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I. INTRODUCTION

The idea of a multitude of universes has many avatars
in modern physics. It has first appeared in the context
of the many-worlds interpretation of quantum mechan-
ics [1] and later when it was realized that inflation could
lead, due to quantum effects in the early universe, to
the creation new universes [2]. More recently, the con-
cept reemerged in the context of string theory when it
was understood that the initial outlook about the orig-
inal distinct string theories was not correct and these
should be seen as a continuum of theories. This inter-
pretation suggests that one has actually different solu-
tions of a more fundamental theory. The space of these
solutions is referred to as supermoduli-space. The mod-
uli are fields, and their variation allows moving in the
supermoduli-space. The moduli vary as one moves in the
spacetime, as they have their own equations of motion.
The continuum of solutions in the supermoduli-space are
supersymmetric and thus, have all a vanishing cosmo-
logical constant. It follows that in order to describe our
world, there must exist some non-supersymmetric “is-
lands” in the supermoduli-space. It is believed that the
number of these discrete vacua is huge, G = 10100, or
googleplexes 10G [4]. Since the magnitude of the cosmo-
logical constant is about 10120 smaller than its natural
value M4

P , where MP = 1.2 × 1019 GeV is the Planck
mass, it is highly unlikely to find such a vacuum, un-
less there exists a huge number of solutions with every
possible value for the cosmological constant. The space
of all such string theory vacua is called the landscape

[3] and suggests a multiverse. According to this pro-
posal, the multiple vacua of string theory is associated
to a vast number of “pocket universes” in a single large
Mega-universe [4]. Thus, the vacuum associated to our
expanding universe must emerge from a selection proce-
dure, through anthropic reasoning [5] or quantum cosmo-
logical arguments (see e.g. [6]). For sure, this interpreta-
tion is somewhat disturbing and not free from criticism
as the impossibility of observing a multiverse implies that

its scientific status is questionable, unless it leads to un-
equivocal phenomena that cannot be accounted in the
context of the usual single universe framework [7]. It is
interesting to point out that recently, it has been sug-
gested that the many-worlds interpretation of quantum
mechanics could be regarded as a quantum mechanics of
the multiverse [8, 9] (see however, [10]).
Naturally, the multiverse proposal poses many intrigu-

ing questions. For instance, do the universes interact
with each other? Do they mutually affect their proper-
ties? Do they exhibit collective behavior features? The
aim of this work is precisely to address these issues.

II. INTERACTION SCHEME IN A THIRD

QUANTIZATION FORMALISM

In Ref. [11], it has been proposed an interaction
scheme between universes which follows from the so-
called Curvature Principle. The main ingredients of the
interaction scheme through the Curvature Principle are
the following: i) the state of each single universe in the
multiverse is described by a curvature invariant, I; ii) the
vacuum energy of each single universe depends on the
matter fields of the universe as well as on the interaction
with other universes; and, iii) it can be posed a ’meta
cosmic time’ to describe the evolution of the curvature
invariants.
As a result of the interaction between two universes, it

is shown that the value of the cosmological constant of
one of the universes effectively vanishes at the expense
of an increasing value of the cosmological constant of
the partner [11]. The multiverse thus opens the door to
novel ways of facing up the problem of the cosmological
constant (see also [12, 13]).
In the third quantization formalism of quantum cos-

mology [14–16], the description of the wave function of
the universe is naturally extended to a many-universe
scenario much in the same way as a many-particle de-
scription of fields arises in a quantum field theory. In
particular, for homogeneous and isotropic universes, the
Wheeler-De Witt equation can formally be seen as a
wave equation defined upon the minisuperspace spanned
by the scale factor, a, and the matter fields, ~ϕ =
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(ϕ1, . . . , ϕn). The third quantization formalism consists
in considering the wave function of the universe as the
field to be quantized that propagates on minisuperspace
and, thus, the quantum state of the universe can be stud-
ied as a quantum field theory in the minisuperspace.
We point out that assuming homogeneity and isotropy

are essential conditions as far as it concerns large macro-
scopic universes, for which the quantum fluctuations of
the metric are negligible with respect to the value of the
metric. Then, in a first approach, an homogeneous and
isotropic universe can properly model our universe for
most of its history.
Thus, let us consider a closed homogeneous and

isotropic universe endowed with a slow-varying field,
ϕ ≈ ϕ0. The Wheeler-De Witt equation, with an ap-
propriate choice of factor ordering, can then be written
as

~
2 ∂

2φ

∂a
+

~
2

a

∂φ

∂a
+ (a4V (ϕ0)− a2)φ = 0, (1)

where φ ≡ φ(a, ϕ) is the wave function of the universe,
and V (ϕ0) is the potential of the scalar field evaluated
at ϕ0. The wave function φ(a, ϕ0) effectively represents
the quantum state of a de Sitter universe with a value of
the cosmological constant given by, Λ ≡ V (ϕ0). Further-
more, Eq. (1) can formally be seen as the equation of a
harmonic oscillator with a variable friction term and vari-
able frequency. Indeed, this can be made clearer rewrit-
ing:

φ̈+
Ṁ

M
φ̇+ ω2φ = 0, (2)

where, φ̇ ≡ ∂φ
∂a , M ≡ M(a) = a, and ω ≡ ω(a) =

a
~

√
a2Λ− 1. In the third quantization formalism, the

scale factor formally plays the role of an intrinsic time
variable of the minisuperspace and, then, the quantum

state of the universe can be described in the basis of
number eigenstates of the harmonic oscillator with time

dependent friction and frequency, M(a) and ω(a), respec-
tively. The Hamiltonian for which the Heisenberg equa-
tions of motion give rise to the Wheeler-de Witt equation
(2) reads

H =
1

2M
p2φ +

Mω2

2
φ2. (3)

An interaction scheme in the multiverse can now be
easily posed by following the analogy with quantum me-
chanics. For instance, let us consider the interaction be-
tween two universes described by a total Hamiltonian,
HT , given by

HT = H1 +H2 +HI , (4)

where H1 and H2 are given by Eq. (3), with (ω1, φ1, pϕ1
)

and (ω2, φ2, pϕ2
) for the universes labelled by indices 1

and 2, respectively. The mass, M(a), turns out to be the
same for both universes because it arises from a particu-
lar choice of the factor ordering, which is assumed to be
identically chosen in both cases.
For a large parent universe the geometric term in

Eq. (1) can be disregarded and, thus, ω2
1 ≈ a4Λ1 and

ω2
2 ≈ a4Λ2. The frequency of the harmonic oscillator

turns out then to be proportional to the vacuum energy
of each single universe. Furthermore, let us assume an
interaction Hamiltonian, HI , given by

HI =
Ma4k

2
(φ2 − φ1)

2, (5)

where k is a coupling constant to be subsequently deter-
mined. Following the procedure used in Refs. [17, 18],
we can apply the canonical transformation derived from
the following generating function,

G(φ1, φ2, P1, P2, a) = φ1(P1 cos θ + P2 sin θ) + φ2(−P1 sin θ + P2 cos θ). (6)

Then, the new canonical variables, (Φ1, P1) and (Φ2, P2),
can be obtained through the following equations,

pφ1
≡ ∂G

φ1
= P1 cos θ + P2 sin θ, (7)

pφ2
≡ ∂G

φ2
= −P1 sin θ + P2 cos θ, (8)

Φ1 ≡ ∂G

P1
= φ1 cos θ − φ2 sin θ, (9)

Φ2 ≡ ∂G

P2
= φ1 sin θ + φ2 cos θ. (10)

The Hamiltonian (3) is transformed according to H →
HN = H + ∂G

∂a , with
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HN =
1

2M
P 2
1 +

MΩ2
1

2
Φ2

1 +
1

2M
P 2
2 +

MΩ2
2

2
Φ2

2 +Φ1Φ2 ((b1 − b2) sin 2θ + b3 cos 2θ) + θ̇(Φ1P2 − P1Φ2), (11)

where

b1 ≡ b1(a) = Ma4(Λ1 + k), (12)

b2 ≡ b2(a) = Ma4(Λ2 + k), (13)

b3 ≡ b3(a) = −2Ma4k, (14)

and

Ω2
1 =

1

M
(b1 cos

2 θ + b2 sin
2 θ − b3

2
sin 2θ),

=
1

2M
((b1 − b2) cos 2θ − b3 sin 2θ + b1 + b2),(15)

Ω2
2 =

1

M
(b1 sin

2 θ + b2 cos
2 θ +

b3

2
sin 2θ),

=
1

2M
((b2 − b1) cos 2θ + b3 sin 2θ + b1 + b2).(16)

If the canonical transformation is such that, θ̇ ≈ 0, and

tan 2θ =
b3

b2 − b1
(≈ const.), (17)

then, the Hamiltonian HN represents the dynamical evo-
lution of two non-interacting universes, as they would be
seen from internal observers, for which the vacuum en-
ergy is now associated to the new frequencies Ω1 and Ω2,
respectively. By choosing an appropriate coupling con-
stant, k, we can obtain a pair of universes for which the
vacuum energy of one of them would approximately be
zero at the expense of an increasing value of the vacuum
energy of the partner universe, the behaviour obtained
in Ref. [11] through the proposed Curvature Principle.
Indeed, following Ref. [11], let us consider two

“nearby” universes, i.e. two interacting universes with
similar values of their cosmological constant, given by

Λ1 = Λ+ ε, (18)

Λ2 = Λ− ε, (19)

where, ε ≪ 1, may represent some small fluctuation of
the vacuum energy in each single universe. Then,

b1 − b2 = 2Ma4ε, (20)

b1 + b2 = 2Ma4(Λ + k), (21)

b3 = −2Ma4k, (22)

and, disregarding orders higher than ε,

tan 2θ = −k

ε
, (23)

cos 2θ =
ε√

k2 + ε2
≈ ε

|k| , (24)

sin 2θ ≈ 1, (25)

with, k < 0. Inserting these values into Eqs. (15)-(16),
it follows that

Ω2
1 ≈ a4(Λ + 2k + ε cos 2θ) ≡ a4Λef

1 , (26)

Ω2
2 ≈ a4(Λ − ε cos 2θ) ≡ a4Λef

2 . (27)

Now, it can easily be checked that for a coupling constant,
k = −Λ

2 , the effective values of the vacuum energy of the
universes read

Λef
1 ≈ 2ε2

Λ
≈ 0, (28)

Λef
2 ≈ Λ− 2ε2

Λ
≈ Λ. (29)

Therefore, the two interacting universes would be seen,
in the new representation, as two non-interacting uni-
verses with an effective value of their cosmological con-

stants given by Λef
1 and Λef

2 , respectively. Let us notice
that a ’super-observer’ that could make measurements
within the whole multiverse would see the two universes
as interacting to each other. However, an observer inside
a universe that would consider her universe as an iso-
lated non-interacting universe would then assume that

the vacuum energy of her universe is given by Λef
1 or

Λef
2 , respectively.

A. General quadratic potential

The same procedure can also be applied to a general
quadratic potential. Let us consider the following Hamil-
tonian

H =
1

2M
(p21 + p22) +Aφ2

1 +Bφ2
2 + Cφ1φ2, (30)

which, as a particular case, includes the Hamiltonian
given by Eq. (4). Let us assume that, A = αa4M(a),
B = βa4M(a), and C = γa4M(a), where α, β, and γ are
constants coefficients and, α ∝ Λ1 and β ∝ Λ2, with Λ1

and Λ2 being the value of the cosmological constants of
the universes 1 and 2, respectively, and γ being the cou-
pling constant of the interaction between the universes.
The kinetic term is invariant under the canonical trans-

formation given by Eqs. (7-10), i.e. p21 + p22 = P 2
1 + P 2

2 ,
however, the potential term transforms into

MΩ2
1

2
Φ2

1 +
MΩ2

2

2
Φ2

2 + (sin 2θ(A−B) + C cos 2θ)Φ1Φ2,

(31)

where, Ω2
1 = Λ̃1a

4 and Ω2
2 = Λ̃2a

4, with

Λ̃1 = (α− β) cos 2θ − γ sin 2θ + (α+ β), (32)

Λ̃2 = (β − α) cos 2θ + γ sin 2θ + (α+ β). (33)
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Therefore, considering once again a constant value θ so
that

tan 2θ =
γ

β − α
, (34)

then, θ̇ = 0 and the transformed Hamiltonian turns out
to be

HN =
1

2M
P 2
1 +

MΩ2
1

2
Φ2

1 +
1

2M
P 2
2 +

MΩ2
2

2
Φ2

2. (35)

This represents the dynamics, in the transformed vari-
ables, of two non-interacting universes with effective val-
ues of their cosmological constants given by Λ̃1 and Λ̃2,
respectively.
We can now analyze the value of the coupling constant

that makes one of the effective cosmological constants
vanishingly small, let us say Λ̃1 = 0. Then, we search for
the value of γ that solves the system of equations (32-

34). Summing up the first two equations, with Λ̃1 = 0,
we obtain

Λ̃2 = 2(α+ β). (36)

From Eqs. (33)-(34):

(β − α)2 + γ2

β − α
cos 2θ =

Λ̃2

2
. (37)

From Eq. (34), follows that, cos 2θ = β−α√
γ2+(β−α)2

, so we

finally obtain

γ2 =
Λ̃2
2

4
− (β − α)2 = 4αβ. (38)

Therefore, for a value of the coupling constant γ2 = 4αβ,
the interaction between the universes yields, in the new
representation, the values Λ̃1 = 0 and Λ̃2 = 2(α+ β), for
the two non-interacting universes. As a particular case,
we have the values α = Λ1+k

2 , β = Λ2+k
2 , and γ = −k,

of the preceding section, with Λ1 and Λ2 given by Eqs.
(18) and (19), respectively, and k = −Λ

2 .

III. A MULTIVERSE OF INTERACTING

HARMONIC OSCILLATORS

In this section, it is shown that, as it occurs in other
branches of physics, the multiverse as a whole might ex-
hibit collective phenomena that make it being physically
richer than the sum of its parts. This sheds a new per-
spective into the customary problems in cosmology and,
particularly, provides a new perspective to the problem
of the cosmological constant.
Let us consider a multiverse of N interacting de-Sitter

universes represented, in the third quantization formal-
ism, by harmonic oscillators like those described in the
preceding section, with scale factor dependent mass and
frequency, given respectively by M(a) = a and ω2(a) ≈

Λa4, where Λ is the value of cosmological constant of the
de-Sitter universes. Following references [19–21], let us
assume in the multiverse some kind of ’nearest interac-
tion’ described by a total Hamiltonian given by

Ĥ =
N
∑

r=1

(

p̂2r
2M +

Mω2

2
φ̂2
r +

Mc

2
(φ̂r − φ̂r+1)

2

)

, (39)

where φ̂r is the wave function operator of the r-universe.
There exists then a finite Fourier transform, given by
[19, 22]

Φ̂r =
1√
N

N
∑

k=1

e−(2πirk/N)φ̂k, (40)

P̂r =
1√
N

N
∑

k=1

e(2πirk/N)p̂k, (41)

for which the Hamiltonian (39) transforms into

Ĥ =
N
∑

r=1

(

1

2M P̂rP̂
†
r +

Mω2
r

2
Φ̂rΦ̂

†
r

)

, (42)

where the frequency of the normal modes, ωr, is given by

ω2
r = ω2 + 4c sin2

(πr

N

)

, (43)

with ωN−r = ωr and c a constant. In the transformation
given by Eqs. (40-41) it has been imposed a periodic

boundary condition such that φ̂N+1 = φ̂1 which provides
a “closed form” for the multiverse. Notice that we could
have imposed instead a “fixed wall” boundary condition,
see Ref. [20].
It is worth pointing out that it would be enough to take

an appropriate negative value of the coupling constant c
to obtain a normal mode with a value of the frequency
close to zero. However, in order to satisfy the canonical
commutation relations, some algebraic conditions have
to be satisfied and an appropriate representation has to
be chosen. The energy eigenstates of the Hamiltonian
in such representation would yield the energy levels of
the normal modes. Following Refs. [19–21], for a given
representation, the energy spectrum splits into a large
number of different levels, like in other collective phe-
nomena (crystals, phonons,...). Given some conditions,
the ground state of the new spectrum approaches to zero.
Therefore, we could say that, as a quantum collective sys-
tem, the multiverse would posses normal modes for which
the ground state turns out to be greatest even though
close to zero.
Let us define the following operators,

a−r ≡
√

Mωr

2~
Φ̂r +

i√
2Mωr~

P̂ †
r , (44)

a+r ≡
√

Mωr

2~
Φ̂†

r −
i√

2Mωr~
P̂r, (45)
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with (a±r )
† = a∓r . In terms of the operators a±r , the

Hamiltonian takes the form

Ĥ =

N
∑

r=1

~ωr

2
{a−r , a+r } =

N
∑

r=1

~ωr

2
(a−r a

+
r + a+r a

−
r ). (46)

The condition the operators a±r must satisfy in order to
comply with the canonical commutation relations turns
out to be equivalent than to require that [19–21]

[Ĥ, a±r ] = ±~ωra
±
r . (47)

In the these Refs., it is shown the conditions that have
to be satisfied for the class of appropriate representations
for which the operators a±r satisfy Eq. (47).
We can represent the ladder operators a±r in terms of

the basis elements of the Lie superalgebra gl(1|N), ejk
with j, k = 1, 2, . . . , N , as

a−r =

√

2βr

ωr
er0 , a+r =

√

2βr

ωr
e0r, (48)

with (e0k)
† = ek0, following then that (a±)† = a∓. The

elements er0 and e0r satisfy the anticommutation relation
(see, Eq. (3.1) of Ref. [20])

{er0, e0r} = err + e00, (49)

and the Hamiltonian (46) can therefore be written as

Ĥ = ~

(

βe00 +
N
∑

k=1

βkekk

)

, (50)

with

βk ≡ −ωk +
1

N − 1

N
∑

j=1

ωj , β ≡
N
∑

j=1

βj . (51)

Thus, Eq. (47) is satisfied and so are the canonical
commutation relations. Furthermore, in terms of the
so-called ladder representation [20], V (p), characterized
by a positive integer p, the orthogonal basis elements
of V (p) are described in terms of a fermionic variable
θ, with θ ∈ {0, 1}, and N bosonic variables, si, with
i = 1, 2, . . . , N and si = {0, 1, 2, . . .}, given by

w(θ; s) ≡ w(θ; s1, s2, . . . , sN), (52)

with, θ+s1+s2+ . . .+sN = p. The action of the algebra
elements e00, ekk, ek0, and e0k over the basis elements
w(θ; s) reads [20]

e00w(θ; s) = θw(θ; s), (53)

ekkw(θ; s) = skw(θ; s), (54)

ek0w(θ; s) = θ
√
sk + 1w(θ; s1, . . . , sk + 1, . . . , sN ),(55)

e0kw(θ; s) = (1− θ)
√
skw(θ; s1, . . . , sk − 1, . . . , sN ).(56)

Then, each basis vector w(θ; s) is an eigenvector of the

Hamiltonian (50), i.e. Ĥw(θ; s) = ~Eθ,sw(θ; s), with
eigenvalues Eθ,s given by

Eθ,s = βθ +

M
∑

k=1

βksk. (57)

These eigenvalues do provide us with a spectrum of the
diagonalized Hamiltonian in terms of the normal modes
of the set of universes, being these taken as a collective
system.

1. Energy spectrum: no interaction case.

Let us now analyze the energy spectrum for different
values of the coupling c. For c = 0, i.e. for no interaction
among the universes, all the values ωk in Eq. (43) are
the same, ωk = ω. The eigenvalues of the Hamiltonian
then read

Eθ,s = ωθ +
ωp

N − 1
. (58)

Therefore, there exist only two different eigenvalues, for
θ = 0 and θ = 1, given respectively by

E0,s =
ωp

N − 1
, (59)

E1,s =
ωp

N − 1
+ ω. (60)

Let us notice that, for a fixed value of p, then E0,s → 0
and E0,s, for a large number of universes in the multi-
verse, i.e. for N ≫ 1. Therefore, one of the new ’energy’
levels turns out to be in that case close to zero, even
though there is no interaction present among the uni-
verses. This is just a quantum effect having no classical
analogue, that has come up because the consideration of
the multiverse as a collective quantum system.
The multiplicities, m0 and m1, of the eigenvalues E0,s

and E1,s are, respectively,

m0 =

(

p+N − 1

N − 1

)

, (61)

m1 =

(

p+N − 2

N − 1

)

. (62)

If the microcanonical states would be equally probable,
then, the probabilities P0,s and P1,s of each eigenstate,
with θ = 0 and θ = 1, respectively, would be proportional
to the multiplicity of the state. Therefore, we would have

P0,s =
p

p+N − 1
P1,s. (63)

It means that if p < N − 1 and N ≫ 1, the ground
state of the multiverse would be much less probable that
the excited state, i.e. P0,s ≪ P1,s. Then, the collective
vacuum state, for which E0,s = 0, would be a very im-
probable state for the multiverse. However, if p > N − 1
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and N ≫ 1, then, P0,s = εP1,s, with ε ∈ (12 , 1). In that
case, the probability of a decay of the level θ = 1 into the
ground state θ = 0, would be considerable and we might
expect that the multiverse, may be initially created in the
excited state, would finally decay into the ground state.

2. Energy spectrum: the interacting case.

For the case, c0 > c > 0, where c0 is a limiting value
for the variables βk to be positive [19, 20], then, the two
eigenvalues of the non-interacting case split into a num-
ber of different eigenvalues. Let us focus on the maximal
and minimal eigenvalues. The former corresponds to the
eigenstate w(1; 0, . . . , p− 1), with eigenvalue given by

E1,s = β + (p− 1)βN . (64)

The assumed periodic boundary condition implies that,
βk = βN−k, and therefore,

β1 > β2 > . . . > β[N
2
] ≤ β[N

2
]+1 < . . . < βN ,

and β1 < βN , where [N2 ] is the integer part of N
2 and

the equality between β[N
2
] and β[N

2
]+1 only holds for N

even. Without lost of generality we can consider the
latter case. Then, the minimal eigenvalue corresponds
to the eigenvector w(0; s1, . . . , sN ), with si = p δi,N

2

, for

which

E0,s = p βN

2

= p





1

N − 1

N
∑

j=1

ωj −
√

ω2 + 4c



 . (65)

Let us estimate an upper bound for the ground eigenvalue
E0,s. From the Cauchy-Schwartz inequality, for c > 0,

N
∑

j=1

ωj ≤ N
1

2





N
∑

j=1

ω2
j





1

2

. (66)

On the other hand, with Eq. (43),

N
∑

j=1

ω2
j = N(ω2 + 2c). (67)

It then follows that

0 < βN

2

≤ N

N − 1

√

ω2 + 2c−
√

ω2 + 4c ≡ βmax(c),

(68)
where βmax(c) is a function that vanishes for the value
c = c0, given by

c0 =
2N − 1

2(N2 − 4N + 2)
ω2. (69)

Therefore, for values c < c0, it is obtained, βmax > βN

2

>

0. It implies that for a value of the interaction coupling,

c . c0 , then, the energy of the ground state would be
greater but fairly close to zero.
For instance, let us take a value of the interaction cou-

pling close to c0, i.e.

c =

(

2N − 1

2(N2 − 4N + 2)
− (N − 1)2

N2 − 4N + 2
ε

)

ω2, (70)

with 0 < ε < 2N−1
2(N−1)2 ≪ 1 (the second inequality is

needed to satisfy the condition c > 0). Then, it is ob-
tained that βmax is of order ε, given by

βmax =

√
N2 − 4N + 2

N
ω ε, (71)

so the ground state E0,s of the multiverse would be then
of order ε, too.
Let us finally particularize to the more tractable case

of three interacting universes (i.e. N = 3). Then, ω1 =

ω2 =
√
ω2 + 3c and ω3 = ω. It yields the values

β1 = β2 =
ω

2
, (72)

β3 =
√

ω2 + 3c− ω

2
, (73)

β =

3
∑

j=1

βj =
√

ω2 + 3c+
ω

2
. (74)

ForN = 3 there is no restriction on the values of c [19, 20]

as all the values of βj are positive, provided that c > −ω2

4 .
In that simple case, it can easily be seen that, for c > 0,
β3 > β2 = β1, and the minimum value corresponds to

β1 = ω
2 . However, for values 0 > c > −ω2

4 , then β1 =
β2 > β3. Thus, the minimum eigenvalue is proportional
to the value β3, which can be fairly close to zero for

c ≈ −ω2

4 . This fact might prompt us to check if there
can also be a regime c < 0 in the more general case for
which N > 3 (in the cited references, the authors restrict
their attention to the general case c > 0).

IV. CONCLUSIONS AND DISCUSSION

The treatment of the multiverse as a quantum collec-
tive phenomena opens the route to novel approaches for
traditional problems in cosmology. Besides providing a
novel set of tools to understand cosmic phenomena that
arises from the interaction between two or more individ-
ual universes, it seems that the multiverse, considered as
a collective phenomena, may show features that were not
contemplated so far. For instance, we have shown that,
in terms of a new representation, the multiverse may be
organized in a collective structure for which the energy
levels available to single universes become quite different
to those derived from the mere sum of universes. This
shows that the multiverse is more than the sum of its
parts, as it already happens in other branches of physics
where interaction cannot be disregarded.
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In what concerns the vacuum energy of a single uni-
verse, it is shown that it depends not only on its internal
properties or even on an particular interaction between
two or more universes, but it can depend on the structure
of the multiverse as a whole. Thus, the logics of the mul-
tiverse becomes rather different from the one concerning
a single universe, or even from the logics applied to a
set of universes considered individually. We have shown
that new energy levels for the multiverse have also been
found even for the case where no interaction is explicitly
present among the universes, which is a splendid exam-
ple of the new physics that the quantum multiverse may
conceal.
One weak link of our approach is that the discussed

formalism is highly dependent on the chosen representa-
tion. There seems to be then a degree of arbitrariness
on the description of the quantum multiverse, which is
actualy a general problem in quantum mechanics. An-
other difficulty is that we do not know how to properly
interpret the found “fermionic-bosonic” structure of the
multiverse as discussed above. In any case, it is fairly

interesting to see that the multiverse components can in-
teract either as bosonic or as fermionic subsystems.
Despite all these shortcomings, our study opens the

door to a wide range of new features of the multiverse,
and the unravelled collective phenomena was shown to
have a bearing on cosmological constant problem. Fur-
thermore, the encountered collective properties of the
multiverse do provide the possibility of lifting some of
the objections raised in Ref. [7] about the questionable
predictive power of the multiverse hypothesis. Of course,
other schemes could be considered to tackle the collec-
tive phenomena of coupled harmonic oscillators [23–31].
In this respect, it is of particular interest the study of
Refs. [22, 32], where the authors consider the dynamical
evolution of the entanglement within a chain of harmonic
oscillators, and find that quantum information processing
mainly deals with the transfer quantum information be-
tween “separated qbits”. An approach along these lines
could be tried in order to study the transfer of entangle-
ment in the multiverse. This might be the focus of an
ensuing future work.
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Phys. 46, 1100 (2007).
[30] A. Chimonidou and E. C. G. Sudarshan, Phys. Rev. A

77, 032121 (2008).
[31] J. A. Almendral et al., Int. J. Bifurc. Chaos 20, 753

(2010).
[32] K. Audenaert, J. Eisert, and M. B. Plenio, Phys. Rev. A

66, 042327 (2002).

http://arxiv.org/abs/hep-th/0302219
http://arxiv.org/abs/hep-th/0603249
http://arxiv.org/abs/hep-th/0612142
http://arxiv.org/abs/astro-ph/0603266
http://arxiv.org/abs/1105.3796
http://arxiv.org/abs/1110.4630
http://arxiv.org/abs/1205.2675

