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Abstract. This paper presents a coupled channel model for transport in two-
dimensional semiconductor Majorana nanowires coupled to normal leads. When
the nanowire hosts a zero-mode pair, conspicuous signatures of the linear
conductance are predicted. An effective model in second quantization allowing
a fully analytical solution is used to clarify the physics. We also discuss the
nonlinear current response (dI/dV ).
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1. Introduction

The theoretical proposal that Majorana modes exist in semiconductor devices [1–3] and their
subsequent detection in InSb wires [4–6] have opened up a new subfield of research on
nanostructure properties (see [7–10] for reviews). It was originally proposed by Majorana that a
massless elementary particle, called a Majorana particle, could exist with the peculiar property
of being its own antiparticle. Similarly, a Majorana mode of a semiconductor nanowire is a
zero-energy state that remains invariant after charge conjugation. These states are quasiparticle
excitations localized on the tips of a finite but long enough wire and are well separated from the
rest of the spectrum of eigenstates by an energy gap.

The existence of Majorana modes in a semiconductor wire requires the presence of the
following physical ingredients: (i) Zeeman coupling between spin and magnetic field, (ii)
Rashba spin–orbit interaction and (iii) superconductivity [11–13]. The latter can be induced
by proximity to a superconductor material and introduces the concept of electron–hole
symmetry [14]. The Rashba spin–orbit interaction is a relativistic effect originating from the
quantum well asymmetry in the perpendicular direction to the nanostructure plane. In the
present context, this interaction introduces chirality by connecting the state of motion with
spin. The Zeeman coupling in semiconductors such as InAs and InSb is quite large even for
relatively low magnetic fields owing to the large g factors of these materials. It breaks Kramers
degeneracy since the system is no longer time reversal invariant. In this paper, we call the
Majorana nanowire (MNW) a semiconductor nanowire with all the three physical effects (i),
(ii) and (iii) mentioned above.

The transport properties in the presence of localized zero modes have been investigated for
a normal–superconductor interface [15–17]. It has been shown that both for resonant tunnelling
and for transmission through a quantum point contact, a conductance quantization at half-integer
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multiples of 4e2/h is obtained when a zero mode is present at the interface. In this case, the
superconductor is called topological. In this paper, we address a related although different
geometry, the N/MNW/N structure where N refers to normal contacts in which the pairing
and Rashba interactions vanish. We show that the existence of a zero-mode pair is characterized
by a unitary Andreev reflection, giving linear conductance of the N/MNW/N structure equal to
e2/h. Note that in this system the names zero-mode pair and, more simply, zero mode can be
used equivalently since zero-energy states always come in pairs, one localized at each interface.
We also find that when increasing Zeeman coupling parallel to the wire, a pronounced dip in
the linear conductance appears due to the mixing between channels induced by the Rashba
interaction. Similarly to the N/superconductor case [17], the differential conductance has a
peak at zero bias in the presence of the zero mode, which evolves to a dip when the zero mode
is absent.

The role of disorder in the N/MNW/N system has been recently studied in [18–20]
and it was shown that it can be an alternative source of zero bias peaks. There are
analytical works describing interferometry with Majoranas [21] and the density profiles of the
localized modes [22]. Interaction effects have also been addressed, with effective models of
Coulomb blockade [23–25] and Kondo correlations [26, 27], as well as with Luttinger liquid
descriptions [28].

Our main contribution in this work is the formalism of the coupled channel model
(CCM) for the Bogliubov–de Gennes (BdG) Hamiltonian. This formalism can be viewed as an
alternative to methods based on the matching of plane waves or on tight-binding chains [29, 30].
It is particularly suited to the description of spatially smooth potentials and gives insights into
the role of different physical mechanisms by means of channel–channel couplings. We present
numerical solutions to the CCM equations for a representative case of a two-dimensional (2D)
MNW based on InAs. In support of our physical interpretations, we also present a simplified
effective model allowing for a fully analytical solution.

2. The physical system

The N/MNW/N system is modelled as a 2D channel of transverse dimensions L y and with
a central region of length L with superconducting and Rashba interactions. These interactions
vary smoothly in the longitudinal direction taking constant values 10 and α0 in the MNW and
zero in the asymptotic regions of the leads. In addition, potential barriers separate the central
MNW from the leads. A sketch of the system and of the x-dependent functions is shown in
figure 1. The Hamiltonian reads

HBdG = (h0−µ)τz +1(x)τx +1B Eσ · n̂ +
α(x)

h̄

(
pxσy − pyσx

)
τz +

(pxα(x))

2h̄
σyτz, (1)

with

h0 =
p2

x

2m∗
+

p2
y

2m∗
+ Vdb(x)+ Vc(y). (2)

The x-dependence of the pairing 1(x), of the Rashba coupling α(x) and of the double barrier
Vdb(x) is modelled by smooth Fermi-like functions with a small diffusivity d, for instance,

1(x)=10

(
1

1 + e(x−
1
2 L)/d
−

1

1 + e(x+ 1
2 L)/d

)
. (3)
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Figure 1. Sketch of the physical system. Panel (a) displays our choice of
coordinates, while panel (b) shows the longitudinal variation of the Hamiltonian
parameters.

The transverse confinement potential Vc(y) is taken simply as an infinite square well with
zero potential at the bottom. The chemical potential explicitly appearing in the BdG theory is
represented by parameter µ in equation (1); while Eσ and Eτ are, in usual notation, the vectors
of Pauli matrices acting in spin and isospin (or particle–hole) spaces, respectively. 1B is the
spin-splitting (Zeeman) energy and n̂ is a unit vector indicating the magnetic field orientation.
Note that, in equilibrium, a common chemical potential µ is valid in the MNW and the
contacts. As discussed in section 4, in the presence of a bias generating transport between both
contacts the MNW chemical potential in our model is given by the mean value of the contact
chemical potentials, corresponding to a floating MNW configuration. Using an additional third
contact (gate), a grounded configuration in which the MNW chemical potential is controlled
independently of the left and right contacts is also possible [31–33].

A distinctive characteristic of our model is the continuity of the system parameters with
respect to the longitudinal coordinate x , as sketched in figure 1(b). This would allow us to
investigate, for instance, the dependence on the diffusivity d of the transition. In this work,
however, we will assume rather steep transitions of the system parameters. The coherent
quasiparticle transport is described by the BdG equation

HBdG9 = E9, (4)

where E and 9 are the quasiparticle energy and wave function, respectively. The latter depends
on the position in space (x, y) as well as on the spin and isospin variables (ησ , ητ ), where
η =↑,↓ represents a generic discrete variable with only two possible values,

9⇒9(x, y, ησ , ητ ). (5)

Note, finally, that n̂ is assumed to lie in the xy-plane. An out-of-plane component would require
the addition of orbital magnetic effects not considered in this work.
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3. The coupled channel model

We present in this section the description of transport in terms of channel amplitudes or wave
functions obeying a set of coupled differential equations. This description can be viewed as
an alternative to the matching of bulk solutions often used in the literature. The CCM is well
suited to the problem of a spatially continuous Hamiltonian presented in the preceding section.
Before discussing the CCM equations, however, we need to consider the asymptotic solutions
(x→±∞) as they actually define the channels themselves.

3.1. Asymptotic solutions

Since the pairing and Rashba intensities vanish asymptotically, the BdG Hamiltonian greatly
simplifies in those regions,

lim
x→±∞

HBdG = (h0−µ)τz +1B Eσ · n̂. (6)

In this limit the eigenstates are spinors pointing in the directions of n̂ and ẑ for the spin and the
isospin. Introducing the quantum numbers sσ =±1 and sτ =±1 they read, respectively,

χsσ ≡
1
√

2

(
1

sσeiϕ

)
, χsτ ≡

1

2

(
1 + sτ
1− sτ

)
, (7)

where ϕ is the azimuthal angle of n̂. The spatial dependence of the asymptotic eigenstates is also
analytical, a plane wave in x and a square well eigenfunction in y, φn(y), with n = 1, 2, . . ..
Summarizing, a channel is specified by the quantum numbers (nsσ sτ ) and its wave function
reads as

9nsσ sτ ≡ eikxφn(y)χsσ (ησ )χsτ (ητ ). (8)

The propagating or evanescent character of each channel is found when determining its
wavenumber k ≡ knsσ sτ . From equation (4) the asymptotic BdG energy is

E =

(
h̄2k2

nsσ sτ

2m∗
+ εn −µ

)
sτ +1Bsσ , (9)

where

εn =
π 2n2h̄2

2m∗L2
y

. (10)

Inverting equation (9) gives

knsσ sτ =

√
2m∗

h̄2 (Esτ − εn +µ−1Bsσ sτ ). (11)

The channel wavenumber knsσ sτ from equation (11) is either real or purely imaginary. These two
cases clearly correspond to propagating and evanescent channels, respectively. In conclusion,
for electrons (sτ = 1) and holes (sτ =−1) the condition for the propagating mode of spin sσ in
the direction of n̂ and with the transverse state n is

Esτ − εn +µ−1Bsσ sτ > 0. (12)
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3.2. The coupled channel model equations

Assume the following expansion of the full wave function, valid not only in the asymptotic leads
but also for any arbitrary position,

9(x, y, ησ , ητ )=
∑
nsσ sτ

ψnsσ sτ (x)φn(y)χsσ (ησ )χsτ (ητ ), (13)

where ψnsσ sτ (x) is a 1D function we call the channel amplitude. Obviously, the channel
amplitudes in the asymptotic regions are ψnsσ sτ (x)∝ exp(±iknsσ sτ x), i.e. propagating or
evanescent waves to the right or left directions, depending on the sign of the exponent. The
equations fulfilled by the channel amplitudes can be obtained by substituting the wave function,
equation (13), into the BdG equation, equation (4), and projecting on a specific channel,∑

ησ ητ

∫ L y

0
dy φn(y)χ

∗

sσ
(ησ )χ

∗

sτ
(ητ ) × [HBdG9 = E9]. (14)

The sets of transverse wave functions {φn}, {χsσ } and {χsτ } fulfil proper orthonormality
relations. After some straightforward algebra, equation (14) leads to[(

p2
x

2m∗
+ Vdb(x)+ εn −µ

)
sτ +1Bsσ + sσ sτ sinϕ

1

2h̄
{px , α(x)}− E

]
ψnsσ sτ (x)

+sσ sτ cosϕ
i

2h̄
{px , α(x)}ψns̄σ sτ (x)+1(x) ψnsσ s̄τ (x)

−sσ sτ
α(x)

h̄

∑
n′( 6=n)

〈n|py|n
′
〉[ cosϕ ψn′sσ sτ (x)− i sinϕ ψn′ s̄σ sτ (x)]= 0, (15)

where we have introduced the usual anticommutator notation, {px , α(x)} = pxα(x)+α(x)px ,
and the bar over an index denotes its opposite value. The set of equation (15) is already a first
version of our desired CCM equations. There are three types of contributions to equation (15):
(i) the background terms of channel (nsσ sτ ) are given by the first line, (ii) the second line
contains the coupling terms with channels of the same n but with opposite spin s̄σ or isospin
s̄τ to that of the background channel and finally, (iii) the third line shows the coupling with
channels of different n, the same isospin and an arbitrary spin.

The physical role played by different Hamiltonian contributions is clearly seen in
equation (15). As expected, the superconducting pairing 1(x) couples electron and hole
channels. The two Rashba terms have a markedly different effect regarding the n quantum
number. α(x)px is diagonal in n, while α(x)py is mixing channels with different n with the
selection rules imposed by the square well matrix element 〈n|py|n′〉. The relevance of the field
orientation can also be appreciated from equation (15). For instance, if the field is along y
(ϕ = π/2) the mixing of (nsσ sτ ) and (ns̄σ sτ ) vanishes.

We end this section by mentioning a useful transformation of equation (15) that eliminates
the linear terms in px of the background problem. Let us define the transformed channel
amplitude

ψ̃nsσ sτ (x)= eisσ sinϕKR(x)ψnsσ sτ (x), (16)

where we introduced the dimensionless function

KR(x)=
m∗

h̄2

∫ x

0
dx ′α(x ′). (17)

New Journal of Physics 14 (2012) 083020 (http://www.njp.org/)

http://www.njp.org/


7

Substituting equation (16) into (15), we find that[(
p2

x

2m∗
+ Vdb(x)+ εn −µ−

m∗

2h̄2α(x)
2 sin2 ϕ

)
sτ +1Bsσ − E

]
ψ̃nsσ sτ (x)

+

[
sτ cosϕ e2isσ sinϕKR(x)

(
i
m∗

h̄2 α(x)
2 sinϕ + sσ

i

2h̄
{px , α(x)}

)]
ψ̃ns̄σ sτ (x)

+1(x) ψ̃nsσ s̄τ (x)− sσ sτ
α(x)

h̄

∑
n′( 6=n)

〈n|py|n
′
〉

[
cosϕ ψ̃n′sσ sτ (x)

− i sinϕ e2isσ sinϕKR(x) ψ̃n′ s̄σ sτ (x)
]
= 0, (18)

The set of equations (18) is very similar to (15), with two important differences: (i) the
background channel terms have a new contribution quadratic in α(x)which is spin-independent,
while the contribution linear in px is effectively eliminated from this channel; (ii) the position-
dependent phase of the transformation given in equation (16) appears explicitly in the coupling
with (ns̄σ sτ ) and (n′s̄σ sτ ).

3.3. The quantum-transmitting-boundary method

We have solved the set of equations (15) using the quantum-transmitting-boundary method
(QTBM) formulation of the scattering problem. See [35, 36] for the details of the QTBM.
Here we just mention for the sake of completeness the basic underlying ideas. Using a 1D
grid, equation (15) can be discretized with finite-difference formulae for the derivatives. In the
asymptotic regions of the leads we impose the analytical solutions of the channel amplitudes

ψnsσ sτ (x)= a(i)nsσ sτ
eisi sτ knsσ sτ (x−xi ) + b(i)nsσ sτ

e−isi sτ knsσ sτ (x−xi ), (19)

where a(i)nsσ sτ
and b(i)nsσ sτ

are the usual incident and reflected amplitudes in lead i . In equation (19)
we have introduced the lead sign si , equal to +1 and −1 for the left (i = 1) and right (i = 2)
leads, respectively, as well as the position of each lead boundary xi . We have also taken into
account the reversed direction of propagation for electrons and holes with the sτ sign. Note that
from equation (19) the outgoing coefficient b(i)nsσ sτ

is expressed in terms of the channel amplitude
at the lead boundary, b(i)nsσ ss

= ψnsσ sτ (xi)− a(i)nsσ sτ
. Substituting this explicit expression of b(i)nsσ sτ

back into equation (19), we obtain

ψnsσ sτ (x)− e−isi sτ knsσ sτ (x−xi )ψnsσ sτ (xi)= 2i sin
(
si sτknsσ sτ (x − xi)

)
a(i)nsσ sτ

. (20)

The QTBM closed system of linear equations is defined as follows: (i) for a grid point x
such that x1 6 x 6 x2 we impose the discretized version of equation (15); (ii) for a grid point
having x < x1 or x > x2 we impose equation (20). The resulting linear system has as many
equations as grid points and depends only on the set of input coefficients {a(i)nsσ sτ

}. It is highly
sparse and can be numerically solved in an efficient way.

The matrix of transmissions from mode nsσ sτ of lead i to mode n′s ′σ s ′τ of lead i ′ is
given by

t (i ′n′s ′σ s ′τ ← insσ sτ )=

√
kn′s′σ s′τ b(i

′)

n′s′σ s′τ√
knsσ sτ a(i)nsσ sτ

∣∣∣∣∣
oim

, (21)
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where the subscript ‘oim’, standing for ‘only incident mode’, refers to the fact that all incident
amplitudes vanish except the one explicitly appearing in the denominator of equation (21). For
use in the next section, we define a reduced matrix of transmission probabilities where we only
discriminate lead and particle type,

P
s′τ sτ
i ′i =

∑
nn′sσ s′σ

∣∣ t (i ′n′s ′σ s ′τ ← insσ sτ )
∣∣2. (22)

4. Transport in the Bogliubov–de Gennes framework

The description of transport through MNWs can be done with the formalism of transport through
normal/superconductor/normal structures. We follow specifically the formulation by Lambert
et al [34] for mesoscopic superconductors. For our two-terminal structure, labelled as i = 1, 2
for the left and right contacts, the current in terminal i reads as

Ii =

∫
∞

0

∑
α=±1

α
(

J αi (E)− Ĵ αi (E)
)

dE, (23)

where E is the BdG quasiparticle energy. In equation (23), J αi (E) and Ĵ αi (E) are, respectively,
the in-going and out-going fluxes in lead i of type α.

The essential ingredients we need to specify in order to use equation (23) are the
quasiparticle energy distributions f αi (E), the number of propagating modes mα

i (E) and
the matrix of quantum transmissions Pαβ

i j (E). The latter two are obtained from the CCM,
equations (12) and (22), respectively. The quasiparticle distributions are assumed to be given
by the Fermi functions

f αi (E)=
[
1 + e(E−αeVi )/kt

]−1
, (24)

where the i th reservoir chemical potential has been defined as µi = µ+ eVi and kT is the
thermal energy. With these inputs the fluxes in equation (23) read as

J αi (E)=
e

h
mα

i (E) f αi (E), (25)

Ĵ αi (E)=
e

h

∑
jβ

Pαβ

i j (E) f βj (E). (26)

This formalism fulfils two basic physical conditions: (i) the vanishing of current for zero
bias and (ii) the equality of current in both leads. Indeed, for zero bias all distributions are
identical, f αi (E)≡ f (E), and then the sum rule on quantum transmissions,∑

jβ

Pαβ

i j (E)= mα
i (E), (27)

ensures that the in-going and out-going fluxes exactly cancel each other. The second condition,
I1 + I2 = 0, is more subtle; following Lambert [34], we interpret that it actually determines the
MNW chemical potential µ, relative to µ1 and µ2. Note that the potential bias between the two
leads is V = V1− V2 and that the MNW chemical potential lies somewhere in the range between
the two reservoir chemical potentials,

min(µ1, µ2)6 µ6max(µ1, µ2). (28)
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The following practical approach to the BdG transport problem is then suggested: (i)
given µ1 and µ2, assume that µ= (µ1 +µ2)/2 and solve the BdG–CCM equations for the
set {mα

i , Pαβ

i j }; (ii) compute I1 + I2; (iii) vary the value of µ and recompute {mα
i , Pαβ

i j } until
I1 + I2 = 0 is fulfilled. Solving this self-consistency loop might be a difficult task; however, it is
not needed when the problem is symmetric with respect to x inversion around the centre of the
MNW. In this case µ= (µ1 +µ2)/2 is already the solution giving I1 + I2 = 0 since the bias V
has to be shared symmetrically, Vi = si V/2, where s1 = 1 and s2 =−1. Here we shall focus on
the symmetric problem and leave the analysis of the nonsymmetric case for a future work.

4.1. Differential and linear conductances

The differential conductance, defined generically as dI/dV , is one of the most relevant transport
properties usually measured in experiments. At zero temperature, the above formalism yields a
very simple expression of this quantity because, in this limit, the derivatives of the quasiparticle
distribution functions with respect to the bias become Dirac deltas. Of course, this is true only
in the symmetric case, when V = 2si Vi .

For T = 0 we obtain

dI1

dV
=

e2

2h

(
P++

12

(
1
2eV

)
+ P−−12

(
1
2eV

)
+ P+−

11

(
1
2eV

)
+ P−+

11

(
1
2eV

))
, (29)

and, as discussed above, dI2/dV =−dI1/dV . The expression for the linear conductance G can
be obtained simply setting the bias to zero in equation (29). Using, in addition, the particle hole
symmetry

Pαβ

i j (E)= P ᾱβ̄

i j (−E), (30)

we find that

G =
e2

h

(
P++

12 (0)+ P+−
11 (0)

)
. (31)

Equations (29) and (31) are the basic relations in this work. Note that they contain
two qualitatively different contributions to the conductance: a normal transmission, T0 ≡

(P++
12 + P−−12 )/2, whereby the quasiparticle type is conserved; and an Andreev reflection, RA ≡

(P+−
11 + P−+

11 )/2, with quasiparticle change. Anticipating a result to be discussed below, note
that equations (29) and (31) predict a remarkable phenomenon, a nonvanishing conductance in
the absence of transmission (T0 = 0) due solely to Andreev reflection. This occurs when the
MNW has a zero mode. In this case Andreev reflection is maximal for zero bias, whereas with
increasing bias there is a reduction of RA, i.e. a zero-bias anomaly appears in dI1/dV due to the
zero mode. Finally, note that equation (31) recovers the well-known Landauer formula for the
two-terminal conductance when superconductivity is removed.

5. Results and discussion

5.1. Physical and scaled values of the parameters

The relative strengths of spin–orbit, pairing and Zeeman terms for a given transverse dimension
L y are determined by the following scaled dimensionless ratios (scaling is indicated by the
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superscript s):

α
(s)
0 =

α0 m∗

h̄2 L y, (32)

1
(s)
0 =

10 m∗

h̄2 L2
y, (33)

1
(s)
B =

1Bm∗

h̄2 L2
y. (34)

Note that for a given set of physical values of α0, 10 and 1B, different values of the transverse
dimension L y will actually correspond to different relative strengths through equations (32)
and (34). On increasing L y , the scenario clearly evolves from weak to strong coupling.

More specifically, we consider below the physical parameters that could represent an InAs-
based nanowire [37], m∗ = 0.033me, α0 = 30 meV nm and a pairing gap of 10 = 0.3 meV.
We assume a realistic value of the wire transverse dimension, L y = 150 nm, for which the
relative strengths of Rashba and pairing are then α(s)0 ≈ 2 and 1(s)

0 ≈ 3. Fixing these two scaled
parameters to these values, we will study the dependence on the third one 1(s)

B below. The
conversion of the Zeeman coupling into a physical magnetic field is B =1B/gµB, with g and
µB being the g factor and Bohr magneton, respectively. With our assumptions this conversion
reads as B = (1.71(s)

B /g) T, in terms of the scaled Zeeman coupling. That is, B = 1 T would
correspond to 1(s)

B = 10 for a g factor of ≈17.
The distance L between barriers (figure 1) is taken as L = 20L y = 3 µm, with a barrier

thickness of 150 nm and height V0 = 0.5 meV, while the spatial diffusivity is d = 15 nm (see,
e.g., equation (3)). We also choose the chemical potential, defining our reference energy of the
MNW, as µ= 0. Overall, we stress that the complete parameter set is representative of a typical
experiment with an InAs-based 2D semiconductor wire.

5.2. Linear conductance results

In figures 2–4, we display the linear conductance calculated from equation (31) as a function of
the scaled Zeeman value 1(s)

B for the set of parameters mentioned in the preceding subsection.
Figures 2 and 3 correspond to magnetic field in the parallel direction to the wire (x), while
figure 4 is for transverse orientation (y). In figure 2, we neglected the contribution of the Rashba
mixing, i.e. the terms containing α(x)py in equation (15). Note that in this situation the linear
conductance displays an almost perfect quantization in e2/h steps. On increasing 1(s)

B , small
deviations in the form of very narrow spikes can be seen at the beginning of the second and
third plateaus. In the first two steps, all the conductance is due to Andreev reflection since
normal transmission is negligible. Perfect Andreev reflection is a signal of the existence of a
zero mode of the closed system, i.e. a Majorana fermion bound at the interface between the
MNW and the normal contacts. We have done an MNW closed-system diagonalization for the
same parameters as figure 2 with the method of [39], finding the first two zero-mode pairs for
1
(s)
B > 4.5 and1(s)

B > 18, respectively. A zero mode yields a perfectly quantized conductance in
the absence of transmission due solely to Andreev reflection, i.e. G = (e2/h)RA. The decrease
of Andreev reflection for 1(s)

B > 50 in figure 2 can be attributed to the finite-size effect that
removes the Majorana modes from perfect zero energy, in agreement with the analysis of [39]
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Figure 2. Linear conductance in the absence of Rashba mixing as a function of
the scaled Zeeman energy. The contributions from Andreev reflection (RA) and
normal transmission (T0) are also shown. The inset shows a blow-up of the data
in a small region. The system parameters are given in section 5.1.

Figure 3. The same as figure 2 but including Rashba mixing.

for the closed system. This decrease in RA is accompanied by an increase in T0, keeping the
value of G close to integer multiples of e2/h, except at the transition between steps.

Figure 3 displays the linear conductance for the same system as figure 2, but now including
the full Rashba interaction. A conspicuous difference from figure 2 is that the conductance
deviates from the simple staircase behaviour, with a broad conductance dip appearing at the
end of the first plateau. This dip is due to a magnetic instability precluding the formation
of two simultaneous zero-mode pairs due to a repulsion between modes induced by Rashba
mixing [39]. The effect of this mechanism on the linear conductance is remarkable, with
the prediction of a reduced conductance due to a large reduction of Andreev reflection. This
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Figure 4. The same as figure 3 but for magnetic field along y.

anomalous behaviour of the conductance at the end of the conductance plateau also appears
in higher plateaus, as seen in figure 3 for the second and third plateaus. Note, however, that
the finite-size effect mentioned above transforms the conductance dips of the higher plateaus
into strongly oscillating behaviour. We have checked that the formation of the conductance dips
due to the instability of multiple zero-mode pairs is even more robust with higher values of
the pairing gap and Rashba strengths and that it is also robust against variations of the barriers
between the normal contacts and the MNW.

Figure 4 shows the evolution of the linear conductance with 1(s)
B for a field along the

transverse direction y. For this orientation of the field the physics changes completely, since now
it is the Andreev reflection that vanishes and the conductance is due to the normal transmission.
Only small peaks in RA can be seen in the transition between plateaus. The vanishing of RA is
due to the absence of zero modes of the closed MNW for magnetic fields along y [39]. A similar
orientation anisotropy has been seen in experiments with cylindrical InSb nanowires [4, 5]. No
conductance dips are observed in figure 4 but there are many spikes due to resonant transmission
through the double-barrier potential Vdb(x). The separation between spikes is very small due to
the dense distribution of quasi-bound states for such a long system L = 3µm. From this point
of view, it is still more remarkable that for a field along x the presence of a zero mode washes
the spike oscillations and yields a consistent maximal conductance in some regimes. In practice,
the observation of the conductance spikes for a y-oriented field may be extremely difficult due
to unavoidable thermal and disorder averagings.

5.3. Nonlinear conductance

The nonlinear conductance obtained with equation (29) is shown in figure 5 as a function of
the applied bias. We have taken some selected values of 1(s)

B from figure 3, corresponding to
vanishing bias, and explored the variation with V . As in the preceding subsection we define a
scaled bias taking the transverse confinement as the reference, i.e. V (s)

= (em∗L2
y/h̄

2)V . For

1
(s)
B = 8 there is a narrow peak in dI1/dV at zero bias. This zero bias anomaly reflects the
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20

10

Figure 5. dI1/dV as a function of scaled bias V (s) for the same parameters as
figure 3 and for different values of 1(s)

B .

existence of a zero mode in the MNW. On increasing the Zeeman coupling, the peak broadens,
becoming a flat distribution. For 1(s)

B = 20, corresponding to the conductance dip of figure 3,
the zero bias peak changes to a zero bias minimum. The existence of a zero-bias anomaly in the
presence of zero-modes has been discussed earlier in systems with a superconductor contact,
experimentally in [4, 5] and theoretically in [15–17]. Our results prove that similar behaviour is
to be expected in N/MNW/N structures.

5.4. Density distributions

The density distributions, defined as |ψnsσ sτ (x)|
2, are shown in figure 6 for two values of

1
(s)
B . They correspond to perfect Andreev reflection (1(s)

B = 10) and to the conductance dip
(1(s)

B = 19) of figure 3. As expected, the upper panel shows that the incident unitary density
couples with an edge mode of the MNW. The density profile localized at the edge and decaying
towards the interior has exactly the same shape found in calculations of zero modes of closed
MNWs [39]. Perfect Andreev reflection in this situation consists of total reflection in the
conjugate channel, and hence, no quantum interference is observed in the left contact. As
mentioned before, this occurs due to the presence of the zero mode in the MNW and allows
unit conductance without any transmission at all between the left and right contacts. This
is clear for a wave function such as that of figure 6 that always vanishes in one of the two
contacts.

The lower panel of figure 6 shows qualitatively different behaviour. The beating pattern in
the left contact indicates that full reflection occurs now in the same channel of incidence, with a
strong interference between incident and reflected waves. The density at the edge of the MNW
is more irregular and extends farther towards the interior than in the upper panel. The physical
interpretation is clear: for this Zeeman intensity the edge mode of the MNW lies at nonzero
energy, thus causing normal reflection, as opposed to the Andreev reflection of the upper
panel.
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Δ

Δ

Figure 6. Density distributions |ψnsσ sτ (x)|
2 for two values of 1(s)

B of the first
plateau of figure 3. We assumed boundary conditions corresponding to incidence
from the left side. For comparison, the position of the potential barriers is
indicated by the shaded regions.

6. A model in second quantization

To provide additional insight into the physics of transport through the MNW, in this section we
consider an effective Hamiltonian in second quantization projected onto the Majorana subspace.
The Hamiltonian consists of three parts:

Heff =HC +HM +HT, (35)

with

HC =

∑
α=L/R,k

εαkc†
αkcαk, (36a)

HM =
i

2
εMηLηR, (36b)

HT =

∑
α,β,k

(V ∗αk,βc†
αkηβ + Vαk,βηβcαk). (36c)

Here HC describes the normal leads, with c†
αk (cαk) being the Dirac fermion creation

(annihilation) operator. Note that the spin degree of freedom is neglected. This can be
understood considering that we need to apply a large magnetic field to observe the edge
Majoranas, so that only one kind of spin is effectively involved [38]. HM characterizes the
coupled Majorana states, with ηL/R being Majorana fermion operators fulfilling ηi = η

†
i , η2

i = 1
and with anticommutator relation {ηi , η j} = 2δi j . The parameter εM denotes the coupling
between the two Majoranas on opposite ends of the MNW and can be a complicated function
of wire length, superconducting coherence length, applied magnetic field, Rashba coupling and
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superconducting gap. εM might be found by exact diagonalization of Hamiltonian (1) [39]. We
will assume that it is known for the purpose of the present model. The last contribution, HT,
corresponds to the tunnel Hamiltonian between normal leads and the Majoranas on opposite
ends [16]. Below, the tunnel amplitude Vαk,β is taken as V for α = β and zero for α 6= β.

The current is computed from

Iα =−
ie

h̄
〈[H, nα]〉 = −

2e

h̄
<

{∑
β

∑
k∈α

Vαk,βG<αk,β(t, t)

}
, (37)

where nα =
∑

k∈α c†
αkcαk and G<αk,β denotes the lesser component of the mixed Green’s function

defined as

Gαk,β(t, t ′)=−i〈TK cαk(t)ηβ(t
′)〉. (38)

Employing the equation of motion technique, after tedious algebra, the current becomes

Iα =−
2e

h̄
=

{∫
dε Tr

[
fα(ε)

(
Gr
η(ε)−G

a
η (ε)

)
0α(ε)+G<η (ε)0α(ε)

]}
, (39)

where Gη(ε) is the Green’s function for the MNW and Γα(ε) denotes the hybridization matrix
given by

0α;βγ (ε)= π
∑
k∈α

Vαk,βV ∗αk,γ δ(ε− εαk)= δα,βδβ,γ0/2. (40)

To complete the calculation, we need to determine the MNW Green’s functions. They read [16]

Gr/a
η (ε)=

2

ε− it− 26
r/a
0 (ε)

, (41)

G<η (ε)= G
r
η(ε)6

<
0 (ε)G

a
η (ε). (42)

Here,

t=
(

0 εM

−εM 0

)
, (43)

and the self-energy matrices are given by

6
r/a
0;αβ(ε)=∓i

∑
γ

[0γ ;αβ(ε)+ 0γ ;βα(−ε)], (44)

6<
0;αβ(ε)= 2i

∑
γ

[ fγ (ε)0γ ;αβ(ε)+ fγ (−ε)0γ ;βα(−ε)]. (45)

Substituting equations (40)–(45) into (39) and using current conservation, we obtain

IL =−IR =
e

h

∫
dε

402(ε2 + 402 + ε2
M)

(ε2 + 402)2 + ε2
M(ε

2
M− 2(ε2− 4γ 2))

( fL(ε)− fR(ε)). (46)
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From equation (46), we note that at T = 0 the linear conductance finally reads

G =
e2

h

402

ε2
M + 402

. (47)

For zero-energy Majoranas εM = 0 and then equation (46) yields G = e2/h. This result nicely
agrees with our interpretation of figure 3 attributing the maximal conductance to the zero mode.

7. Conclusions

We have presented here the formalism of transport in an N/MNW/N structure based on the
CCM. This formalism yields a transparent interpretation of the coupling between channels
induced by the relevant physical mechanisms of the problem: namely, the confinement, Zeeman,
Rashba and superconducting interactions. We have considered a 2D structure and in-plane
magnetic fields, although the formalism can be extended to consider more spatial dimensions
and different geometries.

The CCM equations have been solved using the QTBM algorithm for a set of parameters
representative of an InAs nanowire. The existence of a zero mode in the MNW is characterized
by a perfect Andreev reflection, whereby an incident channel is totally reflected in its antiparticle
conjugate one. For a single zero-mode pair the linear conductance takes the maximal value e2/h
due solely to Andreev reflection, without any quantum transmission from left to right contacts.
For increasing values of the Zeeman coupling along the wire, a conspicuous dip in the linear
conductance is predicted due to repulsion between Majoranas. This repulsion originates from
the Rashba mixing between channels. In contrast, for Zeeman coupling along y the Andreev
reflection vanishes, with the possible exception of a small region close to the transition between
plateaus. When the zero mode is absent, the linear conductance has narrow spikes as a function
of the Zeeman coupling.

The differential conductance signals the presence of the zero mode with a peak at zero
bias. The zero bias peak evolves to a dip when the MNW zero mode is absent. Finally, we have
also discussed an effective model in second quantization confirming the physical interpretation
in terms of Majorana modes. The CCM presented in this work can be used to investigate other
scenarios such as, for example, nonsymmetric barriers or sequential MNWs. It can also be
applied to cylindrical nanowires where we expect relevant magnetic orbital effects. Work along
these lines is in progress.
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[37] Estévez Hernández S, Akabori M, Sladek K, Volk Ch, Alagha S, Hardtdegen H, Pala M G, Demarina N,
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