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Abstract

A fully nonlinear Boussinessq-type model with several free coefficients is con-

sidered as a departure point. The model is monolayer and low order so as to

simplify numerical solvability. The coefficients of the model are here consid-

ered functions of the local water depth. In doing so, we allow to improve the

dispersive and shoaling properties for narrow banded wave trains in very deep

waters. In particular, for monochromatic waves the dispersion and shoaling

errors are bounded by ' 2.8% up to kh = 100, being k the wave number and

h the water depth. The proposed model is fully nonlinear in weakly disper-

sive conditions, so that nonlinear wave decomposition in shallower waters is

∗corresponding author
Email address: simarro@icm.csic.es (Gonzalo Simarro)

Preprint submitted to Elsevier February 25, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36120184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


well reproduced. The model equations are numerically solved using a fourth

order scheme and tested against analytical solutions and experimental data.

Keywords: Phase-resolving wave propagation models, Boussinesq-type

equations, linear dispersion and shoaling, numerical schemes.

1. Introduction1

In deep waters water wave propagation does not depend on water depth.2

For instance, the wave celerity c for a wave with period T is c = gT/2π,3

with g the gravity acceleration. Because each wave period, T, travels with4

a different velocity, deep waters are called dispersive. Furthermore, in deep5

waters the wave amplitude, a, is usually much smaller than the water depth6

h and, as a consequence, the model equations are linear (Airy theory).7

As the water waves propagate to the coast, the water depth h decreases8

and the wave propagation becomes influenced by it. Also, nonlinear effects9

become important. In shallow waters, where the wave propagation is dom-10

inated by the water depth, the wave celerity is given by c ≈
√
gh, which is11

independent of the wave period (i.e., non dispersive). An important physical12

property of shallow waters is that the horizontal velocity profile is nearly uni-13

form in the vertical. Nonlinear Shallow Waters Equations (NSWEs), which14

are vertically integrated, exploit this property and are valid for non dispersive15

conditions and for arbitrary amplitudes of the wave.16

It is accepted that shallow water conditions correspond to kh . 0.3, with17

k = 2π/λ the wave number and λ the wave length, while kh & 3 corresponds18

to deep waters (Dean and Dalrymple, 1984). In intermediate waters (namely19

0.3 . kh . 3) nonlinearity and dispersion coexist and neither Airy theory20
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nor NSWE can represent the physics. To overcome this problem, two main21

pertubation approaches are found (Dingemans, 1997). On the one hand,22

Stokes theory departs from the fully dispersive linear Airy theory to incor-23

porate weakly nonlinear effects. On the other, Boussinesq-Type Equations24

(BTEs) depart from NSWEs and include weakly dispersive effects. This work25

is focused on BTEs.26

Being a0, h0 and k0 characteristic values for wave amplitude, water depth27

and wave number respectively, the dimensionless parameters28

ε ≡ a0
h0
, and µ ≡ k0h0, (1)

represent nonlinear and dispersive effects respectively. The NSWEs can rep-29

resent fully nonlinear waves for the nondispersive case. The original BTEs30

by Peregrine (1967) included all the nonlinear non dispersive terms (NSWEs)31

plus the weakly nonlinear and weakly dispersive terms O (ε1µ2) , but disre-32

garded the highly nonlinear and weakly dispersive terms O (ε2µ2, ε3µ2) . The33

inclusion of the highly nonlinear and weakly dispersive terms O (ε2µ2, ε3µ2)34

was done, e.g., by Green and Naghdi (1976) and Wei et al. (1995).35

The equations by Peregrine (1967) were derived for the depth averaged36

horizontal velocity, u, and give good linear dispersive performance, i.e., errors37

below 1% relative to Airy’s celerity, up to kh . 1.1. To improve the range38

of applicability, several approaches are found in the literature. Two of them39

are higher order and multilayer models: higher order models include terms40

O (µ4) or higher (Gobbi et al., 2000), while the multilayer models split the41

flow into several layers, applying low order models into each one (Lynett and42

Liu, 2004). These two kind of models increase the numerical complexity for43
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they include fifth order derivatives or more unknowns.44

Based on the method of Agnon et al. (1999), Madsen et al. (2002) devel-45

oped a fully nonlinear model, which is accurate in very deep water (kh . 4046

for the linear case). Their model requires more differential equations to be47

solved, compared to other higher order models such as that by Gobbi et al.48

(2000), and the highest order of derivatives in the model is also fifth. Madsen49

et al. (2003) presented a simplified version of their original model, where the50

highest order of derivatives is reduced to three. The range of application is51

also reduced to kh . 10.52

Using a low order monolayer model, Nwogu (1993) improved the linear53

dispersive performance up to kh . 3.3 by using the horizontal velocity uα at54

z = zα instead of the depth averaged velocity proposed by Peregrine (1967).55

In fact, the above mentioned models by Wei et al. (1995) and Lynett and56

Liu (2004), amongst other, follow this idea to improve the linear dispersion57

performance.58

Following the track of low order monolayer BTEs, Madsen and Schaffer59

(1998) modified the model equations by Wei et al. (1995) by introducing new60

terms which included free coefficients. While the equations remain exact up61

to O (µ2) , similar to those by Wei et al. (1995), for the proposed coefficients62

they obtained errors in linear dispersion below 1% for kh . 6.2.63

Although the improvements in linear dispersion, i.e., in the representation64

of the wave celerity, provided by Nwogu (1993) or Madsen and Schaffer (1998)65

are substantial, it is not generally so with the linear shoaling, i.e., with the66

representation of the wave amplitude: the linear shoaling by the equations67

by Nwogu (1993) and Madsen and Schaffer (1998) is fair (1% error in wave68
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amplitude) only up to kh ≈ 0.78 and kh ≈ 0.82 respectively, and at kh = 269

the errors are already above 7.4% in both cases.70

Other approaches have considered the improvement of linear properties71

to arbitrary depths which are to mention. Beji and Nadaoka (1999) followed72

a different approach also for narrow banded wave trains, whereas Karambas73

and Memos (2009) reached fully dispersion (i.e., for arbitrary depths and74

arbitrary ranges of frequencies). In both cases, however, the models do not75

allow fully nonlinearities in weakly dispersive conditions.76

Departing from Madsen and Schaffer’s equations and using an optimiza-77

tion approach, Galan et al. (2012) reduced the errors to 0.3% both in linear78

dispersion and shoaling up to kh ≈ 5. Further, Galan et al. (2012) equations79

also include new terms O (ε1µ4) to improve the weakly nonlinear and highly80

dispersive properties.81

All the above works consider that the free coefficients introduced are con-82

stant. In the present work we consider that these coefficients are functions83

of the water depth. In this way we will be able to improve the model prop-84

erties up to deeper waters. As a counterpart, we will require that the wave85

train travelling to the coast is, in deep waters, narrow banded in frequencies.86

Narrow banded wave trains are associated to long fetchs (swells), and hence87

its usefulness. Further, in weakly dispersive conditions the equations will88

remain fully nonlinear.89

This work can be considered as an extension of that by Lee et al. (2003)90

for the propagation of monochromatic waves in deep waters. The work by Lee91

et al. departed from Wei et al. (1995) equations, having only one free param-92

eter and only monochromatic waves could be represented (strickly speaking,93
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only linear dispersion could be well represented). Because we have more free94

parameters available, we will be able to propagate waves within a range of95

frequencies.96

2. Governing equations97

The fully nonlinear BTEs by Galan et al. (2012), hereafter G12, are98

X− X∗ + ∇· [d1αh2∇X + d2αh
3∇Y]

+ ∇·
[(
c1αh−

η

2

)
η∇X +

(
c2αh

2 − η2

6

)
η∇Y

]
+ (δ − δh)∇·

[
h2∇ (X− X∗)

]
+ δh∇2

[
h2 (X− X∗)

]
+ δε∇· [hη∇ (X− X∗) ] = 0, (2a)

and99

Z− Z∗ + c1αh∇∇· (hZ) + c2αh
2∇∇·Z−∇

[
η∇· (hZ) +

η2

2
∇·Z

]
+ ∇

[
(c1αh− η) u·∇X +

(
c2αh

2 − η2

2

)
u·∇Y +

(X + ηY) 2

2

]
+ (γ − γh)h2∇∇· (Z− Z∗) + γhh∇∇· (h (Z− Z∗))

− γε∇ [η∇· (h (Z− Z∗) ) ] = 0, (2b)

with η the free surface elevation, u the horizontal velocity evaluated at z =100

zα = αh, Y ≡∇·u and101
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W95 M98 G12

α −0.53096 −0.54122 −0.54217

δ — −0.03917 −0.02409

γ — −0.01052 −0.00492

δh — −0.14453 −0.15530

γh — −0.02153 −0.07897

δε — — −0.36052

γε — — 0.13169

Table 1: Constant coefficients for Wei et al. (1995), Madsen and Schaffer (1998)

and Galan et al. (2012), denoted respectively as W95, M98 and G12.

X ≡∇· (hu) , Z ≡ ut, (3a)

X∗ ≡ −ηt −∇· (ηu) , Z∗ ≡ −
1

2
∇ (u·u)− g∇η, (3b)

with g is the gravity acceleration. In equations (2)102

c1α ≡ α, c2α ≡
α2

2
, d1α ≡ α +

1

2
, d2α ≡

α2

2
− 1

6
, (4)

where α is a free coefficient, as well as δ, γ, δh, γh, δε and γε. Table 1 shows103

the values by Galan et al. (2012), hereafter “G12”, and also the ones required104

to recover the equations by Madsen and Schaffer (1998) and Wei et al. (1995).105

The equations (2) are obtained using an asymptotic expansion in kh and106

are exact up to O ( (kh) 2) . No limitations are imposed on the nonlinearity,107

so that they can represent fully nonlinear waves up to order O ( (kh) 2) . For108

kh → 0 they become independent of the coefficients and tend to the exact109
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shallow water equations. The weighting coefficients influence the behavior of110

the equations only in deeper waters. Being more specific, the linear dispersion111

is influenced only by α, δ and γ, coefficients δh and γh only influence the linear112

shoaling and the coefficients δε and γε affect only the nonlinear performance.113

All seven coefficients have been chosen so as to improve the linear and weakly114

nonlinear performance in deeper waters.115

As shown by G12 for constant coefficients, the linear dispersion relation-116

ship embedded in the above equations (2) is117

{
c2bte
gh

=

}
ω2

gk2bteh
=

1− (dα + γ + δ) (kbteh) 2 + (dα + δ) γ (kbteh) 4

1− (cα + γ + δ) (kbteh) 2 + (cα + γ) δ (kbteh) 4 , (5)

where cbte wave celetiry corresponding to these BTEs, kbte the corresponding118

wave number, ω the wave angular frequency, cα ≡ cα,1 + cα,2 = α2/2 +α and119

dα ≡ dα,1 + dα,2. The exact Airy dispersion expression is120

{
c2Airy

gh
=

}
ω2

gk2Airyh
=

tanh (kAiryh)

kAiryh
. (6)

For given values of gravity acceleration g, water depth h, wave angular121

frequency ω and the three coefficients α, δ and γ, the values of kbte and kAiry122

obtained from the equations (5) and (6) are different in general, thus giving123

an error in the wave celerity (linear dispersion). Figure 1 shows the error in124

linear dispersion, defined as125

εc ≡
cbte
cAiry

− 1

{
=
kAiry

kbte
− 1

}
, (7)

as a function of the dimensionless group κ ≡ ω2h/g. This group, κ, can be126

used as a k-independent alternative to ξ ≡ kh to evaluate whether deep or127
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shallow waters hold (Nwogu, 1993). It has the advantage of not introducing128

k, which is different depending on whether equation (5) or (6) are used. For129

Airy theory κ = ξ tanh ξ, and therefore, κ ≈ ξ for ξ & 3.130

Figure 1: Errors εc and εs for G12 (full lines), M98 (dashed) and W95 (dash-dotted).

Shoaling errors, εs, are denoted with symbols.

Figure 1 also includes the error in the representation of wave amplitude131

assuming mild slope conditions. This error is defined as (Chen and Liu, 1995)132

εs ≡ exp

(∫ h

0

αη,Airy − αη,bte
h∗

dh∗

)
− 1, (8)

where αη,Airy (κ∗ ≡ ω2h∗/g) and αη,bte (κ∗, α, δ, γ, δh, γh) are the shoaling gra-133

dients for Airy’s and above BTEs (Galan et al., 2012; Madsen and Sorensen,134

1992). The error above defined is the relative error in the wave amplitude135

for a linear propagation over mild slopes from κ to the shore, and it has been136

shown to be the proper error to be used (Chen and Liu, 1995; Lee et al.,137

2003; Galan et al., 2012).138

From Figure 1, the coefficients proposed by Galan et al. provide a better139

performance compared to the other sets both in linear dispersion (εc) and,140

specially, in linear shoaling (εs). The G12 coefficients in Table 1 were found141

so as to improve the performance for any κ up to κmax = 5 obtaining |εc, εs| <142

0.3%, and the corresponding sets for wider ranges (i.e., up to deeper waters)143

such as κmax = 10 or κmax = 20 were also provided.144

The above results have been here slightly improved, as shown in Table 2145

for different values of κmax. In a problem where, e.g., the maximum values146
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κmax = 5 κmax = 10 κmax = 20 κmax = 40 κmax = 60

α −0.55247 −0.59441 −0.59412 −0.58723 −0.57057

δ −0.01597 −0.05730 −0.03277 −0.02044 −0.02249

γ −0.00014 −0.03277 −0.00407 −0.00176 −0.00181

δh −0.09701 0.09615 0.03143 0.01593 0.02425

γh −0.05526 0.01070 0.00201 0.00054 0.00073

εc = εs 0.170% 1.60% 3.72% 7.46% 16.8%

Table 2: Constant coefficients and errors for different κmax.

of κ are expected to be above 10 and below 20, the coefficients for κmax = 20147

should be used: in that case, the errors in wave celerity and shoaling will be148

below 3.72%.149

From Table 2, the wider the range (i.e., the deeper waters we consider),150

the higher the error. This is a natural consequence of the perturbative nature151

of the BTEs. By construction, using constant coefficients in the BTEs, from152

equation (5) one gets c ∝
√
gh as kh increases (deep waters), so that one153

could never obtain the desired result c = g/ω provided by the Airy theory154

in deep waters. To circumvent this problem, we will consider here that the155

coefficients are functions of h.156

3. Coefficients functions of water depth h157

Here we will consider that the coefficients are functions of the water depth158

h. Thinking in a dimensional way, the coefficients α, δ, γ, δh and γh will be159

functions of gravity g, local water depth h and the limits of the angular160

frequencies in deep waters, ωmin and ωmax. Applying dimensional analysis,161

10



e.g., for α, we get162

α = f (g, h, ωmin, ωmax) = f

(
κmax ≡

ω2
maxh

g
, % ≡ ωmin

ωmax

)
,

where f stand for “function of”.163

In the analytical approach in Section 4 the ωmin and ωmax are replaced by164

a single frequency ω0, and therefore165

α = f (g, h, ω0) = f

(
κ0 ≡

ω2
0h

g

)
.

Here, for the sake of clarity we will work in dimensional form. However,166

the results for the coefficients and errors, which are all of them dimensionless,167

will be presented as funtions of the above groups κj and %.168

Because the coefficients are functions of the water depth, the analysis of169

the properties of the equations is slighlty richer than in the case of constant170

coefficients. Now, for instance, the one dimensional linearized equations over171

mild slopes, which are the ones used to analyze the linear dispersion and172

shoaling properties (Dingemans, 1997), read173

∂η

∂t
+ h

[
∂uα
∂x

+ h

(
l1
∂3η

∂t∂x2
+ l2h

∂3uα
∂x3

)]
+
dh

dx

[
uα + h

(
s1
∂2η

∂t∂x
+ s2h

∂2uα
∂x2

)]
+ (α + 1)

∂α

∂x
h3
∂2uα
∂x2

= 0, (9a)

and174

∂uα
∂t

+ g
∂η

∂x
+ h2

[
gl3

∂3η

∂x3
+ l4

∂3uα
∂t∂x2

]
+ h

∂h

∂x

[
gs3

∂2η

∂x2
+ s4

∂2uα
∂t∂x

]
= 0, (9b)
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where lj and sj are functions of α, δ, γ, δh and γh. In equation (9a), the term175

(α + 1)
∂α

∂x
h3
∂2uα
∂x2

=
∂h

∂x
(α + 1) βαh

2∂
2uα
∂x2

, βα ≡ h
∂α

∂h
,

is new and would cancel if α was constant. This term has the same structure176

than that corresponding to s2 in equation (9a), is orderO (∂h/∂x) and affects177

only the shoaling. The analysis of the linear dispersion and shoaling can be178

done following the usual procedures, and it is avoided here for clarity in the179

presentation. From this analysis one gets that the linear dispersion is not180

affected by the derivatives of the coefficients, so that equation (5) remains181

valid. Further, the shoaling analysis, and in particular the shoaling gradient182

αη,bte, is affected by βα, βδ and βγ, which are defined as183

βa ≡ h
∂a

∂h
,

which happen to be order one.184

4. An analytical approach185

Consider first the deep-water propagation of monochromatic waves with186

an angular frequency ω = ω0. In deep waters nonlinear effects are negligi-187

ble and, hence, monochromatic waves remain monochromatic. In fact, the188

main feature to be captured by any model equations are wave celerity and189

amplitude.190

Equation (5), which, as mentioned, remains valid for variable coefficients,191

and equation (6) can be understood as kbte = fbte (α, δ, γ, g, h, ω) and kAiry =192

fAiry (g, h, ω) . Therefore, imposing the linear dispersion to be exact, i.e.,193

cbte = cAiry, which is equivalent to impose kbte = kAiry, gives the condition194
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{fc ≡} fbte (α, δ, γ, g, h, ω = ω0) − fAiry (g, h, ω = ω0) = 0. (10)

For arbitrary values of g, h and ω0, the above condition can be satisfied195

in an infinite number of ways since we have three free coefficients. However,196

considering, e.g., δ = γ = 0 we can obtain α (or cα) biunivocally. Recalling197

that dα = cα + 1/3, we get198

cα =
k0h− (k0h) 3/3− tanh (k0h)

(k0h) 2 (k0h− tanh (k0h) )
, (11)

where k0h is obtained from κ0 ≡ ω2
0h/g since κ0 = k0h tanh (k0h) . From cα199

we recover α as α = −1 +
√

1 + 2cα.200

4.1. Linear dispersion in deep waters201

The above condition (11) was already obtained by Lee et al. (2003) de-202

parting from BTEs with only one free parameter (α, since δ = γ = 0 are not203

present in their approach). Taking advantage of the fact that we have three204

free coefficients for linear dispersion (α, δ and γ) we will now improve the205

dispersion performance in a neighbourhood of ω = ω0. Instead of imposing206

fc = 0, in order to improve the performance around ω0 (and to increase the207

number of equations up to the number of unknowns, three) we consider here208

fc (ω = ω0) =
dfc
dω

(ω = ω0) =
d2fc
dω2

(ω = ω0) = 0. (12)

In this way we get a system of three equations for our three unknowns209

cα (i.e., α), δ and γ. The analytical solutions of the above equations are210

shown in Appendix A. In fact, there are four different sets of solutions. The211

first solution, denoted “+&+” in the appendix, has values similar to those in212
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Table 1 for M98 and G12. The other three solutions have shown to present213

numerical stability problems and are disregarded. In any case, the functions214

α, δ and γ turn out to be functions of the dimensionless group κ0 ≡ ω2
0h/g:215

this fact has been anticipated through dimensional analysis.216

The consequences of imposing the conditions (12) are illustrated in Figure217

2 for ω0 = 1s−1 and considering four different water depths h –the values of α,218

δ and γ are different at each water depth h since κ0 = ω2
0h/g changes–. The219

error εc always cancels at ω = ω0 and, since the first and second derivatives220

are null, the error is kept small around ω0. In fact, for h = 250 m, 500 m221

and 1000 m the errors behave similarly and are below 1% for 0.83 s−1 6 ω 6222

1.20 s−1. For h = 50 m, i.e., in shallower waters, the error behaves, naturally,223

better: in this case the error is below 1% for 0 6 ω 6 1.32 s−1. The solution224

“+&+” in Appendix A is considered to build Figure 2.225

Figure 2: Illustration of the consequences of imposing fc = ∂fc/∂ω = ∂2fc/∂ω
2 = 0

at ω = ω0 = 1 s−1.

For a given ω0, Figure 3 shows the range frequencies ω that can be prop-226

agated with some given errors (5%, 1% and 0.1%) as a function of h using227

variable coefficients α, δ and γ obtained above. The results are presented228

showing the ranges ω/ω0 as a function of κ0 ≡ ω2
0h/g. We recognize the con-229

venient fact that the curves tend to be horizontal as h→∞, so that the same230

range of frequencies can be propagated up to arbitrary deep waters. From231

Figure 3, using the coefficients as functions of κ0, shown in Appendix A, one232

can propagate in arbitrary deep waters waves the range 0.71ω0 6 ω 6 1.39ω0233
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with error εc < 5%, the range 0.83ω0 6 ω 6 1.20ω0 with εc < 1% (as already234

stated), and the range 0.92ω0 6 ω 6 1.09κ0 with εc < 0.1%.235

Figure 3: Range of application for the coefficients correspondig to a given κ = κ0.

The errors are εc.

For a given range of frequencies [ωmin, ωmax] and a given maximum depth236

h, the value of ω0 that minimizes the error in the range, which is not neces-237

sarily the mean value (ωmin + ωmax) /2, can be found. As already mentioned,238

in shallow waters, as it corresponds to BTEs, all frequencies are well repre-239

sented. This fact is clear from Figure 3: the range ω/ω0 increases as κ0 → 0.240

For instance, for κ0 = 3 the errors are below only 0.1% for any ω . 1.27ω0,241

what is to say for any κ = ω2h/g . 1.272ω2
0h/g = 1.61κ0 ≈ 4.83.242

4.2. Linear shoaling in deep waters243

For a given frequency ω0, above we have found the values of α, δ and γ,244

functions of h, so as to improve the linear dispersion performance around ω0.245

In fact, it has been seen that α, δ and γ are functions of κ0 ≡ ω2
0h/g.246

A similar reasoning is followed to obtain the coefficients δh and γh in247

Appendix B. Now the focus is on shoaling error εs as defined in expression248

(8). Recall that, because we are considering variable coefficients, the shoaling249

gradient αη,bte depends on α, δ, γ, δh and γh but also on βα, βδ and βγ,250

which are known from the the solution of α, δ and γ obtained from the251

linear dispersion analysis. As shown in Appendix B, there are four sets of252

solutions for δh and γh corresponding to the different sets obtained for α, δ253

and γ above. The solution of δh and γh corresponding to “+&+”, the only254
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one we are interesed in, presents an infinite discontinuity at κ0 ≈ 4.2 (Figure255

B.13) and, therefore, this approach must be abandoned.256

5. A global minimization approach257

The analytical approach above has shown to yield useful results in deter-258

mining α, δ and γ as functions of κ0 ≡ ω2
0h/g to improve the linear dispersion259

performance for frequencies around ω0. However, it gives undesirable results260

for δh and γh as functions of ω2
0h/g when trying to improve the linear shoaling261

performance. Therefore, the above approach is of use if the only property to262

be well represented was wave celerity.263

A different approach aimed to improve both linear dispersion and shoaling264

is proposed here. We consider water waves which in deep waters have fre-265

quencies within the range ω ∈ [ωmin, ωmax] propagating from a water depth266

hmax to the shore. We will find α, δ, γ, δh and γh at n values of h from hmin267

to hmax, given by268

hj ≡ hmin + (j − 1) ∆h, j = 1, . . . , n,

with269

∆h ≡ hmax − hmin

n− 1
,

where the values of hmin and n are discussed later. From the above definitions270

h1 = hmin and hn = hmax. For h 6 h1 the coefficients will be constant and271

equal to those at h1 while for any h ∈ [hj, hj+1] with j < n− 1, we consider272

linear interpolations of the values at hj and hj+1.273
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For given values of hmin, hmax, ωmin, ωmax and ∆h we will get the values274

of the five coefficients at each hj so as to minimize the error275

ε ≡ maxωmin6ω6ωmax

06h6hmax
{|εc| , |εs|} ,

where h can take any value from 0 to hmax.276

We note that, while εc is “local” –i.e., it depends only on the coefficients277

at the water depth were the error is evaluated–, the error εs depends on all278

five coefficients evaluated at any depth below the local water depth. For this279

reason, the minimization of the five coefficients at all hj must be performed280

at once.281

Given hmax and ωmax, the maximum value of κ is κmax,max = ω2
maxhmax/g.282

Although any possibility could be chosen, for illustrative purposes we con-283

sider κmax,max = {20, 40, 60, 80, 100} . Besides, we consider hmin so that the284

minimum value of κ at this depth, which is ω2
minhmin/g, equals 4. In this way285

we ensure that the coefficients are constant up to, at least, κ = 4.286

Finally, ∆h = (hmax − hmin) / (n− 1) were n is chosen so that287

κmax,max − 4

n− 1
= 4, i.e., n =

κmax,max

4
.

According to the dimensional analysis, for a given κmax,max, now the co-288

efficients will be functions of289

κmax,j ≡
ω2
maxhj
g

, and % ≡ ωmin

ωmax

,

and the error ε will be a function of κmax,max and %.290

The results are shown in Table 3. We note that the minimization problem291

is complex (5n unknowns and a non convex objective function ε) and the292

17



% = 0.8 % = 0.9 % = 1.0

κmax,max = 20 3.67% 2.67% 0.98%

κmax,max = 40 6.60% 4.51% 0.98%

κmax,max = 60 11.2% 6.60% 2.46%

κmax,max = 80 12.1% 6.91% 2.86%

κmax,max = 100 12.4% 6.91% 2.86%

Table 3: Errors.

results could probably be further improved. The table presents the errors293

ε = f (κmax,max, %): the values of the coefficients α, δ, γ, δh and γh, functions294

of {κmax,max, κmax,j, %} can be found at295

https://dl.dropbox.com/u/11753471/web/p110315.zip296

The general expectable trends in Table 3 are the same observed in Figure297

3. First, the error diminishes as the % decreases, i.e., as the frequency range298

is diminished. Second, the error increases with κmax,max, but it seems to tend299

to a finite error as κmax,max grows.300

For each case in Table 3, the coefficients δε and γε, constant, have been301

established following the same procedure as that presented in Galan et al.302

(2012). The results are presented in the above link.303

6. Numerical scheme and results304

The numerical scheme considered to solve the model equations is the one305

presented by Galan et al. (2012). This scheme uses a fourth order accuracy306

finite differences discretization in space and a fourth order Runge-Kutta ex-307

plicit scheme in time.308
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In this Section, three numerical examples are shown in order to demon-309

strate the capabilities of the proposed equations. The first case is the prop-310

agation of a bichromatic linear wave train over a submerged shoal in deep311

waters, the second is the simulation of one the experiments of the Dinge-312

mans bar and the third one considers one of the experiments by Trulsen313

et al. (2012) for irregular and nonlinear wave propagation.314

6.1. Case 1: linear propagation over sloping bathymetry315

A first example is meant to illustrate the linear performance of the equa-316

tions with variable coefficients in deep waters. We consider the propagation317

of a wave train composed by the sum of two monochromatic waves with318

amplitudes a1 = a2 = 0.1 m and periods T1 = 6.0 s and T2 = 6.5 s.319

The bathymetry is a shoal given by320

h (m) = hmax − (hmax − hmin) exp

(
−
(
x− xc

800

)2
)
,

with hmax = 300 m and hmin = 150 m respectively the maximum and mini-321

mum depths (see Figure 5, bottom panel). The top of the bump is located at322

x = xc = 4750 m and the maximum slope, at x = xc ± 800/
√

2, is ∂h/∂x ≈323

0.098. In this case ωmin = 2π/T2 = 0.967 s−1 and ωmax = 2π/T1 = 1.047 s−1
324

and, hence325

κmax,max =
ω2
maxhmax

g
≈ 33.54, % =

ωmin

ωmax

≈ 0.923,

and we consider the coefficients corresponding to κmax,max = 40 and % = 0.9,326

with errors bounded by 4.51%. The coefficients are provided at 10 different327
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κmax,j hj (m) α δ γ . . .

4.94 44.18 −0.580282 −0.019680 −0.000789 . . .

8.83 79.03 −0.579805 −0.020601 −0.001293 . . .
...

...
...

...
...

...

36.10 322.98 −0.578831 −0.020237 −0.001801 . . .

40.00 357.83 −0.577795 −0.020225 −0.001703 . . .

Table 4: Coefficient sets to be used depending on the maximum expected κ.

Figure 4: Linear coefficients for test case 1, corresponding to κmax,max = 40 and

% = 0.9 (here expressed as functions of hj)

values of κmax,j = ω2
maxhj/g equally spaced from κmax,1 = 4.94 to κmax,10 =328

κmax,max = 40. In table 4 some of them are presented as a function of hj.329

Linear interpolation gives the values of the coefficients at any of the grid330

points, x, imposing as well constant values corresponding to those at h1 in331

points where h 6 h1. This is shown graphically in Figure 4, where a constant332

initial length can be localized below κmax = 4.94 for all the free coefficients.333

Table 5 summarizes the errors made in linear dispersion for the two con-334

sidered frequencies at two discrete points: the first point at the beginning of335

the domain where the depth is maximum and the second point on the top of336

the bump. As shown, maximum error is 3.82% (6 4.51%) .337

Figure 5 shows the propagation of the two different frequencies through-338

out the domain obtained by the numerical model together with the analytical339

envelope for the amplitude obtained by using the linear theory (which gives340
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wave component j = 1 j = 2

a (m) 0.1 0.1

T (s) 6.0 6.5

at h = 300 m

κ 33.54 28.57

λAiry (m) 56.21 65.97

λbte (m) 55.42 65.65

εc −1.40% −0.47%

at h = 150 m

κ 16.77 14.29

λAiry (m) 56.21 65.97

λbte (m) 58.36 65.31

εc 3.82% 1.00%

Table 5: Coefficient sets to be used depending on the maximum expected κ.
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Figure 5: Numerical results (continuous lines) obtained with linear coefficients cor-

responding to κmax,max = 40 and % = 0.9 and analytical envelope (discontinuous

lines) for free surface elevation. Snapshot at time = 1000 s for the wave component

of T = 6.0 s (top panel) and for the wave component of T = 6.5 s (middle panel).

The bathymetry and the generation area is depicted in the bottom panel.

Figure 6: Time history for free surface elevation at two different locations. Numer-

ical results (line) obtained with linear coefficients corresponding to κmax,max = 40

and % = 0.9. The analytical solution is displayed with stars.

nearly constant wave amplitude). For the numerical scheme we considered341

a mesh size of 1 m and a time step of 0.25 s, satisfying the CFL condition342

presented in the work by Galan et al. (2012). The numerically propagated343

amplitude has a maximum error of 0.9% for the wave with T = 6.0 s and344

4.31% for the one with T = 6.5 s (nearly unappreciable in the figure).345

Figure 6 shows the time history for free surface elevation at two different346

locations (#A, with x = 2500 m, and #B, with x = xc = 4750 m), one at the347

maximum depth and another one at the top of the shoal, compared with the348

analytical solution (in phase at #A). The results for linear dispersion (i.e.,349

wave celerity) compare well and are consistent with the expected results.350

6.2. Case 2: non linear propagation over a bar351

A second example is meant to show how the model equations can handle352

with the nonlinear behaviour of the wave as they reach shallow waters from353
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Figure 7: Linear coefficients for test case 2, corresponding to κmax,max = 20 and

% = 1.0.

deep waters. For this purpose we consider the propagation of a monochro-354

matic wave with period T = 2.857 s over a constant slope (≈ 20/300) from355

a maximum depth of 20 m (i.e., κ ≈ 9.9) to 0.86 m (κ ≈ 0.42). At the end356

of the slope we introduce the bathymetry by Dingemans (1997) in order to357

compare the experimental results with those measured in laboratory at dif-358

ferent control gages. The bathymetry is shown in Figure 8 (top panel), while359

Dingemans bathymetry is shown as a zoom.360

The wave amplitude generated in the experiment of Dingemans (case361

A) is η0 = 0.02 m over the depth of 0.86 m, so that, to propagate from362

deep water with an adequate amplitude, and based on the linear theory363

(a2cg = constant, being a the wave amplitude and cg the group celerity), we364

introduce an amplitude η0 = 0.0205 m in the generation deep zone.365

For this test we have ωmin = ωmax = 2π/T = 2.2 s−1 and, as anticipated366

κmax,max =
ω2
maxhmax

g
≈ 9.86,

so that we will consider the coefficients corresponding to κmax,max = 20 and367

% = 1.0 (monochromatic). Using this set of coefficients the linear dispersion368

and shoaling errors are below 0.98%, as shown in Table 3. The values for369

linear coefficients are shown in Figure 7 while nonlinear coefficients are δε =370

−0.276780 and γε = 0.135060.371

Figure 8 shows the time history comparison between numerical results372
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Figure 8: Dingemans’ experiments (case A). Numerical results (lines) and experi-

mental data (stars) for the normalized free surface elevation.

and experimental data at 8 different gages (from #1 to #8). Section #1 has373

been used as control section, allowing to synchronize model and experimental374

time. As shown, the comparison between numerical and experimental results375

is good for all considered section.376

6.3. Case 3: non linear irregular waves propagation377

Finally, we present a numerical simulation one of the test presented by378

Trulsen et al. (2012). The laboratory experiments consist on the propagation379

of irregular waves travelling from a water depth hmax = 0.60m to hmin =380

0.30m through a 6 meter long ramp (1:20). We consider the “case 1” in the381

original paper, the most demanding attending to their dispersive conditions.382

The significant wave height is around 0.06 m at h = hmax, so that nonlinear383

effects are significant as the water depth decreases.384

For the case under consideration, the Figure 9 shows the wave amplitudes385

corresponding to the angular frequencies composing the incident signal at386

hmax = 0.6 m. We discretized the continuous signal with 240 frequencies.387

From the figure ωmin/ωmax ≈ 0.1 � 0.8 and, therefore, the experiments are388

beyond the scope of the analysis for variable coefficients. The closest set of389

coefficients would be those for % = 0.8 and κmax,max = 20.390

Figure 10 shows the errors at h = 0.6 m in linear dispersion and shoaling391

using constant coefficients (those for h 6 h1) corresponding to % = 0.8 and392

κmax,max = 20, which are α = −0.590334, δ = −0.032415, δh = 0.031415,393
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Figure 9: Frequencies and amplitudes of each harmonic composing the incident

signal.

Figure 10: Linear dispersion and shoaling errors as a function of ω for h = 0.6 m

and the constant coefficients correspoding to % = 0.8 and κmax,max = 20.

γ = −0.004324 and γh = 0.001212. As depectid in the figure, the errors are394

. 4% for the whole range of frequencies. Obviously, the results are better at395

h = 0.3 m.396

Figure 11 shows the comparion of the spectra at the different gages (ex-397

perimental and computed). The numerical results show fair agreement with398

the experimental data. Besides the above errors above 4%, it is to mention399

that in this experiment strong nonlinearities and strong dispersive conditions400

coincide. This is beyond the scope of low order Boussinesq-type equations,401

which can handle strong nonlinearities in weakly dispersive conditions. Also,402

according to Tucker and Pitt (2001), a statistical instability exists due to403

wave density spectrum estimation from a finite record (wave density spec-404

trum has been estimated by scanning), so the estimated spectrum could show405

differences when compared with the real one.406

Figure 11: Normalized wave density spectrum at the 8 different gages. Full line

represent data from Trulsen et al. (2012) (case 1) and points are results obtained

by the proposed model propagating the incident spectrum.
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7. Concluding remarks407

The possibility of using variable coefficients (functions of the water depth)408

in enhanced Boussinesq-type equations has been studied and presented. An409

analytical approach is disregarded since it has shown to give infinite disconti-410

nuities in the solutions. Alternatively, the coefficients are numerically found411

so as to optimize the linear performance in terms of dispersion and shoaling412

over mild slopes. The results are presented in dimensionless general form.413

The performance of the model is determined by the ratio between the414

minimum to maximum deep water wave angular frequencies, % ≡ ωmin/ωmax,415

and a kh-type number, κmax,max. The results are particularly interesting for416

% . 1, i.e., for narrow banded swells approaching to the coast. For these417

conditions, the wave can be propagated with small errors in linear dispersion418

and shoaling up to very deep waters. The theoretical results are supported419

by numerical simulations compared to analytical and experimental results.420
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Appendix A. Dispersion: coefficients α, δ and γ425

For given g, h and ω0, the solution of equations (12) is426
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δ = (%1 ±
√
%21 − 4%2) /2, (A.1a)

γ = (%1 + 1/3±
√
%21 + 1/9 + 2%1/3− 4%3) /2, (A.1b)

and cα = %1−γ−δ so that, since cα ≡ α2/2+α, we can recover the coefficient427

α as α = −1 +
√

1 + 2cα. Above428

%1 =
n1

3ξ20d
, %2 =

n2

3ξ40d
, %3 =

n3

3ξ50d
, (A.2)

with ξ0 verifying ξ0 tanh ξ0 = κ0 {≡ ω2
0h/g} and429

n1 ≡ 6 {2s20ξ20 + 5} t20 + {2s20ξ40 + (−12s20 + 1) ξ20 − 6 (7s20 + 3) } ξ0t0+

+ {−s20ξ20 + 6 (2s40 + 3s20) } ξ20 ,

n2 ≡ 3 {2s20ξ20 + 15} t20 + {2s20ξ40 − 3 (2s20 + 1) ξ20 − 9 (3s20 + 7) } ξ0t0+

+ {3s20ξ20 + 3 (2s40 + 5s20 + 8) } ξ20 ,

n3 ≡ 24t30 + {2s20ξ40 + (6s20 − 1) ξ20 − 27} ξ0t20+

+ {−7s20ξ
2
0 + 9 (−3s20 + 1) } ξ20t0 + {2s40ξ20 + 3 (2s40 + 5s20) } ξ30 ,

d ≡ {2s20ξ20 + 3} t20 − {2s20ξ20 + (5s20 + 1) } ξ0t0 + {2s40 + s20} ξ20 ,

with s0 ≡ sech ξ0 and t0 ≡ tanh ξ0.430

The coefficients α, δ and γ are, thus, functions of κ0 ≡ ω2
0h/g. As κ0 → 0,431

κ0 → ξ20 and %1 → −4/9, %2 → 1/63 and %3 → 1/945, so that we recover the432

Padé [4/4] approximation (Madsen and Schaffer, 1998; Gobbi et al., 2000). In433

equations (A.1), there are four possible combinations depending on the signs,434

equivalent to the four possible solutions discussed by Madsen and Schaffer435

(1998).436
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Figure A.12 shows the three functions α, δ and γ in all four cases. The437

coefficients are so that βα ≡ h∂α/∂h = κ0∂α/∂κ0, βδ and βγ are small.438

For “+&+” the values are similar to the values by M98 and G12 in Table 1.439

However, all four solutions give the same results in terms of linear dispersion.440

Figure A.12: Coefficients α (full line), δ (dashed line), γ (dash-dotted line), which

are functions of κ0 ≡ ω2
0h/g, depending on the signs considered in equations (A.1).

For instance, the case “+&−” results from considering “+” in equation (A.1a) and

“−” in equation (A.1b).

Appendix B. Shoaling: coefficients δh and γh441

For given ω and h, the error in shoaling is (Chen and Liu, 1995)442

εs = exp

(∫ h

0

αη,Airy − αη,bte
h∗

dh∗

)
− 1,

where here αη,Airy = αη,Airy (ω2h∗/g) and443

αη,bte = αη,bte (ω2h∗/g, α, δ, γ, δh, γh, βα, βδ, βγ) ,

are the shoaling gradients corresponding to Airy and BTEs. In the shoal-444

ing gradient αη,bte, the α, δ, γ and their corresponding β’s are known from445

Appendix A.446

Since we now have two (not three) free coefficients, δh and γh, we impose447

the two conditions, equivalent to the conditions (12) in the linear dispersion448

analysis,449
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εs (ω = ω0) =
∂ε

∂ω
(ω = ω0) = 0,

at any h to obtain δh and γh as a function of h for the ω0 used in the dispersion450

analysis. Defining fs ≡ αη,Airy − αη,bte, the above is equivalent to impose, at451

any h,452

∫ h

0

fs
h∗
dh∗ =

∫ h

0

∂fs/∂ω

h∗
dh∗ = 0, (B.1)

always evaluated at ω = ω0.453

Given ω0, consider that we know the values of δh and γh to sastisfy the454

conditions (B.1) up to some given depth h − ∆h (with ∆h infinitesimal).455

Taking into account that equation (B.1) already holds at h−∆h, imposing456

it at h is simply457

fs (h, ω = ω0) =
∂fs
∂ω

(h, ω = ω0) = 0. (B.2)

The above nonlinear system has been solved using Newton’s method to458

obtain δh and γh at any h and for a given ω0. Again, the resulting δh and γh459

are functions of κ0 ≡ ω2
0h/g. Depending on the solution considered for α, δ460

and γ (Figure A.12), Figure B.13 shows the resulting δh and γh.461

Figure B.13: Coefficients δh (full line) and γh (dashed line), functions of κ0 ≡ ω2
0h/g,

depending on the signs considered in equations (A.1) to obtain α, δ and γ.

From Figure B.13, the solutions “+&+” and “−&−” violate the condition462

of slow variations. In fact, the have discontinuities to the infinity.463
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