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Abstract 21 

Effective fisheries management needs to consider spatial behaviour in 22 

addition to more traditional aspects of population dynamics. Acoustic telemetry 23 

has been extensively used to provide information on fish movements over 24 

different temporal and spatial scales. Here, we used a fixed-receiver array to 25 

examine the movement patterns of Labrus bergylta Ascanius 1767, a species 26 

highly targeted by the artisanal fleet of Galicia, NW Spain. Data from 25 27 

individuals was assessed for a period of 71 days between September and 28 

November 2011 in the Galician Atlantic Islands Maritime-Terrestrial National 29 

Park. Fish were present within the monitored area more than 92% of the 30 

monitored time. The estimated size of individual home ranges, i.e. the area 31 

where fish spent most of their time, was small. The total minimum convex 32 

polygons area based on all the estimated positions was 0.133 ± 0.072 km2, 33 

whereas the home range size estimated using a 95% kernel distribution of the 34 

estimated positions was 0.091 ± 0.031 km2
.  The core area (50% kernel) was 35 

0.019 ± 0.006 km2. L. bergylta exhibited different patterns of movement in the 36 

day versus the night, with 92% of the fish detected more frequently and 37 

travelling longer distances during the daytime. In addition, 76% of the fish 38 

displayed a larger home range during the  day versus night. The linearity index 39 

was less than 0.005 for all fish suggesting random movements but within a 40 

relatively small area, and the volume of intersection index between consecutive 41 

daily home ranges was 0.75 ± 0.13, suggesting high site fidelity. The small 42 

home range and the sedentary behaviour of L. bergylta highlight the potential 43 

use of small MPAs as a management tool to ensure a sustainable fishery for 44 

this important species.  45 
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1. Introduction 48 

Fish movement patterns are particularly relevant to marine management 49 

and conservation (Alós et al., 2012b). Traditionally, management decisions 50 

were based on population-dynamic models that incorporated fishing effort and a 51 

number of biological traits. However, they assumed fish populations to be 52 

spatially homogeneous (Botsford et al., 2009), even when the biology of the fish 53 

and the management tools used had a spatial component (Babcock et al., 54 

2005). As approaches for managing marine resources are improving, there is 55 

increasing evidence for the need to integrate spatial information into our 56 

understanding of population dynamics (Pecl et al., 2006; Semmens et al., 57 

2010).  58 

Understanding fish movement patterns is important, for example, in the 59 

design and assessment of marine protected areas (MPAs). MPAs are a 60 

multipurpose fishery management tool (Martin et al., 2007), often used  to 61 

protect a specific life history stage and to promote the healthy populations which 62 

will then spillover  the boundaries of the MPA to other areas. Thus, the success 63 

of MPAs in a fisheries context largely depends on the scale of fish movements 64 

in relation to the size of the MPAs. If most of the individuals within the 65 

population have home ranges larger than the area of the reserve itself, then the 66 

fish will be exposed to fishing pressure  and the effectiveness of the reserve will 67 

be limited (Kramer and Chapman, 1999). MPAs have been predicted to best 68 

serve benthic species with small home ranges and high residency, such as 69 

some scarids (e.g. Welsh and Bellwood, 2012), serranids (e.g. Afonso et al., 70 



2011; March et al., 2010) or labroids (e.g. Chateau and Wantiez, 2007; Topping 71 

et al., 2005).   72 

In spite of its importance, quantifying movement patterns of marine fishes 73 

is difficult. Conventional approaches based on external tagging (i.e. mark-74 

recapture studies;  Fowler et al., 2002; Palmer et al., 2011)  depend in large 75 

part on the rate of fish returned by fishermen or anglers. In contrast, acoustic 76 

telemetry is able to provide repeated estimates of the position of the same 77 

individual and has become a powerful approach that allows tracking of fish over 78 

different spatial and temporal scales (Alós et al., 2011; Heupel et al., 2006). In 79 

the last years acoustic telemetry has been increasingly used to determine home 80 

range size (Collins et al., 2007; Lowe et al., 2003), diel activity pattern (Hitt et 81 

al., 2011; Jadot et al., 2006; Meyer et al., 2007), site fidelity (Abecasis and 82 

Erzini, 2008; March et al., 2011), and habitat preference (Alós et al., 2011; 83 

Topping et al., 2005) of different fish species in a variety of ecoregions. 84 

Nonetheless, inference about temporal patterns from telemetry studies should 85 

be done with care, and effort must be made in disentangling animal behaviour 86 

and rhythms from other factors affecting the probability of detecting a fish (e.g. 87 

wind speed, current speeds, biological and environmental noise; Heupel et al., 88 

2006) and the use of fixed control tags has been recently proposed to overcome 89 

this problem (Payne et al., 2010).  90 

The ballan wrasse, Labrus bergylta Ascanius 1767, is one of  13 species 91 

of labroids occurring in Galicia, NW Spain (Bañon et al., 2010). It is distributed 92 

along the coasts of the north-east Atlantic (from Norway to Morocco) and the 93 

Mediterranean, from the shoreline to 60 m depth, and targeted throughout most 94 



of this range (Porteiro et al., 1996; Talbot et al., 2012; Treasurer, 1994). In 95 

Galicia, it supports an important artisanal gillnet fishery, being one of the three 96 

most landed fish species in the last decade (www.pescadegalicia.com; last 97 

accessed: 25 Sep 2012), as well as  a recreational fishery made up of anglers 98 

and spear fishers, who usually select for larger individuals (Lloret et al., 2008).  99 

The ballan wrasse is a benthic species, occurring most commonly  at depths < 100 

30 m (Dipper et al., 1977). It inhabits rocky reefs and kelp beds where it mostly 101 

feeds on small invertebrates (Figueiredo et al., 2005). It’s long-lived (up to 29 102 

yr), with slow growth and a protogynous hermaphrodite without sexual 103 

dimorphism in colour (Dipper et al., 1977), which spawns in the spring in 104 

northern Europe (Dipper and Pullin, 1979; Muncaster et al., 2010). Management 105 

of L. bergylta is based solely on a minimum landing size of 20 cm, even though 106 

it has been suggested that in sequential hermaphrodites larger individuals 107 

should be protected to ensure sex ratios are sufficient for effective mating and 108 

fertilization (Alonzo and Mangel, 2004).  109 

There is little knowledge of home range size and temporal patterns in 110 

movements for this species. However, a pilot study suggested  these topics 111 

could be successfully addressed  with telemetry  (Pita and Freire, 2011). In 112 

addition, males have been reported to defend small territories (< 300 m2) 113 

(Sjolander et al., 1972) and inactivity has been observed at night (Costello, 114 

1991, pers. obs.). Thus, L. bergylta appears to be a good candidate for spatial 115 

management (i.e., MPAs), but the optimal reserve size lacks empirical testing.  116 

In this study, we used acoustic telemetry to investigate the individual and 117 

temporal variability in the movement patterns of L. bergylta over a period of 71 118 



days. Specifically, we estimated: (1) residence and site fidelity indexes, (2) 119 

temporal patterns and diel behaviour, (3) home range and core area size and 120 

(4) fish size related differences in spatio-temporal patterns.  121 

 122 

2. Material and Methods 123 

This study was conducted at the Cíes Archipelago (Galicia, NW Spain; 124 

Fig. 1) between 1 September and 10 November 2011. These islands are part of 125 

the Galician Atlantic Islands Maritime-Terrestrial National Park, created in 2002. 126 

It comprises an area of ~ 32 km2 where limited commercial fishing is allowed 127 

with some gear regulations, while recreational fishing is forbidden. The study 128 

area is located around a small islet in the channel between two of the main 129 

islands (Fig. 1). This is a shallow area with depths between 0 and 23 m 130 

encompassing different habitat types, namely rocky reefs, kelp beds, coralline 131 

algae and sandy bottoms. 132 

2.1 Receiver array  133 

In September 2010, a preliminary range test was carried out in Ría de 134 

Vigo at a location similar to the study area. We specifically tested detection 135 

range at 10-15 m depth and over 2 different substrates (soft and hard). We 136 

used ©Vemco range test tags V13 and V9 with the same power output as the 137 

tags used in this study. A line of 12 receivers was moored covering a distance 138 

of 350 m, and both tags were submerged 1 m above the bottom, at the location 139 

of the first receiver in the line. The test lasted 112 min, which is the time needed 140 

to send out 160 emissions. A generalized linear model (GLM, family 141 



quasibinomial) was used for each substrate type to test for differences between 142 

proportions of emissions detected at each distance by each tag type. There was 143 

no significant difference in the reception range of either tag type with hard (p = 144 

0.340) or soft (p = 0.620) bottom type. Therefore data from both tag types were 145 

pooled in subsequent analysis. Maximum detection range was ~ 200 m and 146 

~300 m for hard and soft bottoms, respectively, so an intermediate value of 250 147 

m was used to design the receivers array. 148 

Based on this information a fixed array of 12 acoustic omni-directional 149 

receivers (©Vemco model VR2W) was deployed at the study site to monitor the 150 

spatio-temporal patterns of L. bergylta (Fig. 1). Receivers, previously treated 151 

with antifouling paint, were attached to the upper end of a metallic auger anchor 152 

(140 cm high), which was screwed ~ 60 cm into the substrate. This system 153 

allowed good fixation and resistance to bad weather conditions as well as a 154 

guaranty of vertical orientation of the receiver. Receivers were placed at depths 155 

between 5 and 21 m and the array covered an area of ~ 1.6 km2
, with a higher 156 

density of receivers closer to the place where fish were tagged and released 157 

(islet shoreline). The receiver configuration allowed for range overlap and 158 

allowed fish to be continuously detected when present inside the monitored 159 

area.  160 

2.2 Sampling and tagging 161 

Sixteen fish were captured at depths < 10 m during daytime with hook 162 

and line and the swim bladder punctured quickly for venting the trapped gas. 163 

Another 9 fish were captured while resting at night by SCUBA divers at 6-10 m 164 

depth and slowly brought to surface (~ 4 m min-1). After acclimatization fish 165 



were anesthetized by immersion in a seawater solution of 100 mg l-1 tricaine 166 

methanesulfonate (MS-222) for 4.0 ± 1.6 min (mean ± sd; hereafter all values 167 

expressed as mean ± sd) until total loss of equilibrium. Individuals were 168 

measured to the nearest 0.1 cm and placed in a methacrylate v-shaped “bed” 169 

submerged in, a seawater solution of 25 mg l-1 of MS-222. Acoustic tags were 170 

implanted into the peritoneal cavity of each fish through a 3 cm longitudinal 171 

incision in the abdominal wall and the wound closed with 2-3 sutures. The entire 172 

surgical process took less than 4 min. After complete recovery, fish were 173 

released in the location of initial capture.  Time out of the water was 35 ± 12 174 

min. The GPS position, depth, date and hour of release were recorded for each 175 

tagged fish. 176 

Twenty one fish were tagged with ©Vemco V13-1L-A69-1601 tags (36 x 177 

13 mm, 6.0 g in water), with a random delay of 40-80 s, while 4 of the smaller 178 

individuals were tagged with V9-2L-A69-1601 (29 x 9 mm, 2.9 g in water) with a 179 

random delay of 80-120 s. Battery life in both cases exceeded the duration of 180 

the present study. An evaluation of the surgical procedure using dummy 181 

transmitters with 8 individuals in captivity revealed normal activity 5-8 min after 182 

surgery, normal feeding after 1 day, full cicatrisation without transmitter loss 183 

after 3 weeks and 100% survival after 16 months. Fish were tagged before this 184 

study (March-April 2011) as part of another experiment, so normal behaviour 185 

and complete cicatrisation was assumed. As recommended by Payne et al. 186 

(2010) a control tag (V13) was deployed inside the receiver array for the 187 

tracking period to assess possible environmental effects on the detection 188 

patterns and to have a means to measure fish position error.  189 



2.3 Temporal pattern 190 

Data processing and all analysis were conducted in R (R Development 191 

Core Team, 2011). Data were filtered to remove potential spurious detections, 192 

defined as any single transmitter code (fish ID) occurring alone at a specific 193 

receiver within a 24 h period (Meyer et al., 2007). The total period of detection 194 

(TP) for each fish was calculated as the time interval between the first day of 195 

the experiment and the last day the fish was detected, while the number of days 196 

detected (DD) reflected only those days an individual was detected. Thus, the 197 

residence index (RI) for each fish was defined (March et al., 2010) as: 198 

RI = DD / TP          (1) 199 

Detections of all receivers for each fish were pooled into hourly bins (time 200 

expressed in UTC). Then, continuous wavelet transforms (CWT) were used to 201 

identify periodicity patterns in the time series (Alós et al., 2012a; March et al., 202 

2010). We computed the 2-dimensional wavelet spectrum and calculated a 203 

pointwise test at the 95% significance level using a Morlet wavelet with the 204 

sowas package (Maraun et al., 2007). To investigate diel patterns, the number 205 

of detections per hour were pooled and corrected by taking into account the 206 

mean hourly detection frequency of the control tag, as described in Payne et al. 207 

(2010). This approach quantifies the magnitude of variation of each hourly bin 208 

(as standardized detection frequencies, SDFs) around the mean daily detection 209 

frequency for the control tag:  210 

μ  



where µ is the overall mean detection frequency across all hourly bins, b, and B 211 

is the mean detection frequency in each hourly bin for the control tag. The mean 212 

daily detection frequency for each fish tag was then divided by the 213 

corresponding SDF for each bin. Then, the total detections at day and night 214 

were pooled and standardized based on the different duration of each phase. 215 

Day and night phases were defined using sunrise and sunset data obtained 216 

from the U.S. Naval Observatory (http://aa.usno.navy.mil; last accessed: 14 Apr 217 

2012) for the study area (March et al., 2010; Meyer et al., 2007). A Mann 218 

Whitney U-test was used to test for differences in the corrected number of 219 

detections between day and night.  220 

2.4 Spatial pattern 221 

We estimated the centres of activity (COA) for each fish at each time bin 222 

(Hedger et al., 2008; Simpfendorfer et al., 2008) using the Nadayara-Watson 223 

normal kernel estimator with the sm package (Bowman and Azzalini, 1997). The 224 

resulting set of estimated positions was used as input for the subsequent 225 

analysis. Fish position at each time, XYij, was based on the averaged positions 226 

of the receivers that detected fish i during the time bin j and weighted by the 227 

number of detections at each receiver over that period. Selection of an 228 

appropriate time bin size (Δt) is required to get accurate results when using this 229 

method and the optimal bin size must balance the need to record sufficient 230 

detections from different receivers and the need to not allow the fish to move 231 

too much (Simpfendorfer et al., 2002). To select the optimal Δt, we calculated 232 

the mean number of receivers detecting signals from an individual tag (NR), and 233 

then we averaged the number of detections from this tag across all receivers 234 



(ND) during each time bin. We tested six different values of Δt: 10, 20, 30, 40, 235 

50 and 60 min. NR is expected to increase asymptotically as Δt increases, 236 

whereas ND increases linearly with Δt. Better position estimates are obtained 237 

when the fish is detected multiple times by multiple receivers (Simpfendorfer et 238 

al., 2002). We considered a suitable Δt when the increase in NR was < 10% 239 

between two consecutive values of Δt and ND remained > 10. The resulting 240 

value was Δt = 30 min at which NR was 2.8 ± 1.8 receivers for both V13 and V9 241 

tags and ND was 10.1 ± 6.9 and 14.4 ± 12.1 detections / time interval for V9 242 

and V13 tags, respectively.  243 

We used 2 approaches to estimate the home range of each fish over the 244 

total period.  Minimum convex polygons were estimated based on the full set of  245 

fish positions (MCP100).  Bivariate normal fixed kernel utilization distributions 246 

(KUDs) were estimated based on 95% (home range) and 50% (core area) of 247 

the positions (KUD95 and KUD50, respectively) using the adehabitat package 248 

(Calenge, 2006). The MCP100 provided information regarding the extent of an 249 

animal’s range over a given period, while KUDs provided information regarding 250 

the use of space within that range including core area and home range. The 251 

overlapping area between the small islet located in the receiver array and the 252 

activity spaces was subtracted to produce the final results. A kernel bandwidth 253 

equal to the error in the estimation of the fish locations was selected (Alós et al., 254 

2012a). As this error is unknown, it was approximated as the mean of the 255 

positioning error of the control tag. A linear regression was used to test for 256 

differences in the intercept and slope of the home range sizes estimated by 257 

MCP100 and KUD95.   258 



Changes in home range over time were investigated based on KUD95. 259 

Observation-area curves were calculated by plotting cumulative home ranges 260 

over a period of days. It is expected that as tracking time increases the 261 

cumulative KUD95 will initially increase and eventually  reach an asymptote, 262 

indicating that no additional tracking time is needed to ascertain the true home 263 

range of the fish (Rechisky and Wetherbee, 2003). We assumed the asymptote 264 

was reached at the time when percent change of the observation-area curve 265 

was less than 5% between two consecutive days (Rechisky and Wetherbee, 266 

2003). In addition, daily values of KUD95 were estimated for the 71 days and 267 

diel (night vs. day) differences in these values were statistically tested using a 268 

Wilcoxon signed rank test. For comparison we also estimated the accumulated 269 

KUD95 for day and night phases for each fish. 270 

The linearity index (Li) (Alós et al., 2011; Rechisky and Wetherbee, 2003) 271 

and the volume of intersection (VI) index (Fieberg and Kochanny, 2005) were 272 

calculated for each fish as a proxy for site fidelity. Li was calculated as:  273 

Li = (Fn – F1) / D          (2) 274 

where Fn – F1 is the distance between the first and last COA, and D is the total 275 

distance travelled by the fish. An Li of 1 indicates linear movements between 276 

the first and the last COA and an Li near 0 indicates little movement from the 277 

area and reuse of the same activity space (March et al., 2010). VI index 278 

computes the volumetric intersection between two activity spaces and was 279 

calculated with the kerneloverlap function in the adehabitat package (Calenge, 280 

2006). The VI index ranges from 0 to 1 (Fieberg and Kochanny, 2005). We 281 

estimated 3 VI indices. First, VI index was calculated for daily values of KUD95 282 



in order to investigate patterns of space reuse from day to day. A value of 1 283 

signifies complete overlap of activity spaces (sedentary behaviour) whereas a 284 

value of 0 indicates non-overlap (nomadic behaviour). Second, patterns in 285 

home range diel shift were evaluated by estimating the day-night values of VI 286 

index for the accumulated KUD95 and third, the same was done with the 287 

accumulated KUD50. In this case a VI index of 1 indicates complete overlap 288 

between day and night activity spaces whereas a VI index of 0 suggests a 289 

different use of space during the  day and night. Total distance travelled per day 290 

(Dt) was approximated by adding up the distances between consecutive COAs 291 

for each day. Distance travelled per hour at daytime (Dd) and night time (Dn) 292 

were calculated for each day by dividing the distance travelled per diel phase by 293 

the duration of the phase, and the differences were tested with a Wilcoxon 294 

signed rank test.  295 

In addition, linear regression models were used to determine the effects 296 

of fish total length (TL) on the home range size (both MCP100 and accumulated 297 

KUD95) and Dt. The normality of the residuals and model performance were 298 

examined by visual inspection of the residual distributions, plotting the residuals 299 

against the fitted values and using quantile-quantile (QQ) plots. 300 

 301 

3. Results 302 

The characteristics of the 25 L. bergylta individuals monitored are 303 

summarized in Table 1. A total of 822,251 detections were downloaded from the 304 

receivers, with a mean of 31,625 ± 22,366 detections per fish. On average, an 305 

individual fish was detected by 8.2 ± 1.9 receivers over the whole period. Fish 306 



were detected by more receivers during daytime (3.8 ± 1.2 receivers per hour) 307 

than at night (2.1 ± 0.5 receivers per hour). The mean number of fish detected 308 

by a receiver was 17.3 ± 6.0. The total period of detection was 71 days for all 309 

tagged fish with a mean of 70.2 ± 1.4 days detected. The RI varied from 0.92 to 310 

1.00 with a mean of 0.99 ± 0.02. 311 

3.1 Temporal pattern 312 

The corrected number of detections binned by hour and pooled ignoring day 313 

(Fig. 2) revealed a clear diel pattern for the majority of fish. The diel pattern was 314 

characterized by more detections during the day. Detections from the control 315 

tag indicated a significant variability in reception between day and night periods 316 

(Fig. 2), with more detections occurring during the night period (p < 0.05). The 317 

corrected mean number of detections was significantly higher during daytime 318 

compared to the night for 24 individuals (Table 2), with the exception of one fish 319 

which was more frequently detected at night. 320 

The CWT spectrograms (some examples in Fig. 3) detected significant 321 

periodicities in the time series of the monitored fish, but not in the control tag. 322 

Twenty-four fish presented a clear 24 h periodicity in their spectrograms. In 323 

some cases this periodicity extended for the majority of the days (n = 9), 324 

whereas in others it was more sporadic (n = 15). Fish 305 also showed a 325 

significant 48 h periodicity in addition to the 24 h periodicity, probably 326 

corresponding to the second harmonic of the 24 h period. Fish 285 did not 327 

exhibit a 24 h periodicity, but did show a significant 12 h periodicity.  328 

3.2 Spatial patterns 329 



A mean of 2,651 ± 574 COAs (fish positions) were estimated for the tagged fish 330 

based on 30 min time bins (Table 3). For the control tag, 3,376 COAs were 331 

estimated and compared with the true tag position giving a mean estimation 332 

error of 45.5 ± 17.0 m. 333 

The plots of daily cumulative KUD95 (Fig. 4) revealed that although all 334 

individuals stabilized their home range area during the study period (mean = 335 

16.8 ± 18.6 days), the time needed to achieve it was highly variable, ranging 336 

from 1 to 56 days (Fig. 4 and Table 3). Home range (MCP100 and KUD95) and 337 

core areas (KUD50) are shown in Table 3 while some examples are plotted in 338 

Fig. 5. The estimation of home range size obtained with MCP100 was 0.133 ± 339 

0.072 km2. MCP100 was negatively correlated with fish TL (β = -0.005, t = -340 

2.907, p = 0.008). The estimation of home range size obtained with KUD95 was 341 

0.091 ± 0.031 km2, exhibiting no relationship with fish TL (p = 0.322). MCP100 342 

estimates were significantly larger than KUD95 estimates over the full range of 343 

home range sizes, i.e., the linear regression between the home range sizes 344 

estimated with MCP100 against those estimated with KUD95 revealed a slope 345 

significantly different from 1 (β = 1.339, t = 3.346, p = 0.003) and an intercept of 346 

0. The core area based on accumulated KUD50 was 0.019 ± 0.006 km2 showing 347 

no relationship with fish TL (p = 0.070).  348 

Significant diel differences were found in 22 out of 25 fish in daily KUD95 349 

(Table 3), with 19 fish showing significantly larger daily daytime KUD95 and 3 350 

fish exhibiting larger nighttime KUD95. Fish exhibited the same diel pattern when 351 

the accumulated, i.e. asymptotic, KUD95 was analyzed with the exception of 352 

one. Averaged Dt was 1570 ± 467 m d-1 (Table 4). It was negatively correlated 353 



with fish TL (β = -35.06, t = -3.107, p = 0.005) and showed a strong positive 354 

correlation with KUD95 (Pearson r2 = 0.82). Dt varied significantly with the diel 355 

phase, with longer distances travelled at day hours in all cases except for one 356 

fish (Table 4).  357 

Li and VI indices are shown in table 4. Li over the full period was 0.0008 ± 358 

0.0009. VI index was high based on a KUD95 daily shift (0.75 ± 0.13). Day-night 359 

VI index ranged between 0.00 and 0.41 in the case of the accumulated KUD50 360 

(0.22 ± 0.12) and between 0.18 and 0.86 for the accumulated KUD95 (0.58 ± 361 

0.17). 362 

 363 

4. Discussion 364 

4.1 Residence time and site fidelity 365 

Residence time and site fidelity are important issues to be taken into 366 

account when designing MPAs for a given species.  High residence time is a 367 

typical behaviour among reef associated fishes and has been documented for 368 

many different fish families (e.g. Labridae and Serranidae) at different time 369 

scales, such as days (23 d for Xyrichtys novacula, Alós et al., 2012a), months 370 

(up to 27 months for Semicossyphus pulcher, Topping et al., 2006) or years (up 371 

to 5 years for Epinephelus marginatus, Afonso et al., 2011). Our results of RI for 372 

L. bergylta over the 71 d of study agree with this general pattern of behaviour, 373 

with all fish being detected in the monitored area > 92% of the days. Moreover, 374 

the fact that all the 25 fish were tagged in the study area months before this 375 

study, and were still there in September 2011 when this research started, 376 



suggests that the resident behaviour reported might be maintained over longer 377 

periods of time. The high residency of L. bergylta is supported by the low Li and 378 

high daily VI index values obtained, which reveal a strong sedentary behaviour 379 

and non-directional movements. 380 

4.2 Diel behaviour 381 

L. bergylta showed a clear diel pattern with a much higher activity during 382 

daytime. The 24 h periodicity of this temporal pattern was also clearly observed 383 

in the CWT spectrograms for most fish. The interpretation of diel patterns in 384 

telemetry studies must, however, be done with care. Environmental conditions 385 

(e.g. temperature, salinity, conductivity) may produce spurious periodicities in 386 

the detection patterns, even if the animal does not have diel behaviour, which 387 

may lead to a misinterpretation of the results (Payne et al., 2010). To assess 388 

those effects we used a control tag, which recorded any environment-related 389 

temporal pattern and allowed us to remove this from the data prior to assessing 390 

movement patterns.  Therefore, diel patterns observed were due only   to fish 391 

behaviour, assuming that there was no spatial variation in environmental 392 

artefacts within the monitored area.  393 

The existence of a diel pattern is a common characteristic of fish 394 

behaviour and has been previously reported for a wide variety of species (Alós 395 

et al., 2011; Arendt et al., 2001; Hitt et al., 2011). Some authors found that diel 396 

detection patterns were related to actual fish movement in and out of a certain 397 

area (Hitt et al., 2011; Topping et al., 2005). A similar pattern could, however, 398 

be observed if the animal does not leave the area but displays hiding or burying 399 

behaviour at night (March et al., 2010), as has been observed for many labroids 400 



(Alós et al., 2012a; Topping et al., 2005). This seems to be the case of L. 401 

bergylta too, which is known to display decreased activity and sheltering 402 

behaviour at night hours, when individuals rest inside rock crevices or between 403 

the rocks (Costello, 1991; pers. obs.). This behaviour would impede the 404 

transmission of the acoustic signals, resulting in the low number of detections 405 

observed at night. During the day L. bergylta is more mobile and visible 406 

(Costello et al., 1993) allowing improved reception of  the acoustic signals. This 407 

would also increase the potential  for signal collisions during the day 408 

(Simpfendorfer et al., 2008), which may, at least in part, explain the observed 409 

pattern of detection of the control tag (fewer detections during daytime). 410 

The temporal diel pattern observed was supported by our spatial results. 411 

Estimated home ranges differed between night and day, with most of the fish 412 

exhibiting larger daytime home ranges. This result suggests that estimates of 413 

home range based solely on data from the daytime, as is common with active 414 

tracking studies or direct underwater observations (Barrett, 1995), may not be 415 

accurate. Besides, distance travelled at daytime was greater for all but one fish, 416 

revealing higher activity during this phase in agreement with the increased 417 

diurnal detections. Given that the study period was out of the spawning season 418 

of the species, increased daytime movements and activity are presumed to be 419 

related to foraging activity. In addition, it is worth mentioning that for the 420 

purposes of this research we defined the day and night periods using the 421 

sunrise and sunset times, as in other telemetry studies (Alós et al., 2011; Hitt et 422 

al., 2011; March et al., 2010). This definition could potentially influence the 423 

results of diel behaviour if dawn and dusk movements (included in the night 424 

period) were important, resulting in a partially overestimated nocturnal activity.  425 



The wide range of values obtained for day-night VI index (for both home 426 

range and core area) suggests intra-specific variability in diel patterns in the use 427 

of space. Some fish used relatively different areas for night and day activities 428 

(e.g. resting vs. foraging), while others remained in the same space throughout, 429 

similar to  other temperate and tropical reef associated species (Lowe et al., 430 

2003; Marshell et al., 2011; Meyer and Holland, 2005).  431 

4.3 Home range size  432 

The small home range obtained for L. bergylta (KUD95 = 0.091 km2) is in 433 

agreement with a sedentary behaviour previously reported for this species 434 

(Costello, 1991; Sjolander et al., 1972). Reported territory size for males during 435 

spawning was < 300 m2 (0.0003 km2; Sjolander et al., 1972), much smaller than 436 

our estimations of home range size. Due to the nest guarding behaviour of the 437 

species (pers. obs), the estimation by Sjolander et al., (1972) likely corresponds 438 

to the range of movement of the guarding males during the day (when 439 

observations were made), rather than the true home range of the species.   440 

Home range size estimations are determined by the temporal scale at 441 

which they are calculated. Measurements along several consecutive days are 442 

required to obtain an asymptotic, i.e. accumulated value, to be used as an index 443 

of home range (March et al., 2010). Therefore, not taking into account the 444 

temporal scale, i.e. measuring home range over short periods, can lead to 445 

biased results and erroneous conclusions. In the case of L. bergylta all the 446 

individuals stabilized their home range during the study period showing that no 447 

additional tracking time was needed for a reliable estimation of the home range 448 

size. Pita & Freire (2011) estimated a home range size of 0.003 km2 and 0.005 449 



km2 for two individuals of L. bergylta that were manually tracked for 1 and 4 450 

days, respectively, which might lead to underestimated results. The home range 451 

size reported in the present study for L. bergylta is in the range of other 452 

hermaphroditic labroids with complex social structures like Xyrichtys novacula  453 

(0.32 km2; Alós et al., 2012a), Coris julis (0.13 km2; Palmer et al., 2011) or 454 

Semicossyphus pulcher (0.02 km2; Topping et al., 2005).  455 

Intra-specific variability in home range sizes may be influenced by many 456 

biological or environmental factors (Quinn and Brodeur, 1991). Different 457 

relationships have been found between fish TL and home range size for 458 

sedentary species, from positive (Jones, 2005) to negative (Kaunda-Arara and 459 

Rose, 2004; Meyer and Holland, 2005), or no relationship (Alós et al., 2011; 460 

March et al., 2010). Additionally, the estimation of the home range size is highly 461 

dependent on the method used (Walter et al., 2011), which was supported by 462 

our results. Home range size of L. bergylta based on MCP100 was negatively 463 

correlated with fish TL, although KUD95 was not correlated at all. The strong 464 

correlation between KUD95 and Dt further supports the idea that home range 465 

size is correlated with fish TL. Smaller fish travelled longer distances, resulting 466 

in  larger home ranges, as evidenced by the negative relationship between fish 467 

TL and Dt. Higher mobility and larger home range (based on MCP100) in smaller 468 

individuals of L. bergylta may indicate that they are too small to effectively 469 

defend a territory, in contrast with adult territorial individuals that can satisfy 470 

their energetic demands within a small area in high quality habitats (Grüss et 471 

al., 2011). In addition, KUD estimates are influenced by the selection of the 472 

bandwidth. Smaller values are preferred with large sample sizes as they 473 

produce less biased results (Kie et al., 2010). In this study, we used  the mean 474 



of the positioning error of the control tag which allowed us to incorporate the 475 

uncertainty of positional errors into the home range estimates (Alós et al., 476 

2012a) while increasing the spatial resolution.  477 

4.4 Implications for fishery management 478 

Results from this research have direct implications for conservation and 479 

should be integrated into the management of L. bergylta. At present, this 480 

species is managed solely on a minimum landing size  of 20 cm, an inadequate 481 

measure for protogynous species as the larger males may then have 482 

inadequate protection  (Alonzo and Mangel, 2004). We have demonstrated that 483 

L. bergylta exhibits a high site fidelity and a limited home range that together 484 

with the reported slow growth rate (Dipper et al., 1977) and their hermaphroditic 485 

reproductive strategy makes this species particularly vulnerable to overfishing 486 

(Sattar et al., 2008). Those fisheries which target larger individuals such as 487 

angling and recreational spear fishing may especially impact resident 488 

populations.  489 

In the present study, clear diel behaviour was observed with increased 490 

distance travelled during day hours. The probability of catching a fish in a gillnet 491 

is directly proportional to the probability of the fish encountering the net and 492 

being trapped in it, which  in turn depends on the distance travelled by the fish 493 

(Rudstam et al., 1984). Thus, a higher catch rate is expected for L. bergylta 494 

during the daytime. Moreover, the negative relationship between fish TL and 495 

distance travelled (a proxy of activity) suggest a complex catchability pattern: 496 

small fish will be more prone to be caught because they move more actively but 497 

only when they reach the size threshold of the gear.  498 



A consequence of the sedentary behaviour of the species and the small 499 

home range is that relatively small MPAs may effectively protect this species 500 

(Barrett, 1995). Effective protection of L. bergylta by small MPAs could  501 

augment the number and size of the individuals inside it (reserve effect), 502 

increasing the reproductive potential of the population due to the allometric 503 

increase in fecundity with size of most fish (Alonso-Fernández et al., 2008; 504 

Birkeland and Dayton, 2005). Maintaining an intact population structure inside 505 

the MPA would also prevent sperm limitation (Alonzo and Mangel, 2004) and 506 

thus favour fertilization rates. The protected population would function as a 507 

source of larvae to adjacent harvested areas, maintaining sustainable 508 

population levels. Furthermore, if the population biomass within MPAs 509 

increases, density-dependent factors may force small and intermediate-sized 510 

fish to migrate and relocate their home range outside the MPA (Grüss et al., 511 

2011; Kramer and Chapman, 1999; Lowe et al., 2003) thus being accessible to 512 

the fishery.  All this information should be taken into consideration by managers 513 

designing small MPAs, at a point when their use is starting to be considered as 514 

an effective management tool in NW Spain. 515 
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Figure captions 718 

Figure 1 Map of the study site showing the location of the 12 acoustic receivers 719 

and the extension of the monitored area 720 

Figure 2 Plot of mean detections and standard deviation for the control tag (a) 721 

and mean corrected detections per hour (UTC) for each tagged Labrus bergylta 722 

(b, c, d, e and f). Vertical lines represent sunrise and sunset. Diel phase is 723 

indicated as “n” (night) or “d” (day). Note the difference in Y-axis scale 724 

Figure 3 Wavelet sample spectrums fitted for individuals 283, 285, 288, 291, 725 

292, 296, 299, 304, 305 and the control tag. Individuals were selected to 726 

represent the different periodicity patterns obtained, covering the full range of 727 

fish sizes. Continuous lines represent the cone of influence (COI). Values 728 

outside de COIs should not be interpreted due to edge effects. Thick contours 729 

represent the 95% confidence level 730 

Figure 4 Daily cumulative home ranges based on KUD95 for all the tagged 731 

Labrus bergylta. Days needed to reach the asymptote are indicated in the 732 

legend.  Information is presented in four different plots to improve visualization. 733 

Note the different Y-axis scales 734 

Figure 5 Plots of total, night and day space utilization estimated for fish 283, 735 

288, 289, 293, 302, 304, 306 and 429. Individuals were selected to represent 736 

the full range of home range sizes and IOR values. Fixed acoustic receivers are 737 

shown as black points, and location of capture and release for each fish as a 738 

red dot. MCP = minimum convex polygons based on 100% of the positions; 739 

KUD95 = kernel utilization distribution based on 95% of the positions; KUD50 = 740 

kernel utilization distribution based on 50% of the positions 741 
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