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The mechanism of action of the pituitary hormone 
PRL was studied in hepatocytes of lactating rats. 
PRL receptor immune complexes obtained from 
liver lysates have an associated tyrosine kinase 
activity. The tyrosine kinase has been identified in 
isolated hepatocytes as pp60c-S’“. Incubation of 
hepatocytes with PRL induces the association of 
PRL receptor with pp66c-Src and the resultant stim- 
ulation of its tyrosine kinase activity. Furthermore, 
PRL stimulates the gene expression of c-fos, c-jun, 
and C-SK. All of these findings support the idea 
that the pp6Wsr0 tyrosine kinase participates in 
the early steps of the PRL intracellular signaling 
that promotes cell growth in liver cells. (Molecular 
Endocrinology 9: 1461-1467, 1995) 

INTRODUCTION 

In vertebrates, the pituitary hormone PRL has been 
involved in many functions, including reproduction, 
lactation, growth, differentiation, and immune re- 
sponse. In accordance with PRL pleiotropic functions, 
PRL receptors (PRLR) are widely distributed in mam- 
malian tissues. PRLR belong to the genetically defined 
cytokine/hematopoietin receptor family, which in- 
cludes GH and a number of cytokines [interleukins 2-7 
(IL-2 to IL-7), granulocyte/macrophage colony-stimu- 
lating factor, granulocyte colony-stimulating factor, 
and erytropoietin] receptors (1). The members of this 
large family share common structural elements in their 
extracellular domain, including four paired cysteine 
residues and a highly conserved WSXWS motif. Al- 
though intracellular domains differ markedly in size 
and have low sequence homology, a hydrophobic pro- 
line-rich segment in the membrane proximal region is 
highly conserved. This region of homology (box 1) has 
been shown to be essential for signal transduction in 
all cases studied (2-7). Although none of these recep- 
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tors contains any obvious enzymatic activity, it has 
been shown that they associate with and activate spe- 
cific tyrosine kinases (8). To date, the Jak and Src 
tyrosine kinase families have been widely involved with 
the cytokine/hematopoietin receptors. Jak2 has been 
shown to participate in the signaling of many recep- 
tors, such as the GH receptor in 3T3 fibroblasts (5) or 
the erytropoietin receptors and the IL-3 receptors in 
DA3 myeloid cells (9, 10). Jak3 is coupled to the IL-2 
receptor in lymphoid and myeloid cells (11, 12), and 
Jakl, Jak2 and Tyk2 are implicated in the signaling 
mechanisms of interferons (13, 14). The Src family 
tyrosine kinases Lck, Lyn, and Fyn, on the other hand, 
are activated by IL-2, IL-3, and IL-7, respectively (15- 
17). Thus far, the exact role of these protein tyrosine 
kinases is not fully understood. 

In mammalian cells, two forms of PRLR have been 
identified and cloned. They are generated by differen- 
tial splicing of a single gene and differ only in the 
length of their intracellular domain (1). In addition, a 
fully functional mutant of the long form that lacks 198 
amino acids in its cytoplasmic region has been shown 
to be predominant in the PRL-dependent Nb-2 11 C 
cell line (18). In this pre-T rat lymphoma cell line, PRLR 
constitutively associates with Jak2 (19, 20), p59’y” 
(21), and RAF-l serine-threonine kinase (22) respec- 
tively. In BAF-3 cells transfected with the long form of 
the PRLR, the receptor also associates with Jak2 (23). 
In all of these cases, binding of ligand to the PRL 
receptor activates preassociated kinases. In addition, 
PRL stimulation triggers the tyrosine phosphorylation 
of both the kinase and the receptor (20, 23, 24). Jak 
family activation has been related to the regulation of 
gene expression through tyrosine phosphorylation of 
signal transducers and activators of transcription 
(Stat) transcriptional factors (25). However, the role of 
PRLR tyrosine phosphorylation is unknown. 

To examine the biological function of the PRLR iso- 
forms, Chinese hamster ovary cell lines expressing 
each form were cotransfected with constructions car- 
rying milk protein promoters. It was thus demon- 
strated that the long and Nb-2 forms of PRLR are able 
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to induce P-lactoglobulin and p-casein promoters (26). 
In addition, both PRLR isoforms mediate the PRL in- 
duction of interferon regulatory factor-l promoter and 
cellular proliferation in the IL-3-dependent cell lines 
(27). However, the function of the short form of the 
PRLR remains to be established. 

The liver is one of the main targets for PRL accord- 
ing to the level of PRLR transcripts, and it is the only 
tissue in which the short form of the receptor is pre- 
dominant (28). We previously reported that PRL in- 
creases both c-myc gene expression (29) and the cy- 
tosolic free calcium concentration (30) in isolated 
hepatocytes. In this work we analyzed the PRL signal 
transduction pathway in isolated hepatocytes of lac- 
tating rats. We demonstrate that PRL stimulation of 
cells induces the association of PRLR with pp60c-src, 
pp60”-“” activation and an increase in c-fos, c-jurr, 
and c-src gene expression. 

RESULTS 

Kinase Activity in PRLR Immune Complexes 

T6 327 RAM 
Mr 

-116 

497 

We first studied whether the PRLR was associated 
with a kinase activity that could account for the intra- 
cellular signaling of PRL in the liver of lactating rats. 
For this purpose, PRLR was immunoprecipitated with 
monoclonal antibody (MAb) T6 from a detergent-sol- 
ubilized liver extract and assayed for in vitro kinase 
activity (see Materials and Methods). An example of 
these experiments is shown in Fig. 1, lane 1. We con- 
sistently detected two phosphorylated proteins, the 
immunoglobulin G (IgG) heavy chain and a protein of 
approximately 60 kilodaltons (~60). As some members 
of the cytokine receptor family associate with protein 
kinases of the Src family (15, 17,21,31-34), an aliquot 
of the liver extracts was used to immunoprecipitate 
c-src with MAb 327 and assayed for autophosphoryl- 
ation (see Materials and Methods). As indicated in Fig. 
1, lane 2, the electrophoretic resolution of the c-src- 
MAb 327 immune complex showed three phosphoryl- 
ated bands corresponding to an autophosphorylated 
(pp60c+” band) product, the IgG, and another uniden- 
tified (~45) protein. Interestingly, the p60 detected in 
PRLR immune complexes comigrated with pp60c-““. 
Moreover, the 32P incorporated into these proteins 
was resistant to KOH treatment (data not shown), 
which means that they were phosphotylated in ty- 
rosine residues. These initial results led us to conclude 
that a protein tyrosine kinase is associated with PRLR 
in the liver of lactating rats. 

PRLR Association with pp60c-src 

Isolated hepatocytes from lactating rats were used to 
demonstrate a plausible physical association of PRLR 
with pp60”“” and to analyze the possible role of PRL 
in such an interaction. We determined whether c-src 
was coprecipitated with PRLR immune complexes. A 
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Fig. 1. PRLR Immune Complex Kinase Assay 
Proteins from liver of lactating rats were solubiliiecl as de- 

scribed in Materials and Methods. Aiiquots derived from 1 g 
tissue were used to immunoprecipitate PRLR with T6 (lane 1) 
and ppGoc-= with 327 (lane 2). A rabbit antimouse serum was 
used as a control (lane 3). The immune complexes were suh- 
jetted to in vitro kinase reaction for 10 min at room temperature 
and resolved in a 7% SDS-pclyacrylamide electrcphoresis gel. 
The phosphoprcteins were detected by autoradiagraphy. Stan- 
dard proteins and migration of pp6oC-* are indicated. 

representative assay (one of four experiments) is 
shown in Fig. 2. Four aliquots of 6 X 10’ cells were 
incubated for 30 min in the presence or absence of 
ovine PRL (oPRL; 1 m/ml). The cell lysates were used 
to immunoprecipitate PRLR with MAb U5 (lanes 3 and 
4) or pp60”-“” with MAb LAO74 (lane 2). A mouse 
preimmune serum (prel) was used as a control (lane 1). 
The immune complexes were electrophoretically re- 
solved in a sodium dodecyl sulfate (SDS)-10% poly- 
acrylamide gel, transferred to a nitrocellulose mem- 
brane, and probed with anti-pp60”-“” MAb lAO74. In 
the absence of hormone, c-src kinase was minimally 
associated with PRLR (lane 3). However, after a 30- 
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Fig. 2. Association of pp60c~*” with the PRLR 
Samples containing 6 X lo7 hepatocytes isolated from 

lactating rats were preincubated for 30 min in the absence of 
hormone and then incubated for 30 min more with or without 
oPRL (1 &ml). The lysates were used to immunoprecipitate 
PRLR with U5 (lanes 3 and 4) and pp60cMsrc with 327 (lane 2) 
and preimmune mouse serum was used as a control (lane 1). 
The immune complexes were dissociated in nonreducing 
loading buffer, resolved in SDS-lo% PAGE, blotted onto 
nitrocellulose, and probed for pp60c-src with LAO74. Detec- 
tion was carried out by incubation with [1251]sheep antimouse 
IgG and autoradiography (see Materials and Methods). The 
lowerpanel shows the densitometric analysis of four different 
experiments. They are expressed as a percentage of the 
value obtained with pp60c-src. SEMS were ~3.7 and 27.6 for 
the data in lanes 3 and 4, respectively. 

min stimulation with PRL, a significant amount of C-SE 
coprecipitates with PRLR (lane 4), whereas no c-src 
can be detected in control immunoprecipitates (lane 
1). Densitometric analysis of the blots from four differ- 
ent experiments demonstrated that addition of ligand 
resulted in a 3-fold increase in the amount of pp60”+” 
coupled to the receptor in liver cells. 

Two different approaches were used to demon- 
strate that PRL stimulates the tyrosine kinase activity 
of pp60c-src. As the increase in c-src kinase activity 
correlates with an increase in autophosphorylation 
(3537), we first tested whether pp60c-src was tyrosine 
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phosphorylated in response to PRL. Hepatocytes iso- 
lated from lactating rats (aliquots of 6 x IO6 cells) were 
treated for 10 min with different amounts of PRL, and 
pp60c-*” was immunoprecipitated from the corre- 
sponding cell lysates. The content of phosphotyrosine 
in pp60c-*” was detected by Western blot probing 
with PY20 antibody. Figure 3 shows that in this sys- 
tem, pp60”-“” is tyrosine phosphotylated in a PRL 
amount-dependent manner. Densitometric analysis 
showed that PRL present at a concentration of 0.05 
pglml increased the phosphotyrosine content of c-src 
by 2-fold, and 1 &ml PRL increased the phosphoty- 
rosine content by 3.7-fold. 

In a second approach, we performed a time- 
course stimulation of isolated hepatocytes with PRL 
and tested the kinase activity of pp60”-“” using 
acid-denatured enolase as an exogenous substrate. 
As shown in Fig. 4, the activity of pp60c-“‘c in re- 
sponse to PRL addition followed a transient stimulation 
pattern, peaking at 2-l 0 min and returning to basal levels 
within 20 min. PRL increased by 1.8-fold the total cellular 
c-src kinase activity within 10 min after stimulation. 

A B C D 
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IP : LAO74 + + + + 
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Fig. 3. PRL Induction of pp60c-src Tyrosine Phosphorylation 
Hepatocytes (6 x 1 06) from lactating rats were incubated 

with different concentrations of oPRL for 10 min. Then, 
pp60”~*” was immunoprecipitated from the cell lysates, and 
the immune complexes were dissociated in nonreducing 
loading buffer, resolved in SDS-g% PAGE, blotted, probed 
with the antiphosphotyrosine antibody PY20, and developed 
with ECL (see Materials and Methods). The lower pane/ 
shows the densitometric analysis of three different experi- 
ments. Phosphorylation results were normalized for the 
amount of pp60c-*rc detected by reprobing the blot with 
LA074, and error bars indicate the SEM. 
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Fig. 4. PRL Induction of pp60c-*” Kinase Activity 
Hepatocytes (6 x 106) isolated from lactating rats were 

incubated with (0) or without (9 oPRL (1 pg/ml) for 030 min. 
pp60c-src was immunoprecipitated from cell lysates with 
LA074, and the in vitro kinase activity was measured within 3 
min using acid-denatured enolase as exogenous substrate in 
the presence of [“/-32P]ATP. The reaction were stopped by 
the addition of nonreducing loading buffer, resolved in 
SDS-O% PAGE, and blotted onto nitrocellulose. Filters were 
subjected to autoradiography and finally probed with LAO74 
(see Materials and Methods). The phosphorylation results 
were normalized for the amount of pp60c-“’ detected in 
Western blot and expressed as fold induction with respect to 
zero time. They are the mean of five separate experiments, 
and error bars indicate the SEM. 

These data are in good agreement with the activation of 
c-src kinase by colony stimulating factor-l (32). Thus, the 
results suggest that PRL signal transduction in liver cells 
is mediated at least in part by PRLR association with 
pp60”‘“” and the stimulation of its tyrosine kinase 
activity. 

PRL increases the c-fos, c-jun, and C-WC Levels 
of mRNA in Hepatocytes 

The changes in cell growth rate and phenotype elic- 
ited by growth factors are believed to be initiated by 
the transcriptional induction of a set of immediate 
early response genes (38-40). Our previous studies 
have shown that oPRL stimulates expression of the 
protooncogene c-myc (29). We assessed the possi- 
ble effect of PRL on the expression of c-fos, c-jun, 
and C-SK in isolated hepatocytes. As shown in Fig. 
5, this hormone significantly increases the levels of 
mRNA for the protooncogenes c-fos (g-fold), c-jun 
(13-fold), and C-SK (3.6-fold). In the absence of 
protein synthesis, the levels of the above-mentioned 
genes were increased by factors of 3.1, 7.2, and 3.4, 
respectively. These data suggest that PRL is involved in 
the regulation of these important immediate early 
response genes. 
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Fig. 5. PRL Activation of Immediate Early Response Genes 
and c-src in Isolated Hepatocytes 

Hepatocytes isolated from lactating rats were incubated at 
5 x 10’ cells/50 ml incubation medium. After 30 min of 
preincubation, cells were incubated with 1 pg/ml oPRL in the 
presence or absence of 10 &ml cycloheximide for 2 h. 
Polyadenylated RNA (5 pg) was analyzed by Northern blot- 
ting for c-fos, c-iun, c-src, and p-actin mRNAs. 

DISCUSSION 

It is now well established that cytokines initiate the 
intracellular signaling pathways by activation of multi- 
ple protein tyrosine kinases associated with their re- 
ceptors (see Ref. 41 for review). The identification of 
protein tyrosine kinases associated with each receptor 
is the first step in understanding the biological role of 
these kinases. In the work presented here we demon- 
strated that the protein tyrosine kinase pp60c-s” as- 
sociates with PRLR in liver cells upon PRL stimulation. 
Another member of the Src family kinases, ~56~“, has 
been identified as being permanently associated with 
PRLR isoforms expressed in Nb-2 cells (21). Although 
pp60c-“‘” was detected in PRLR immune complexes, 
we were unable to detect PRLR in Western analysis of 
PRLR or pp60c-src immunoprecipitates. A potential ex- 
planation for this apparent discrepancy could be that 
anti-PRLR antibodies (U5 and U6 were used) have a 
lower affinity for the denatured receptor than for the 
native form. 

In this work we show that PRL promotes both 
pp60”~“‘” association with PRLR and activation of this 
protein tyrosine kinase. As reviewed by Erpel and 
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Courtneidge (42), activation of Src family kinases 
could occur in three ways: dephosphorylation of phos- 
photyrosine 527 at the carboxy-terminal region, com- 
petition for the SH2 domain by a high affinity phos- 
photyrosine-containing ligand, and competition for the 
SH3 domain by a high affinity proline-rich ligand. The 
PRLR isoforms have a PPVP motif at the membrane- 
proximal region that may be involved in the coupling of 
Jak or Src family kinases. However, activation of the 
members of the latter family by interaction with the 
SH3 domain has not yet been reported. The activation 
of Src by a phosphotyrosine-containing ligand has 
been demonstrated during ligand activation of plate- 
let-derived growth factor receptor (43). As JakZ is 
constitutively associated with PRLR isoforms in Nb-2 
(19, 20), BAF-3 (23), mammary gland (44, 45), and 293 
cells (46), it is possible that a Jak family member or 
another protein tyrosine kinase expressed in liver cells 
mediates a initial tyrosine phosphorylation of PRLR 
upon PRL stimulation. After the initial tyrosine phos- 
phorylation of PRLR or PRLR-protein tyrosine kinase 
complex, the activation of ~~60”.“‘” must occur by 
competition for the SH2 domain. In agreement with 
this explanation, recently published data have demon- 
strated that a proline-rich sequence is required for 
Jak2 association with the PRLR, but is not sufficient 
for signal transduction (24). In addition, a single phos- 
photyrosine residue located at the carboxy-terminal 
region of the PRLR is responsible for PRL-dependent 
induction of p-casein promoter in 293 cells (46). Inter- 
estingly, PRL stimulates tyrosine phosphorylation of 
different tyrosine residues of PRLR isoforms, but the 
mutation of the distal tyrosine prevents the receptor 
from inducing the p-casein promoter. The transducer 
molecule binding the distal phosphotyrosine of PRLR 
and involved in the activation of milk protein gene 
transcription has not yet been identified. 

In hepatocytes, we have also shown that PRL stimu- 
lates expression of the protooncogenes c-fos, c-jun, and 
c-src. This suggests that PRL stimulates the expression 
of genes with AP-I or SRE sequences in their promoter 
regions. However, the possible substrates or kinases 
downstream of pp60c-s” in liver cells to drive PRL mes- 
senger to the nucleus need to be established. Src ki- 
nasss are involved in Ras activation in fibroblasts (47), 
phosphorylation of cytoskeletal proteins (48, 49), c-myc 
induction (50), or Sam68 phospholylation (51) among 
other functions (see Ref. 42 for review). As Raf is acti- 
vated by PRL (22), it is interesting to speculate that Ras 
activation may be involved in PRL intracellular signaling 
in hepatocytes. However, a Src-Ras-independent path- 
way has been demonstrated in IL-2, granulocyte-mac- 
rophage colony-stimulating factor, and epidermal 
growth factor receptor signaling (52, 53). Which of these 
two mechanisms controls the expression of PRL-in- 
duced expression of c-myc in liver cells needs to be 
determined (29). We hope that future work will clarify our 
understanding of the interaction among PRLR with 
~~60”‘““, the mechanism of ~~60”.“” activation, and 
the role of this kinase in liver cells. 

MATERIALS AND METHODS 

Preparation and Culturing of Rat Hepatocytes 

Hepatocytes were isolated from lactating Wistar rats, which 
were maintained on a 12-h light, 12-h dark photoperiod, 2-3 
days after delivery. The livers were perfused for 20 min with 
Krebs-Henseleit (calcium-free) buffer containing 40 mg/ml 
collagenase (Boehringer Mannheim, Indianapolis, IN) and 
supplemented with 5 mM glucose, 2 mM glutamine, 100 U/ml 
penicillin, and 1% BSA (54). Cells were washed and incu- 
bated as described previously (29). Cell viability, determined 
by the ttypan blue exclusion test, was approximately 90%. 
The PRL used (oPRL) was kindly provided by the NIDDK 
(National Hormone and Pituitary Program). 

Antisera and lmmunoprecipitations 

Isolated hepatocytes were lysed at a concentration of 25 x 
lo6 cells/ml in 25 mM Tris-HCI (pH 7.4). 4 mM EDTA, 50 mM 
sodium fluoride, 10 mM sodium pyrophosphate, 2 mM sodium 
orthovanadate, 1 mM phenylmethylsulfonylfluoride, 0.3 
mg/ml bacitracin, 0.3 mg/ml trypsin inhibitor, 1 mg/ml ben- 
zamidine, and 2% Triton X-100 for 30 min at 4 C. When entire 
livers were used, they were rinsed once with ice-cold PBS 
and homogenized at 4 C in lysis (Triton-free) buffer (1 g liver/5 
ml) with a Polytron (Brinkmann Instruments, Westbury, NY) 
three times for 30 set each time and then adjusted to 2% 
Triton X-100. After 30 min of continuous rotation at 4 C, 
insoluble material was removed by centrifugation at 25,000 x 
g for 45 min at 4 C. The resulting supernatants were diluted 
(1:l) with buffer A 120 mM Tris-HCI (DH 7.4). 140 mM NaCI. 5 
~M’EDTA, and 1 %-Triton X-l 001 before immunoprecipitatidn. 
The antibodies used in the experiments were U5, U6, or T6 
anti-rat PRLR recognizing the extracellular domain of PRLR 
[characterized by Okamura et al. (55)] at 2 pg/ml; 327 anti- 
pp60c-*” (generously provided by Dr. J. S. Brugge) at 5 ~1 
ascites/ml; IA074 anti-pp60C-SrC (Quality Biothech, Camden, 
NJ) at 5 (.LI ascites/ml; and PY20 antiphosphotyrosine (ICN, 
Costa Mesa, CA) at 2 &ml. lmmunoprecipitations were 
performed for 2 h at 4 C. Immune complexes were precipi- 
tated with rabbit antimouse IgG (RAM) (Nordic Immunological 
Laboratories, Tilburg, The Netherlands) bound to protein A- 
Sepharose and washed as follows: three times with buffer B 
[lo mM Tris-HCI (pH 7.4), 5 mM EDTA, 50 mM NaCI, 30 mM 
sodium pyrophosphate, 50 mM NaF, 100 PM Na,VO,, 1% 
Triton X-100, 1 mM phenylmethylsulfonylfluoride, 2 &ml 
leupeptin, and 0.5 mg/ml benzamidine], once with 0.5 M LiCI, 
and, finally, twice with 10 mM Tris-HCI (pH 7.4) 1 mM EDTA, 
and 100 mM NaCI. 

In Vitro Kinase Reactions 

The clean immune complexes were washed once more with 
kinase buffer [30 mM Tris-HCI (pH 7.4) and 5 mM MnCI,] and 
incubated at room temperature in 20 ~1 kinase buffer con- 
taining 10 &i [Y-~‘P]ATP (3000 Ci/mmol) and 5 wg acid- 
denatured enolase for different time intervals. These reac- 
tions were stopped at different times by the addition of 20 ~1 
twice concentrated SDS-gel loading buffer and boiled for 10 
min. Depending on the experiment, a nonreducing loading 
buffer (125 mM Tris-HCI, pH 6.8, containing 4% SDS, 20% 
glycerol, and 18.5 mg/ml iodoacetamide) was alternatively 
used. Samples were analyzed by SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE). Gels were dried or transferred 
to nitrocellulose (Schleicher and Schuell, Dassel, Germany) 
and exposed to Kodak X-Omat AR films (Eastman Kodak, 
Rochester, NY). The autoradiograms were scanned using a 
Molecular Dynamic scanner (Sunnyvale, CA) or a Phosphor- 
lmager from Bio-Rad (Richmond, CA). 
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lmmunoblotting 

The association of PRLR with pp60c-*” in hepatocytes was 
demonstrated as follows. Aliquots of 6 x lo7 cells were 
incubated with or without oPRL (1 pg/ml) for 30 min at room 
temperature, pelleted, and disrupted in 3 ml lysis buffer as 
before. lmmunoprecipitations were carried out using mouse 
preimmune serum (as a control), anti-PRLR (MAb U5), or 
anti-pp60c-src (MAb lAO74). Immune complexes were 
washed three times with buffer B and heated at 80 C for 3 min 
in 125 mM Tris-HCI, pH 6.8, containing 4% SDS, 20% glyc- 
erol, and 18.5 mg/ml iodoacetamide. The proteins were re- 
solved by SDS-PAGE and transferred to nitrocellulose. The 
nitrocellulose membrane was blocked at 37 C for 2.5 h with 
Tris-buffered saline containing 5% milk proteins (Fluka Bio- 
Chemica, Buchs, Switzerland) and 0.05% Tween 20 (TTBS). 
The blotted proteins were probed for 1 h at room temperature 
with MAb IA074 diluted 1:125 in TTBS containing 5% milk 
protein, then incubated with ‘251-labeled sheep antimouse 
IgG (0.5 &i/ml; Amersham Corp., Arlington Heights, IL), 
washed, and exposed to film. Alternatively, nitrocellulose 
membranes were blocked with either 5% nonfat BSA or 5% 
milk protein for 3 h and incubated overnight at 4 C with PY20 
antibody diluted 1:iOOO in TTBS containing 1% BSA or with 
LAO74 diluted 1:125 in TTBS containing 5% milk protein. The 
secondary antibody used for detection was labeled with an- 
timouse horseradish peroxidase. The blots were washed and 
developed using the ECL chemiluminiscence system (Amer- 
sham Corp.) according to the manufacturer’s instructions. 

Isolation and Quantitation of mRNA 

Total RNA was isolated from lactating rat hepatocytes using the 
standard phenol protocol and enriched for polyadenylated RNA 
by a single passage through an oligo(deoxythymidine)-cellulose 
column (56). The RNA was fractionated and transferred to Hy- 
bond-N nylon membranes as previously described (29). Gel- 
purified DNA probes were either a 2.6-kb Pstl insert of mouse 
c-jun-coding sequence (38) or a 1.2-kb Pstl insert of mouse 
c&s-coding sequence, kindly provided by Dr. Naranjo (Instituto 
Cajal, Madrid, Spain). The probes for c-src and 6-actin were 
purchased from Clontech (Palo Alto, CA). They were labeled by 
nick translation with [a- 32P]deoxy-CTP to a specific activity of 
l-2 x 10’ cpmIa (57). The hybridization results were ex- 
pressed as the ratio to pactin messenger. 
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