biodegradation of PAHs, possibly by 364 

increasing their bioaccessibility.  365 

It is known that the microbial communities in the rhizosphere can be considerably different 366 

than those in nearby soil that grow without the direct influence of roots. As a first step in 367 

understanding whether the increase in PAH degradation observed in the treated soil containing 368 

plants could be related to specific changes in the microbial community structure, we used DGGE 369 

and clone library analysis. The DGGE fingerprints obtained during the incubation period from 370 

replicate samples for each treatment showed very similar banding profiles (Fig. 2), indicating 371 

strong homogeneity within the pots for each condition. In general, the DGGE analysis revealed 372 

an initially diverse microbial community, with specific populations increasing in relative 373 

abundance throughout the incubation period in both the non-treated and the rhizosphere soil. A 374 

number of the bands obtained coincided in the two treatments, but their relative intensities 375 

differed, indicating that the shift in community structure induced by the rhizosphere was different 376 

than that induced by the simple potting and watering of the polluted soil.  377 

To gain insight into which microbial groups were selectively promoted by the rhizosphere in 378 

comparison to the non-treated soil, corresponding 16S rRNA gene libraries were obtained from 379 

samples taken at 90 days, and a total of 84 clones were analyzed. Table 2 indicates the relative 380 
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abundance and phylogenetic affiliation of each of the eubacterial populations detected, while Fig. 381 

3 summarizes the importance of the different bacterial phyla in the non-treated and sunflower 382 

rhizosphere soils. Approximately two-thirds (60 and 68%) of the bacteria detected under both 383 

conditions belonged to the α-, β-, and γ-Proteobacteria, Actinobacteria, Bacteroidetes, and 384 

Chloroflexi phyla. However, with the exception of the Actinobacteria, the relative abundances of 385 

these phyla and their compositions varied substantially with the treatment applied, confirming 386 

that the plants caused a dramatic shift in the community structure. The rhizosphere promoted the 387 

appearance of new populations within the three Proteobacteria subphyla, including 388 

representatives with a well-known capacity to degrade PAHs (Kanaly and Harayama, 2010). 389 

Within the α-Proteobacteria, the increase of the Sphingomonas group was interesting because 390 

this group included numerous members isolated from plant root systems and members with a 391 

versatile degrading capability allowing them to attack 2-, 3- and 4-ring PAHs (Fernández-392 

Luqueño et al., 2011). There was also a noticeable increase in the β-Proteobacteria (from 9% to 393 

27%), as the rhizosphere promoted the appearance of members of the Commamonas group 394 

showing high similarity matches to members in the database isolated from PAH-contaminated 395 

soil or xenobiotic degraders (i.e., Variovorax).  396 

In the non-planted soil, 40% of the detected microorganisms belonged to seven phylogenetic 397 

groups not detected in the sunflower planted soil. Interestingly, among these microbes, we found 398 

members of the Candidate divisions OD1, OP11, TM7 and WS6, which are lineages of 399 

prokaryotic organisms for which there are no reported cultivated representatives but which 400 

present sufficiently well-represented environmental sequences to conclude that they represent 401 

major bacterial groups (Chouari et al., 2005). In addition to these sequences, the sequences 402 

retrieved from non-treated soil revealed a relatively high abundance of Firmicutes, while the 403 

Planctomycetes and Deinococcus groups were represented with lower proportions. In contrast, 404 

the sunflower rhizosphere soil promoted the presence of four phylotypes (Acidobacteria, 405 

Gemmatimonadetes, δ-Proteobacteria and Cyanobacteria) that were not detected in the non-406 

treated soil. The most abundant, the Acidobacteria (14.6%) and Gemmatimonadetes (7.3%), 407 

constitute recently described new phyla (Ludwig et al., 1997; Zhang et al., 2003) and are broadly 408 

distributed in soils but poorly represented in cultures, which makes it difficult to ascertain their 409 

role in nature. The Acidobacteria have been observed previously in planted soil (Yrjala et al., 410 

2010), are usually found in non-polluted environments, and generally decrease in the presence of 411 
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pollutants. Therefore, their higher abundance here after 90 days of treatment may be explained by 412 

both the rhizosphere effect and the high degree of removal of PAHs attained in this condition. 413 

 414 

3.2. In vitro production of exudates 415 

 416 

3.2.1. Production 417 

After 30 days, the average of germination rate was 55.33%, with the growth per day in terms 418 

of weight being 74 mg. The average fresh and dry weights of roots were 12.04 and 0.965 g, 419 

respectively, and the levels of TOC produced by the exudates were between 54.4 and 339 mgL
-1
, 420 

with an average of 129.73 mg L-1. A direct significant linear correlation (R=0.9125) (p≤0.05) was 421 

established between the RGR (74 mg per day) and fresh weight (12.04 g). There was also a direct 422 

linear correlation found between TOC (129.73 mg L
-1
) with RGR (R=0.7293) and TOC with 423 

fresh weight (R=0.6366), although these correlations were not statistically significant.  424 

 425 

3.2.2. Exudate Composition 426 

Table 3 shows the compounds identified in the sunflower root exudates using different 427 

analytical techniques, including carbohydrates, amino acids, fatty acids, aromatic acids and 428 

certain secondary metabolites. As major carbohydrates, we identified fructose (2.44 ppm) and 429 

galactose (1.16 ppm); however, the chromatogram also showed a major unidentified peak that 430 

would have interfered with the detection of glucose if it had been present. Previous studies 431 

addressing exudate composition in tomato, sweet pepper, cucumber and Barmultra grass showed 432 

that fructose was one of most dominant sugars (Kuiper et al., 2002; Kamilova et al., 2006). 433 

Galactose is also present in root exudates, providing a favorable environment for the growth of 434 

microorganisms (Bertin et al., 2003), and has been detected in the root exudates of different 435 

species of Eucalyptus (Grayston et al., 1996). Amino acids were detected in a wide range of 436 

concentrations, among which asparagine (0.593 ppm) and glutamine (0.301 ppm) were the most 437 

abundant, while methionine, tryptophan, proline, glutamic acid and valine were not detected. 438 

Phosphoethanolamine was also detected at a relatively high concentration (0.571 ppm) and has 439 

been reported to be abundant in the cell membrane (Ofosubudu et al., 1990). The main fatty acids 440 

present were palmitic and estearic acids, whereas others, including the most abundant component 441 

of sunflower oil, linoleic acid, were detected at lower concentrations and could not be quantified. 442 
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Several aromatic acids were identified, the most abundant of which were phthalic and 443 

protocatechuic acids. This result is of particular note, given that these compounds are typical 444 

intermediates in the metabolism of PAHs by bacteria (Kanaly and Harayama, 2010). The HPLC-445 

MS analysis of organic acids revealed several products. The most intense signal corresponded to 446 

a compound with a mass compatible with gluconic acid. Other products were tentatively 447 

identified as caffeic, isocitric, butiric, pyruvic, propionic, fumaric, malic, and malonic acids, all 448 

of which are typically found in root exudates (Bertin et al., 2003). Abietic acid and the 449 

sesquiterpene tomentosin were identified as the methyl derivatives of organic acids in the GC-MS 450 

analysis, and in addition to having structures analogous to some PAHs, they exhibit different 451 

functions in the plant-microbe interaction.  452 

In vitro, the sunflower root exudates showed a surface tension close to the surface tension of 453 

the mineralization medium (MM), showing either an absence or a low concentration of 454 

surfactants that could improve accessibility. 455 

 456 

 457 

3.2.3. Effects of exudates on the bioaccessibility of PAHs and on soil microbial populations 458 

Bioaccessibility experiments showed that the maximum rate of pyrene mineralization was 459 

enhanced twofold by the presence of exudates (from 0.024 ± 0.002 ng mL
-1 
h
-1
 to 0.052 ± 0.008 460 

ng mL
-1 
h
-1
, Figure 4). The maximum extent of pyrene C mineralization was also enhanced (from 461 

29 ± 1.01% to 40 ± 1.41%), and the acclimation phase for pyrene mineralization was shortened 462 

from 75 h to 30 h. Interestingly, the results showed that the concentrations of total PAHs 463 

decreased to significantly lower values in the presence of exudates (Table 4), thereby 464 

demonstrating the positive influence of exudates on biodegradation for native chemicals. 465 

Furthermore, the residual contents of total PAHs, both with and without exudates, were not 466 

significantly different than those reached in the corresponding treatments in greenhouse 467 

experiments after 90 days (P≤0.05). Therefore, we can conclude that the degradation-promoting 468 

effect of sunflower plants on the dissipation of PAHs from soil that occurred in the greenhouse 469 

experiment could be reproduced through laboratory incubation of the soil with shaking and the 470 

addition of root exudates. The shorter time period needed in the slurries to reach residual 471 

concentrations (10 days), as compared to greenhouse conditions (90 days), can be attributed to an 472 

enhanced mass transfer of the pollutants. However, because the controls and the exudate-473 



 

 17 

containing slurries were treated exactly in the same way, the observed relative differences still 474 

suggest an effect of root exudates on bioaccessibility. 475 

Soil suspensions were sampled at the end of the experimental period (10 d) to determine the 476 

evolution of autochthonous microbiota using DGGE (Fig. 5). The DGGE profiles from cultures 477 

in the mineral medium with or without exudates indicated an increase in the number of 478 

microorganisms during the 10 days of the experiment in both conditions. In the absence of 479 

exudates, duplicate cultures showed similar banding profiles with slight differences in the relative 480 

intensity of each band. The banding profile changed as a result of exposure to exudates, which 481 

indicates that the enhanced PAH degradation was accompanied by the growth of specific 482 

microbial populations.  483 

 484 

4. Discussion 485 

 486 

Our data indicate that the development of sunflower plants enhanced the biodegradation of 487 

PAHs in the soil, and due to the ability of microbes to reduce the phytotoxicity of the pollutants, 488 

PAHs included, sunflower plants were able to grow in polluted soil even better than those grown 489 

in uncontaminated soil. The slowly degrading compounds remaining in the soil at the end of 490 

greenhouse and bioaccessibility assays probably exhibited slow desorption, which usually limits 491 

biodegradation of these compounds by microorganisms (Bueno-Montes et al., 2011). This 492 

restriction on biodegradation would explain the absence of further decreases in the PAH 493 

concentrations in unplanted soils from 45 d to 90 d in the greenhouse experiment and the good 494 

agreement between the residual PAH concentrations in the greenhouse and bioaccessibility 495 

assays. The bioaccessibility experiments were designed to test the disappearance of the chemicals 496 

under laboratory conditions. These assays specifically addressed biodegradation using an excess 497 

of nutrients, radiorespirometry determinations with 14C-pyrene and analysis of residual 498 

concentrations of native PAHs. This method had been applied previously to determine the 499 

efficiency of bioremediation approaches designed to increase the bioaccessibility of aged PAHs 500 

(Bueno-Montes et al., 2011) . Despite the inherent difficulties in performing bioaccessibility 501 

estimations related to the specific the time period and/or target organisms considered (Alexander, 502 

2000), this approach was very useful in the present study for reproducing the greenhouse results 503 

in the presence of root exudates produced in vitro, which indicates that the exudates played an 504 



 

 18 

important role in the effectiveness of the plants in promoting the bioaccessibility of PAHs. To our 505 

knowledge, the direct comparison of pollutant losses in the presence of plants with those caused 506 

by the addition of exudates had not been included in previous studies of PAH rhizoremediation. 507 

The TOC content observed in the sunflower root extracts in this study, 129.73 mg L
-1
, was in 508 

agreement with TOC values reported in other studies on the promoting effects of root extracts on 509 

PAH-degrading microorganisms. For example, Rentz et al. (2005) reported TOC concentrations 510 

of 84.2, 175.0 and 51.7 mg L
-1 
from root extracts of hybrid willow (Salix alba x matsudana), kou 511 

(Cordia subcordata) and milo (Thespesia populnea), respectively, whereas Miya and Firestone 512 

(2001) reported a TOC concentration of 54 mg L
-1
 for slender oat root exudates. In the present 513 

study, it is possible that the organic carbon in the exudates enhanced the bioaccessibility of PAHs 514 

through a mechanism related to the carbon’s capacity to mobilize PAHs that are initially 515 

absorbed in the soil. Indeed, addition of DOM to contaminated soils results in enhanced 516 

biodegradation of PAHs, probably as a result of enhanced desorption (Bengtsson and Zerhouni, 517 

2003). DOM-mediated enhancement of biodegradation can also be caused by direct access to 518 

DOM-sorbed PAHs due to the physical association of bacteria and DOM (Ortega-Calvo and 519 

Saiz-Jimenez, 1998) and an increased diffusive flux toward bacterial cells (Haftka et al., 2008; 520 

Smith et al., 2009). The latter mechanism would be analogous to that described for the enhanced 521 

uptake of metals by plants in the presence of labile metal complexes, which is caused by an 522 

increased diffusional flux through unstirred boundary layers around roots (Degryse et al., 2006). 523 

The occurrence of DOM-mediated enhancement of bioaccessibility through root exudation would 524 

also explain the greater extent of biodegradation observed under greenhouse conditions, despite 525 

the significant increase of total organic carbon in the planted soils.  526 

The chemical characterization of exudates also identified specific substances with the 527 

potential to directly enhance bioaccessibility. These substances include chemicals that are able to 528 

induce chemotaxis, which constitutes a relevant mobilization mechanism for motile 529 

microorganisms in the soil (Ortega-Calvo et al., 2003). For example, sugars such as fructose have 530 

a well-known positive chemotactic effect on soil microorganisms. Amino acids, such as 531 

glutamine, aspartic acid and isoleucine, which were also found in this study as components of 532 

sunflower root exudates, are powerful chemoattractants for Rhizobium and Bradyrhizobium 533 

japonicum (Pandya et al., 1999). Zheng and Sinclair (1996) indicated that alanine, asparagine, 534 

glutamine, serine, and threonine in soybean root exudates may serve as chemoattractants to 535 
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Bacillus megaterium strain B153-2-2. Finally, we detected fatty acids, such as palmitic acid and 536 

stearic acid, which are plant components with a known potential to enhance the bioaccessibility 537 

of PAHs in soil by acting as surfactants (Yi and Crowley, 2007). Vegetable oils have also been 538 

widely used as natural surfactants (Gong et al., 2010), resulting in the dissolution of PAHs and 539 

consequently, in the enhancement of biodegradation. Therefore, the presence of these compounds 540 

may explain the greater decrease in PAHs observed in the sunflower soil treatments. 541 

Furthermore, it is also possible that the preferential growth of rhizosphere microorganisms 542 

observed on the exudate components at specific sites inside soil aggregates may have caused 543 

colony growth in the vicinity of pollutant sources and may have modified the structure of the soil 544 

aggregates to promote bioaccessibility through the excretion of extracellular polymeric 545 

substances and biosurfactants. 546 

Therefore, the results obtained associated with root exudates indicated a role for promoting 547 

the bioaccessibility of PAHs. However, the present study may not allow complete discrimination 548 

between the effects on bioaccessibility from the enhanced biodegradation activity of 549 

microorganisms caused by the chemical components of exudates. The evolution of the 550 

heterotrophic bacterial population in the soil during the greenhouse experiment indicates that 551 

homogenization, aeration and watering had a general activation effect on this population, but 552 

planting sunflowers had a further positive impact due to maintaining their viability (Fig. 1). The 553 

chemical analysis of exudates reflected the presence of organic compounds in the root exudates 554 

with the potential to cause this effect. For example, fructose and galactose are known to provide a 555 

favorable environment for the growth of rhizosphere microorganisms (Grayston et al., 1996; 556 

Bertin et al., 2003); amino acids are a source of easily degradable N compounds, inducing 557 

protease synthesis (García-Gil et al., 2004); and ornithine is considered to be non-protein amino 558 

acids showing a protective function against stress to cell membranes (Kalamaki et al., 2009). 559 

Furthermore, the presence of plants had also a profound impact on the relative abundance of 560 

specific groups of bacteria in the soil, thereby increasing their biodiversity. This consideration is 561 

consistent with the results obtained in the PAH analysis and confirm the results obtained by other 562 

authors (Miya and Firestone, 2000; Parrish et al., 2005). The proportion of gram-negative 563 

bacteria increased in planted soils compared with unplanted controls, which is in agreement with 564 

previous observations (Anderson and Coats, 1995). For example, we observed better 565 

development of β-Proteobacteria in planted soils, which can be explained by the capability of 566 
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this group of bacteria to readily assimilate the C present in sugars and residues of plant origin 567 

(Bernard et al., 2007). In the same way, the rhizophere promoted the appearance of members of 568 

the Oxalobacteriaceae, a recently described but uncharacterized family with root colonizing 569 

members (Green et al., 2007) that are closely related to the Burkholderia, which include 570 

important soil PAH degraders of both single compounds and creosote mixtures (Grifoll et al., 571 

1995). The increase observed in members of the Methylophillus group was interesting because in 572 

a recent study, a methylotrophic bacterial species was identified as one of the most abundant 573 

components of a heavy fuel-degrading consortium (Vila et al., 2010). Methylotrophic bacteria are 574 

more widely distributed than previously thought, but their roles in natural habitats remain 575 

unknown (Lidstrom, 2006; Chistoserdova et al., 2009). The Xanthomonas group within the γ-576 

Proteobacteria was also favored by the rhizosphere, with several of the detected representatives 577 

of this group corresponding to bacteria previously detected in polluted sites and identified as 578 

PAH degraders. For example, a Pseudoxhantomonas strain was recently described as being able 579 

to degrade the 4-ring PAH chrysene (Nayak et al., 2011). The reduction in the abundance of 580 

Bacteroidetes in the rhizosphere soil could be a direct consequence of the presence of nutrients 581 

from the exudates because this phylum has often been associated with non-nutrient environments 582 

(Viñas et al., 2005).  583 

Interestingly, certain aromatic organic acids were detected in the root exudates, such as 584 

phthalic and protocatecuic acids, that are intermediate metabolites in the degradation of PAHs 585 

(Lopez et al., 2008). These secondary plant metabolites may stimulate PAH degradation by 586 

rhizosphere microorganisms and broaden the spectrum of their activity by inducing and 587 

promoting the development of organic pollutant-degrading enzymes  or acting as cosubstrates in 588 

cometabolic reactions. Indeed, the population of high-molecular-weight (HMW) PAH degraders 589 

increased in number in the planted soils compared with the unplanted controls, demonstrating the 590 

selective influence of the sunflower rhizosphere on these populations. These results agree with 591 

those from Parrish et al. (2005), who observed that after 12 months of plant development, the 592 

PAH degrader population was multiplied 100-fold in comparison with unplanted soil. Corgie et 593 

al. (2004) also found that the number of HMW PAH degraders decreased inversely with the 594 

distance from roots. Consistent with this selective effect on the PAH-degrading populations, there 595 

was a demonstrated increase in the relative abundance of bacterial groups with a know PAH-596 

degrading capability or that were previously detected as key components in PAH-degrading 597 
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microbial consortia, including Sphingomonas (within the α-Proteobacteria), Comamonas, 598 

Oxalobacteria and Methylophillus (β-Proteobacteria), and Xanthomonas (Kanaly and Harayama, 599 

2010). Although the relative abundance of the Actinobacteria group does not change in the 600 

presence of sunflowers, it is known that this a group characterized by its ability to degrade 601 

recalcitrant organic compounds. Other microbes that are able to degrade recalcitrant organic 602 

compounds include Actinomycetes, which are able to compete with fungi for lignin degradation, 603 

and Mycobacteria, which can degrade a variety of PAHs either as individual compounds  or 604 

within fuel (Vila et al., 2010) and creosote mixtures (López et al., 2008), particularly at sites 605 

where there is a low level of nutrients. Other bacterial phyla favored by the rhizosphere, 606 

including Acidobacteria and the Gemmatimonadetes, are recently described groups with few 607 

culturable representatives, and more research is needed to understand their potential role in 608 

polluted soils (Ludwig et al., 1997; Zhang et al., 2003).  609 

Considering the advantages of this plant species in relation to its agronomic interest and 610 

potential as a biofuel producer, this strategy represents a promising alternative for increasing 611 

bioaccessibility in a sustainable and low-risk manner. Our results demonstrate that the 612 

rhizosphere caused a substantial shift in the structure of the autochthonous microbial populations 613 

in the soil that selectively favored the development of PAH degraders. Most of the literature 614 

discussed herein involves recent work on the effect of the rhizosphere on selected microbial 615 

PAH-degrading populations in artificially PAH-spiked soils. This study is the first to analyze the 616 

effect of the rhizosphere on autochthonous bacterial community structure from a real PAH-617 

polluted soil. The exact contribution of the direct effects of the sunflower exudates and the effects 618 

related to the ecology of soil microorganisms will be the subject of future research.  619 
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 824 

Fig. 1. Counts of heterotrophic and PAH-degrading microbial populations in the soil 825 

under the different treatments applied in the greenhouse experiment. MPN, most 826 

probable number. LMW, low-molecular-weight PAHs. HMW, high-molecular-827 

weight PAHs. T0, at the beginning of the experiment; T45, at 45 days after; T90 at 828 

90 days after.  Error bars represent the standard deviation of triplicates. 829 
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 840 

Fig. 2. DGGE profile of PCR-amplified 16S rRNA gene fragments from independent 841 

replicate samples from control soil (CS) and rhizosphere sunflower soil (SFS) samples 842 

after 0, 45 and 90 days. Each lane was loaded with an identical amount of DNA. 843 
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Fig. 3. Relative abundance of eubacterial phylogenetic groups identified in control soil (A) and 852 

sunflower rhizosphere soil (B) samples after 90 days of incubation in the greenhouse experiment. 853 
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 872 

Fig. 4. Mineralization of pyrene in soil suspensions in the absence (o) and 873 

presence (■) of sunflower root exudates. Error bars represent the standard 874 

deviation of duplicates. 875 
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 877 

 878 

Fig. 5. DGGE profile of PCR-amplified 16S rRNA gene fragments in samples from 879 

soil suspensions in the bioaccessibility experiment presented in Figure 4 at the 880 

beginning (0 d) and at the end of the experimental period (10 d).  881 
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Table 1 882 

Effect of planting with sunflowers on residual PAH contents (mg kg
-1
) in soil under greenhouse 883 

conditions after 45 and 90 days. 884 

45 days 

 

90 days 

 PAHs 
C0 

 
Control Planted Control Planted 

Fluorene 1.23 ± 0.08A 0.18 ± 0.03B 0.04 ± 0.01C < 0.00C < 0.00C 

Phenanthrene 3.98 ± 0.29A 0.77 ± 0.06B 0.39 ± 0.03B 0.54 ± 0.05B 0.12 ± 0.05B 

Anthracene 8.14 ± 0.39A 2.14 ± 0.45B 0.67 ± 0.14C 1.63 ± 0.37B 0.36 ± 0.13C 

Fluoranthene 5.10 ± 0.07A 1.51 ± 0.53B 0.46 ± 0.01C 1.47 ± 0.14B 0.37 ± 0.11C 

Pyrene 2.04 ± 0.05A 0.39 ± 0.13B 0.15 ± 0.001C 0.34 ± 0.03B 0.14 ± 0.05C 

Chrysene 1.26 ± 0.05A 1.16 ± 0.08A 0.68 ± 0.12B 1.02 ± 0.07A 0.51 ± 0.16B 

Total PAHs 21.75 ± 0.9A 6.15 ± 1.26B 2.39 ± 0.30C 4.99 ± 0.66B 1.50 ± 0.5C 

 885 

Co, initial concentration of PAHs in the soil. The values shown are the mean ± standard deviation 886 

of triplicates. Values in a row followed by the same capital letter are not significantly different 887 

(P≤0.05). 888 
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          Table 2 889 

Sequence analysis of the 16S rRNA gene clone libraries from the PAH-polluted control soil (without plants) 890 

and sunflower rhizosphere soil at the end of the greenhouse experiment (90 days). 891 

Frequency

(%)
a
 Clone 

CS SFS 

Fragment 

legth (bp) 

Sim  

% 
Closest relative in GenBank database

 b
 (accession no) Phylogenetic group 

CS1  2.4 1364 99 Uncultured Acidobacteria bacterium clone HEG_08_216 (HQ597545) Acidobacteriaceae (Acidobacteria) 

CS2  2.4 1373 98 Uncultured bacterium clone 60C1 (EU676416) Acidobacteriaceae (Acidobacteria) 

CS3  2.4 1422 99 Uncultured Acidobacteria bacterium clone SEG_08_603 (HQ729829) Acidobacteriaceae (Acidobacteria) 

CS4  2.4 1404 97 Uncultured Acidobacteria bacterium clone HG-J02120 (JN409027) Acidobacteriaceae (Acidobacteria) 

CS5  2.4 1421 99 Uncultured bacterium clone p6h2ok (FJ478980) Acidobacteriaceae (Acidobacteria 

CS6  2.4 1386 97 Acidobacteria bacterium IGE-018 (GU187039) Acidobacteriaceae (Acidobacteria) 

CS7 2.3  1466 99 Uncultured bacterium clone p27d24ok (FJ478675) (Actinobacteria) 

CS8  2.4 1384 99 Lentzea waywayandensis strain 173629 (EU570362) Pseudonocardiaceae (Actinobacteria) 

CS9 4.7  1444 98 Uncultured bacterium clone 125 (FM209343) Cytophagaceae (Bacteroidetes) 

CS10 7.0  1453 99 Uncultured bacterium clone p8c07ok (FJ479495) Chitinophagaceae (Bacteroidetes) 

CS11 2.3  1225 98 Uncultured bacterium isolate 1112864242247 (HQ120332) Ohtaekwangia (Bacteroidetes) 

CS12 2.3  1314 98 Unculured Bacteroidetes bacterium clone HG-J01164 (JN408934) Ohtaekwangia (Bacteroidetes) 

CS13 2.3  1443 95 Uncultured bacterium clone TX2_4C19 (JN178178) Rhodothermaceae (Bacteroidetes) 

CS14 2.3  949 99 Uncultured soil bacterium clone BJ-287 (EU365214) Ohtaekwangia (Bacteroidetes) 

CS15 4.7 4.9 1445 98 Uncultured Bacteroidetes bacterium clone g31 (EU979040) Ohtaekwangia (Bacteroidetes) 

CS16 2.3 2.4 1393 99 Uncultured bacterium clone 224T (EU676412) Chitinophagaceae (Bacteroidetes) 

CS17  2.4 1394 98 Uncultured soil bacterium clone UA2 (DQ298006) Chitinophagaceae (Bacteroidetes) 

CS18 2.3  1410 99 Uncultured Anaerolinae bacterium clone AMAG11 (AM935836) (Chloroflexi) 

CS19  2.4 1353 99 Uncultured bacterium clone S-Rwb_62 (DQ017911) (Chloroflexi) 

CS20  2.4 1353 99 Uncultured bacterium clone H3-26 (JF703479) (Chloroflexi) 

CS21  4.9 1373 99 Phormidium autumnale CCALA 143 (FN813344) (Cyanobacteria) 

CS22  2.4 1324 99 Uncultured diatom clone H-101 (HM565019) Bacillariophyta (Cyanobacteria) 

CS23 4.7  1455 96 Uncultured bacterum isolate 1112864242286 (HQ120393) Trueperaceae (Deinococcus) 

CS24 2.3  1423 99 Bacillus sp. M71_D96 (FM992837) Bacillaceae (Firmicutes) 

CS25 9.3  1440 99 Bacillus sp. R-36493 (FR682744) Bacillaceae (Firmicutes) 

CS26 2.3  1486 98 Virgibacillus carmonensis (T) LMG 20964 (NR_025481) Bacillaceae (Firmicutes) 

CS27 4.7  1438 99 Bacillus sp. BF149 (AM934692) Bacillaceae 2 (Firmicutes) 

CS28  4.9 1399 96 Uncultured bacterium clone 15-4-139 (JN609373) 
Gemmatimonadaceae(Gemmatimona

detes) 

CS29  2.4 1429 98 Uncultured bacterium clone TX5A_120 (FJ152828) (Gemmatimonadetes) 

CS30 2.3  1368 94 Uncultured bacterium clone B6 (FJ660498) Planctomycetaceae (Planctomycetes) 

CS31 2.3  1285 99 Chelatococcus asaccharovorans CP141b (AJ871433) Methylobacteriaceae (α) 

CS32 2.3  1276 99 Uncultured bacterium clone HDB_SIOP800 (HM186473) Bradyrhizobiaceae (α) 

CS33 2.3 2.4 1410 97 Uncultured soil bacterium clone F6-154 (EF688392) Sphingomonadaceae  (α) 

CS34  2.4 1342 99 Rhizobium sp. AC93c (JF970343) Rhizobiaceae (α) 

CS35  2.4 1355 97 Uncultured bacterium clone FCPS478 (EF516121) Rhizobiales (α) 

CS36  2.4 1353 99 Uncultured alpha proteobacterium clone QZ-J4 (JF776915) Sphingomonadaceae (α) 

CS37  2.4 1355 99 Altererythrobacter sp. JM27 (GU166344) Sphingomonadales (α) 

CS38 2.3  1425 98 Uncultured bacterium clone SNR65 (AB608675) Burkholderiales (β) 

CS39 4.7 7.3 1418 99 Uncultured bacterium clone HC18-11B13 (JF417848) Commamonadaceae (β) 

CS40 2.3 4.9 1410 99 Naxibacter suwonensis (T) 5414S-25 (FJ969487) Oxalobacteraceae (β) 

CS41  2.4 1389 99 Variovorax sp. RA8 (AB513921) Commamonadaceae (β) 

CS42  2.4 1396 99 Uncultured beta proteobacterium clone E2006TS6.19 (GU983311) (β) 

CS43  2.4 1394 99 Uncultured beta proteobacterium clone C173 (JF833705) Methylophilaceae (β) 

CS44  2.4 1400 99 Uncultured beta proteobacterium clone C173 (JF833705) Methylophilaceae (β) 

CS45  2.4 1391 99 Uncultured beta proteobacterium clone G2-50 (JF703344) (β) 

CS46  2.4 1391 99 
Uncultured ammonia-oxidizing bacterium clone FQ-13C-HF-1 

(HQ678202) 

Nitrosomonadaceae (β) 

CS47 2.3  1434 97 Uncultured bacterium clone 0-99 (GU444064) Xanthomonadaceae (γ) 

CS48 9.3  1458 99 Pseudomonas sp. JQR2-5 (DQ124297) Pseudomonadaceae (γ) 

CS49  2.4 1412 99 Lysobacter niabensis (AB682414) Xanthomonadaceae (γ) 

CS50  2.4 1391 99 Uncultured bacterium clone Kas172B (EF203204) Sinobacteraceae (γ) 

CS51  2.4 1409 99 Pseudoxanthomonas sp. XC21-2 (JN247803) Xanthomonadaceae (γ) 

CS52  2.4 1410 99 Uncultured Lysobacter sp. clone T302B2 (HM438520) Xanthomonadaceae (γ) 

CS53  2.4 1399 99 Uncultured bacterium clone BR121 (HQ190468) Pseudomonadaceae (γ) 

CS54  2.4 1419 97 Uncultured bacterium clone RH1020 (AB511013) (δ) 
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CS55 7.0  1050 87 
Uncultured candidate division OD1 bacterium clone AKYH1067 

(AY922093) 

Candidate division OD1 

CS56 2.3  1396 94 Uncultured bacterium clone B03-05G (FJ542974) Candidate división OP11 

CS57 2.3  1368 97 Uncultured bacterium clone N1903_34 (EU104291) Candidate división TM7 

CS58 2.3  1250 93 Uncultured bacterium clone FF_-aag84c04 (EU469637) Candidate division WS6 

 892 

a 
Frequencies in clone libraries obtained from CS (control soil) and SFS (sunflower soil). 

b
In sequences showing an 893 

identical match to uncultured and to isolated strains, only the latter are listed. Sequences with more than 94% identity 894 

are grouped. α, β, γ, δ correspond to alpha-, beta-, gamma- and deltaproteobacteria, respectively. Clones with 895 

sequences belonging to the same phyla or subphyla (in case of Proteobacteria) are grouped and marked with 896 

alternatively shade and non shaded backgrounds 897 

 898 
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Table 3.  899 

Organic compounds identified in the sunflower root exudates obtained in vitro after 30 days of 900 

culture. 901 

Class of compounds Single compounds Concentration 

(ppm) 

Sugars
1
 Galactose 

Fructose 

1.16 

2.44 

 

Amino acids
1
 

 

Phenyl serine 

Taurine 

Phosphoethanolamine 

Aspartic acid 

Threonine 

Serine 

Asparagine 

Glutamine 

Glycine 

Alanine 

Cysteine 

Isoleucine 

Leucine 

Tyrosine 

Phenylalanine 

Ornithine 

Lysine 

Histidine 

Arginine 

 

0.423 

0.083 

0.571 

0.035 

0.034 

0.069 

0.593 

0.301 

0.016 

0.017 

0.003 

0.025 

0.026 

0.029 

0.012 

0.008 

0.024 

0.074 

0.078 

 

Fatty acids
3
 

 

Azelaic acid
2
 

Myristic acid2 

Palmitic acid
1
 

Linoleic acid
2
 

Stearic acid
1
 

 

nq 

nq 

0.0353 

nq 

0.0425 
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Aromatic organic 

acids
3
 

 

Phtalic acid
1
 

Paraben
2
 

Protochatechuic1 

Gallic acid
2
 

5-Acetylsalicylic acid
2 

Abietic acid
2
 

Hydroxydehydroabietic acid
2
 

 

0.04358 

nq 

0.00388 

nq 

nq 

nq 

nq 

 

Terpenoids
3
 

 

Tomentosin
2
 

 

Nq 

*Identification was based on analysis of authentic standards
1
 or on a match higher than 90% with the 902 

NIST library
2
. Identified as their methylated derivates

3
 (diazomethane); nq= not quantified. 903 

 904 
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 905 

 906 

Table 4. Effect of incubation with sunflower root exudates on the residual PAH 907 

content (mg kg
-1
) in soil suspensions under laboratory conditions after 10 days. 908 

 909 

PAHs C0 Control Exudates 

Fluorene 0.47 ± 0.21A 0.02 ± 0.009B 0.09 ± 0.07B 

Phenanthrene 4.55 ± 0.18A 1.55 ± 0.06B 1.02 ± 0.16C 

Anthracene 5.83 ± 2.43A 0.10 ± 0.02B 0.09 ± 0.02B 

Fluoranthene 4.73 ± 0.44A 1.73 ± 0.85B 0.69 ± 0.19B 

Pyrene 0.98 ± 0.12A 0.53 ± 0.09B 0.15 ± 0.007C 

Chrysene 1.54 ± 0.20A 0.79 ± 0.15B 0.47 ± 0.02C 

Total PAHs 19.28 ± 1.40A 4.77 ± 0.55B 2.50 ± 0.16C 

 910 

C0, initial concentration. The values shown are the mean ± standard deviation of 911 

duplicates. Values in rows with the same capital letter are not significantly different 912 

(P≤0.05). 913 


