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SUMMARY 
 The common octopus, Octopus vulgaris Cuvier, 1797, is one of the most important 
species in worldwide fisheries and aquaculture. Galicia is the pioneer Autonomic 
Community in octopus culture, which is considered one of the most important alternative 
resources to diversify the aquaculture. One of the main constraints in this activity is the 
diseases caused by several pathogens. Therefore, in order to control and eradicate the 
main diseases, such as coccidiosis caused by Aggregata octopiana, it is highly important to 
develop studies focused on knowing the octopus immune response against pathogens. 
Those studies will allow us to establish the basis to develop strategies towards an 
appropriate sanitary practice in octopus aquaculture. Furthermore, supplementary 
studies of genes involved in immune response will contribute to establishing the 
molecular basis to identify and select octopuses resistant against the coccidia infection. 
Hence, the first study of the common octopus immune response and their interaction with 
the infection by the coccidia A. octopiana is herein presented. 

 The molecular characterization of A. octopiana from NE Atlantic (Ria of Vigo) using 
18S rRNA gene has allowed the complementation and confirmation of the pre-existing 
morphological description. Likewise, the molecular characterization of A. eberthi that 
infects Sepia officinalis was also performed. The new sequences obtained were compared 
with the only sequences of A. octopiana and A. eberthi available in GenBak from the 
Adriatic Sea (Croatia). The low genetic divergence between A. eberthi species indicates 
that these coccidia infect two different populations of S. officinalis. In contrast, the high 
genetic divergence between A. octopiana from NE Atlantic and Adriatic Sea indicates that 
they correspond to different coccidia species. Therefore, according to previous 
morphological descriptions, host specificity and the molecular data herein obtained, A. 
octopiana from NE Atlantic (Ria of Vigo) is considered as the valid species. 

 The studies conducted through microscopy and flow cytometry allowed to 
characterize the hemocytes present in the octopus hemolymph. Two sub-populations or 
types of hemocytes were characterized, namely large granulocytes and small granulocytes. 
Using functional analysis it was demonstrated that both types of cells showed the ability to 
develop defensive activities in the organism. However, phagocytic ability and respiratory 
burst were higher in large granulocytes than in small ones. Nitric oxide (NO) production 
was measured in the total hemocytic population following challenge with zymosan, LPS 
and PMA in a time course. The highest NO production was reached after 3 h of incubation. 
There was confirmed that cellular immune defense is affected by the level of A. octopiana 
infection. The phagocytic activity increased according to the increase of the infection, 
mainly in autumn; whereas, respiratory burst (ROS) and NO decreased when the coccidia 
infection increase. The NO production decline was particularly notorious in low infected 
octopuses, but also in the heaviest individuals. In addition, a similar pattern in the cellular 
immune defense was observed in wild octopuses and in those reared in floating cages. In 
both cases, the phagocytic ability increase with the level of infection, but respiratory burst 
and NO decreased. Furthermore, NO production was significantly lower in wild octopuses 
than in those reared in floated cages, suggesting that the stressful culture conditions and 
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coccidia infection acts synergistically, and triggers a high cytotoxic response in those 
octopuses reared in floating cages. 

 The transcriptomic study of the hemocytes from O. vulgaris by construction of 
cDNA library using a high-throughput sequencing method, allowed for the identification of 
important immune pathways such as NFkB, complement, Toll-Like Receptors (TLR) and 
apoptosis. From the present study, most of the immune genes identified are reported for 
the first time in cephalopods. The transcriptome of hemocytes from octopuses harboring 
high and low infection by A. octopiana were compared. A total of 539 genes were found 
differentially expressed between both levels of infection. Q-PCR analysis of genes selected 
according to their importance in the host-pathogen interaction confirmed the previous 
expression pattern and corroborated the results obtained by the high-throughput 
sequencing. In the proteomic study of the octopus hemolymph, 42 significant spots were 
found in hemocytes from octopuses harboring high and low infection by A. octopiana. 
These spots were statistically analyzed by principal component analysis, from which 7 
proteins are herein suggested as candidates of putative resistance biomarkers against the 
coccidia infection. Particularly, the proteins filamin, fascin and peroxiredoxin are 
highlighted because of their implication in the octopus immune defense. Considering the 
information obtained in this study, there is evidenced that coccidiosis by A. octopiana 
affects the proper functioning of the octopus cellular immune response. Phagocytosis is 
stimulated by the infection, however respiratory burst is suppressed. The molecular 
evidence agreed with functional assays. The respiratory burst reduction results in a down-
regulation of antioxidant genes at both trancriptomic and proteomic level. Likewise, the 
increase in phagocytic ability of the hemocytes is consistent with the significant up-
regulation of proteins like filamin and fascin (both related to phagocytosis) in highly 
infected octopuses. Therefore, the results exposed in the present work provide the first 
molecular insights into the molecular basis of host-pathogen relationship between O. 
vulgaris and A. octopiana. 
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RESUMEN 
 El pulpo común, Octopus vulgaris Cuvier, 1797, es una de las especies más 
importantes en las pesquerías mundiales y en acuicultura. Galicia es la Comunidad 
Autónoma pionera en cultivo de pulpo, el cual está considerado uno de los recursos 
alternativos más importantes para diversificar la acuicultura. Uno de los inconvenientes 
de la actividad acuícola son las enfermedades producidas por diversos patógenos. Por 
tanto, para controlar y erradicar las principales enfermedades, tal como la coccidiosis 
causada por Aggregata octopiana, es imprescindible desarrollar estudios que permitan 
conocer la respuesta inmune de este molusco ante patógenos. Dichos estudios permitirán 
establecer las bases para elaborar estrategias enfocadas a mantener una adecuada sanidad 
acuícola. Además, el estudio complementario de genes de respuesta inmune, contribuirá a 
establecer las bases moleculares para identificar y seleccionar individuos resistentes a la 
infección por el coccidio. En esta memoria se recoge el primer estudio sobre la respuesta 
inmune del pulpo común y su interacción con la infección por el coccidio A. octopiana. 

 La caracterización molecular de A. octopiana en el Atlántico NE (Ría de Vigo) 
utilizando el gen 18S ARNr, ha permitido complementar y confirmar la descripción 
morfológica ya existente. Asimismo, el estudio molecular se extendió al coccidio Aggregata 
eberthi, parásito del choco Sepia officinalis. Las nuevas secuencias generadas se 
compararon con las únicas secuencias de A. octopiana y A. eberthi disponibles en GenBank 
procedentes del Mar Adriático (Croacia). La baja divergencia genética observada entre 
especies de A. eberthi indica que este coccidio infecta a distintas poblaciones de la especie 
S. officinalis. En cambio, la alta divergencia genética observada entre A. octopiana del 
Atlántico NE y del Mar Adriático indica que corresponden a dos especies distintas de 
coccidios. Por tanto, con base en los estudios morfológicos previos, los datos específicos 
del hospedador y los datos moleculares ahora presentados A. octopiana del Atlántico NE 
(Ría de Vigo) es considerada la especie válida.  

 Los estudios mediante microscopía y citometría de flujo permitieron la 
caracterización de los hemocitos presentes en la hemolinfa del pulpo. Se caracterizaron 
dos subpoblaciones o tipos de hemocitos denominados granulocitos grandes y 
granulocitos pequeños. Mediante análisis funcionales se demostró que ambos tipos 
celulares presentan capacidad para desarrollar actividades involucradas en la defensa 
celular del organismo. Sin embargo, la actividad fagocítica y el estallido respiratorio 
fueron mayores en granulocitos grandes que en granulocitos pequeños. La producción de 
óxido nítrico (NO) se midió en la población total de hemocitos ante distintos estímulos 
como zimosán, LPS y PMA durante un transcurso de tiempo, alcanzando mayor 
producción de NO a las 3h de incubación. Se confirmó que la defensa inmune celular es 
afectada por el grado de infección por A. octopiana. La actividad fagocítica de los 
hemocitos se incrementó conforme aumentó la infección, principalmente en otoño; 
mientras que, el estallido respiratorio (ROS) y NO disminuyeron con el aumento de la 
infección. La disminución en la producción de NO fue particularmente notable en pulpos 
poco infectados y en los individuos de mayor peso. Se observó un patrón similar en la 
defensa inmune celular tanto de pulpos salvajes como de pulpos engordados en batea. En 
ambos casos, la capacidad fagocítica se incrementó con el grado de infección, pero el 
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estallido respiratorio y el NO disminuyeron. Asimismo, la producción de NO fue 
significativamente menor en pulpos salvajes que en pulpos de batea, lo que sugiere que las 
condiciones estresantes de cultivo y la infección por el coccidio actúan sinérgicamente, y 
desencadenan una alta respuesta citotóxica en los pulpos cultivados en batea. 

 El estudio transcriptómico de los hemocitos de O. vulgaris, mediante la generación 
de una librería de cDNA utilizando técnicas de secuenciación masiva permitió la 
identificación de importantes cascadas de señalización implicadas en la respuesta inmune 
como NFkB, complemento, receptores tipo Toll (TLR) y apoptosis. Mediante este estudio, 
muchos de los genes registrados involucrados en estas cascadas se han identificado por 
primera vez en cefalópodos. A partir de la comparación del transcriptoma de los 
hemocitos de O. vulgaris con alta y baja infección por A. octopiana, se identificaron 539 
genes diferencialmente expresados entre ambos grados de infección. El análisis mediante 
q-PCR de genes seleccionados por su importancia en la interacción hospedador-patógeno 
confirma el patrón de expresión y corrobora los resultados obtenidos mediante la 
secuenciación masiva. En el estudio proteómico de la hemolinfa de pulpos, 42 spots 
resultaron significativos en muestras de hemocitos de individuos con alto y bajo grado de 
infección por A. octopiana. Estos spots se analizaron mediante un análisis de componentes 
principales a partir cual, se proponen 7 proteínas como candidatas a posibles 
biomarcadores de resistencia a la infección por el coccidio. Particularmente, las proteínas 
filamina, fascina y peroxiredoxina se proponen como las más relevantes debido a su 
implicación en la defensa inmune del pulpo. 

 Tomando en cuenta la información generada en este estudio, se evidencia que la 
coccidiosis ocasionada por A. octopiana afecta al funcionamiento adecuado de la respuesta 
inmune celular del pulpo. La fagocitosis se ve estimulada por la infección, sin embargo, el 
estallido respiratorio es suprimido. La evidencia molecular concuerda con los análisis 
funcionales. La reducción del estallido respiratorio se traduce en menor expresión de 
genes antioxidantes tanto en el transcriptoma como en el proteoma. Asimismo, el 
incremento de la actividad fagocítica es acorde con la expresión significativa de las 
proteínas filamina y fascina (ambas implicadas en fagocitosis) en pulpos con alta infección. 
Por tanto, los resultados expuestos en el presente trabajo aportan las primeras bases 
moleculares de la relación hospedador-parásito entre O. vulgaris y A. octopiana.  
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Octopus vulgaris reared in floating cages in the Ria of Vigo (Galicia, Spain) (From: Rubén Chamorro). 
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I.1 Overview of the Octopus vulgaris fishery 

 Cephalopods are molluscs with their primary skeletal features, a cranium, and in most 

cases, a mantle/fin support (cuttlebone or gladius). Their central nervous system is highly 

developed, especially the well-organized eyes. Likewise, the circulatory system is restricted to 

vessels and arteries. Due to the well developed nervous and closed circulatory system, 

cephalopods are considered as the most specialized class of molluscs. There are four groups of 

cephalopods: squids, cuttlefishes, octopuses and nautiluses. Almost all of them are fast 

swimmers, living pelagically or in the bottom. They all are active carnivore’s predators upon 

shrimps, crabs, fishes, bivalves and even other cephalopods (Roper et al., 1984). 

 The interest in cephalopods has increased considerably in the last 40 years, mainly 

because of their introduction into the world market as a major fishery resource. Cephalopods 

are a valued seafood for human consumption because of their high protein content, and fatty 

acids DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid). DHA and EPA are highly 

important to humans for the prevention of coronary heart disease. They are both found in 

higher content in cephalopods than in fish species. Moreover, there is a high content of both 

fatty acids even if cephalopods under culture conditions are feed using inadequate diets 

(Zlatanos et al., 2006; Ozogul et al., 2008; García-Garrido et al., 2010).  

 Currently, cephalopod (squids, octopus, and cuttlefishes) fisheries in European waters 

are of substantial importance. Total annual cephalopod landings in the ICES area reached 

27,620 tons in 2011. From these, the landing proportion by groups was 15,440 tons of 

cuttlefish (Sepia officinalis); 7,859 tons of long-finned squid (Loligo forbesi, L. vulgaris, 

Alloteuthis subulata and A. media); 1,580 tons of short-finned squids (Illex coindetii and 

Todaropsis eblanae) and 2, 741 ton of octopods (Octopus vulgaris and Eledone spp.) (Fig. 1). 

Regarding to octopus landings, Spain and Portugal were the most important countries with 

more than 95% of octopus landing shared by two nations. 
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Fig. 1. Total annual octopus landings (in tones) in whole ICES area showing the most 
important countries (From: ICES, 2012).  

 

 Galicia is the main fishing region in Spain and one of the largest in the European Union. 

The artisanal fishery is the most numerous within the inshore fishery and is multi-specific and 

multi-gear, exploiting a diverse array of invertebrates. From an economic point of view, the 

most important are crustaceans (spider crab, prawns, goose barnacle), bivalve molluscs 

(clams, razor clams, scallops) and cephalopods (octopus, squid, cuttlefish) (Freire and García-

Allut, 2000). The cephalopods depicts a highly valuable resource which profits reached 26.96 

million € in 2008. The cephalopod target species are the common octopus, Octopus vulgaris; 

common cuttlefish, Sepia officinalis; and European squid, Loligo vulgaris with major fishery 

volume coming from the Rias Baixas (Fig. 2) (García-Tasende et al., 2009). In 2011 the total 

cephalopod species fished in Galicia reached 11.66 tons, with profits of 39 million €. From all 

these species, 3.40 tons were O. vulgaris with a reported value of 20.43million € (Anuario de 

Pesca, 2011). Due to the proved value of cephalopod fishery, in Galicia, a minimum legal 

capture size of 1000 g in weight for O. vulgaris; 8 cm mantle length (ML) for S. officinalis and 

10 cm ML for L. vulgaris were established in order to protect marine resources and to develop 

a controlled exploitation of stocks (Anuario de Pesca, 2011).  
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Fig. 2. The Iberian Peninsule and Galicia showing the location of the Rias Baixas (Modified 
from Freire and García-Allut, 2000). 

 

 

I.2 The Octopus vulgaris aquaculture 

 Cephalopods are important model organisms for neuroscience, physiology and 

ethology research. For that reason, the initial trials of cephalopod’s maintenance were mainly 

to provide live specimens for research or aquariums (Boletzky and Hanlon, 1983). However, 

the importance of cephalopods for human consumption was rising. Consequently, their 

commercial importance has also risen substantially in recent decades. It is obvious to expect 

the increasing cephalopod harvest in order to satisfy the growing demand. Nonetheless, we 

must not forget that cephalopods are also valuable as forage for commercial fishes and 

therefore, a trade-off between the commercial and ecological value must be encouraged 

(Hunsicker et al., 2010). In this context, aquaculture offers a reduction of fishing pressure on 

wild cephalopod stocks and a constant supply of the product to the market. This is 

particularly important in countries like Spain, Italy and Japan, which are the largest 

consumers and importers of cephalopods (FAO, 2012). Particularly in Spain, the fishing sector 

demanded the diversification of the marine farming industry, based on mussels (Mytilus 

galloprovincialis), turbot (Scophthalmus maximus), sea bass (Dicentrarchus labrax) and sea 
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bream (Sparus aurata) (Chapela et al., 2006; Vaz-Pirez et al., 2004). Thus, farming trials were 

developed using O. vulgaris as a new species target due to their high value in the market, short 

life cycle (12-18 months), high fecundity (100, 000- 500,000 eggs per female), high food 

conversion rates (assimilating 40-60% of ingested food), its rapid and easy adaptation to 

captivity conditions and acceptance of frozen food (Iglesias et al., 2000; Vaz-Pirez et al., 2004).  

 To date, the octopus aquaculture is established as a successful activity that in 2011 

produced 2,755 kg equivalent to 19,330€ (Anuario de Acuicultura, 2011). However, the first 

trial to evaluate the viability of this culture in laboratory conditions started during 1995-1999 

(Iglesias et al., 2000). The results demonstrated the feasibility of fattening octopuses mainly 

with crustaceans (80% of the diet). Individuals weighing 300 g achieved 2,200 g in weight in 4 

months, whereas octopuses weighing 1,300 g reached 12,300 g after 10 months of fattening 

(Iglesias et al., 2000). Parallel fattening research was conducted in floating cages in the Ria of 

Muros (Galicia). After feeding octopuses with fishes of low economic value, similar results in 

octopus growth rates (0.3-0.8 kg/month) were obtained (Rama-Villar et al., 1997). The 

potential of O. vulgaris culture was thus evident and promoted the establishment of five 

companies for intensive on-growing. Octopuses of 750 g (minimum legal weight in 1995) 

were reared in cylindrical or square shaped cages (Fig. 3), providing individual dens with a 

total capacity of 150 octopuses. The fattening program lasted 4 months and three fattening 

cycles were initially conducted during the year (Iglesias et al., 2000). However, wide variation 

in weight and profitability were obtained. The economic analysis of this activity revealed that 

supply of juveniles produced in laboratory and availability of artificial diets (for paralarvae 

and sub-adults) are needed to reduce costs and make it a profitability activity (García-García 

et al., 2004). Nevertheless, to complete the octopus life cycle in captivity is still a challenge. 
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Fig. 3. Culture system (A) cylindrical and (B) square shaped cages used for rearing O. vulgaris 
in Galicia (From: Iglesias et al., 2000). 

 

 The main constraint to complete commercial rearing of the common octopus is the 

high paralarvae mortality during the first weeks of life (Iglesias et al., 1997). The hatchling 

cephalopods are planktonic and carnivorous, and require live prey of suitable size with high 

protein content and swimming behavior (Villanueva, 1994). Successful rearing experiments of 

the common octopus from paralarvae to juveniles have been developed using zoeae of 

crustaceans like Liocarcinus depurator and Pagurus prideaux, reaching a survival rate of 

34.6% as individuals reached 30 days old (Villanueva, 1994; 1995). An Artemia based diet 

complemented with zoeae of Maja squinado has also been used, but only 0.2% of juveniles 

(individuals of 52 days) reached survival (Moxica et al., 2002). Iglesias et al. (2004) used the 

same mixed diet Artemia–M. squinado and reared paralarvae of up to 8 months old. However, 

from an economic point of view, the use of zoeae is not suitable for large-scale cultivation. 

Hence, additional prey to be reared commercially or artificial diets are required (Fuentes et 

al., 2011). To complete such goal, the paralarval feeding needs should be elucidate (Iglesias et 

al., 2006). To date, molecular detection of prey in wild paralarvae’s stomach has contributed 

to reveal the range of prey that paralarvae typically consume in the sea (Roura et al., 2010). 

Meanwhile, biochemical studies have pointed out that a deficiency of polyunsaturated fatty 

acids in prey like Artemia, also poor in protein content, is the cause of low growth and low 

survival in captivity (Navarro and Villanueva, 2000; Iglesias et al., 2007). Co-feeding 

techniques tried in paralarvae included a combination of life prey Artemia and microcapsules 

A B 
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with 84-91% moisture. However, low or no growth in paralarvae was obtained when 

compared to the single Artemia diet (Villanueva et al., 2002). Fuentes et al. (2011) 

demonstrated that Artemia enriched with the microalgae Nannochloropsis sp. produces a 

higher paralarvae growth, in average, 1.61 mg and 46% of survival at day 30, than feeding 

individuals with Artemia enriched with sand eel (Hyperoplus lanceolatus) or crushed wild 

zooplankton. Nonetheless, results reported to date do not surpass the mean weigh value of 

17.4 mg reported on paralarvae at 60 days (benthic phase) by Villanueva (1995). Presumably, 

the minimum nutritional requirements are covered in the planktonic phase but have not yet 

been established for the planktonic settlement phase. However, additional nutritional factors 

implicated in growth and survival are needed and therefore, further research is yet to be done 

(Fuentes et al., 2011). 

 The rearing of octopus in suspended cages in the sea depends on the supply of sub-

adults captured by fishermen, but also on the availability of formulated diets that will support 

the commercial production of the species and will make the octopus culture a profitably 

activity (Lee, 1994; García-García et al., 2004; García-García and Cerezo-Valverde, 2006; 

Cerezo-Valverde et al., 2008). The octopus diet in the wild is mostly composed by crustaceans, 

but also by fishes and molluscs (Guerra et al., 1978). Crabs have provided better results than 

fish or molluscs in octopus growth (Cagnetta and Sublimi 2000). However, because crab 

supply could be expensive, discarded or low market value fish, such as Boops boops, Sardina 

pilchardus, Sardinella aurita or Trachurus mediterraneus),are usually used to feed octopus 

(Socorro et al., 2005; García-García and Aguado-Giménez, 2002; Rodríguez et al., 2006). To 

date, the economic viability of the octopus culture is still in progress and will be certainly 

achieved once the full biological cycle can be reproduced under controlled conditions, and the 

formulated diets and the necessary technology for a rearing system have been developed 

(García-García et al., 2004).  
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I.3. Pathogens affecting wild and cultured Octopus vulgaris  

Cephalopods are secondary, third or paratenic hosts for trematodes digenea, cestodes 

and nematodes (Hochberg, 1990). Those parasites are transmitted to the definitive host: 

fishes, marine mammals or birds (Clarke, 1996; Gonzalez et al., 2003). Nevertheless, the 

effects of parasites on growth, reproduction and survival of the cephalopod hosts are still 

poorly studied (Abollo et al., 2001; Pascual et al., 1996; 2007).  

Despite the benefits of aquaculture, one of the disadvantages is the increase in the 

incidence of pathologies produced by pathogens. Parasites have a negative effect on 

specimens in high population densities such as under culture conditions. Culture is associated 

with stress, which favours the development of infectious diseases leading to severe 

economical losses (Berthe, 2005). Hence, the knowledge and management of diseases 

affecting species under culture is a priority for the aquaculture. Moreover, in the European 

Union, comercialization of fishing products from the wild or aquaculture facilities must be 

free of parasites before making them available to the consumers. To avoid the transmission of 

parasites like Anisakis spp., the fishing products must be frozen, at least 24 h, previous to 

commercialization. Additionally, in order to ensure this statement, all the fishing products are 

visually examined. When macroparasites are found, the fishing products are rejected for 

human consumption (CE No. 853/2004). Therefore, because O. vulgaris is one of the most 

promising products, one of the main goals of the marine aquaculture program in Spain is the 

study of pathologies suffered by O. vulgaris. The specific objectives are i) the development of 

diagnostic tools for pathogens, ii) the development of methods for preventing infections 

under culture conditions and iii) to establish the basis to identify resistant octopuses that 

would allow the development of breeding programs with resistant specimens.  

To date, the study of octopus parasites and pathologies has received less than 54% of 

research effort (Pascual and Guerra, 2001). Consequently, since the contributions by Hanlon 

and Forsythe (1990a,b) and Hochberg (1990) scarce data has been added. Several pathogens 

including virus, bacteria and protozoa parasites have been identified in O. vulgaris from both, 

wild and reared in on-growing cages (Pascual et al., 1996; 2007; 2010; Castellanos-Martínez 

and Gestal, 2013). Among the pathogens recently identified, two of them are highlighted, the 

Gram negative bacteria Vibrio lentus (Farto et al., 2003); and the gastrointestinal coccidia 

Aggregata octopiana (Gestal et al., 2002a,b; Gestal et al., 2007). Hence, both pathogens will be 

discussed herein. 
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I.3.1. Pathogens of bacterial etiology  

All species of cephalopods are susceptible to bacterial infections on the skin, derived 

from secondary infections by opportunistic pathogens. The cephalopod’s skin has a thin 

epidermis and a thicker dermis that covers the muscle layers beneath. The epidermis is 

micro-villous and it is composed by a monolayer of simple cuboidal cells interspersed with 

mucous-secreting cells that collaborate to retain and remove potential pathogens from the 

skin (Fig. 4). Nonetheless, the cephalopod skin is frail and susceptible to infections (Hanlon et 

al., 1984; Forsythe et al., 1987).  

 

Fig. 4. Transmission electron microscopy section of skin from a young Octopus joubini. 
Epidermis (E) showing the thick layer and interspersed secretory cells (S). Dermis (D) 
including a portion of an expanded chromatophore (C). Barr=10 µm. (From Hanlon et al., 
1984).  

 

One of the most recent records of bacterial infections in wild cephalopods was 

reported in O. vulgaris kept in floating cages at the Ria of Vigo (Farto et al., 2003). The 

specimens showed lesions in the mantle and some of them died once in the laboratory. 

Lesions on the mantle have been attributed to the bacteria Cytophaga-like and Pseudomonas, 

which were isolated from the damaged tissue. However, the Gram negative bacteria Vibrio 

lentus, originally isolated from reared Mediterranean oysters (Macían et al., 2001), was 

isolated for the first time from the branchial heart of octopuses. Experimental infections 

performed by a challenge bath of V. lentus (72h, 2 × 108 cfu/ml) induced mortality in 50% of 

octopuses after the first six hours. The lesion showed a typical round pattern in the arms or 
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the head. No variations in mortality rate were recorded after nine hours post-infection, which 

is assumed to be a result of inter-individual differences in the immune system (Farto et al., 

2003). Low salinity (29%) reported in the area was suggested to be a stressor that may impair 

the immune response of animals against the opportunistic pathogen V. lentus (Farto et al., 

2003; Ford et al., 1986).  

 

I.3.2. Pathogens of protozoan etiology: the eimeriorin coccidia 

Aggregata spp. 

Coccidians of the genus Aggregata spp. (Apicomplexa: Eimeriorina) are a cause of 

severe disease in cephalopods. The protozoan infects the digestive tract of the host 

(Hochberg, 1990), mainly the caecum, thus impairing the absorption of nutrients (Boucher-

Rodoni et al., 1987).  

The genus Aggregata is distributed all around the world. A total of 10 species have 

been described to date (Gestal et al., 2010) infecting cuttlefishes, squids and octopuses, even 

those inhabiting deep-sea hydrotermal vents (Gestal et al., 2010).  

Traditional identification and characterization of Aggregata species has relied 

primarily on differences in morphological features such as size and shape of sporogonial 

stages and host specificity. Nowadays, molecular techniques provide useful methods for 

taxonomic studies, and are important tools in solving problems of species delimitation. So far, 

molecular characterization of Aggregata octopiana and Aggregata eberthi has been carried 

out by sequencing the 18S rRNA gene (Kopečná et al., 2006; Gestal, pers. comm.). New 

molecular data from Aggregata spp. from the Ria of Vigo, their phylogenetic affinity and 

validation of morphologic characters for coccidia identification is presented in Chapter 1. 

The intracellular protozoan Aggregata spp. has a heteroxenous life cycle (Fig. 5) which 

requires a crustacean intermediate host to develop its merogonic stage, while cephalopods 

are the definitive hosts in which the parasite develops its gamogony and sporogony stages 

(Hochberg, 1990). In Spain the infection by Aggregata spp. has been recorded in O. vulgaris 

and Sepia officinalis (Pascual et al., 1996), reaching a high prevalence and infection intensity. 

In addition, a new species was described in the ommastrephid squid Todarodes sagittatus, but 

showing a less prevalence of infection. Taking in consideration the elevated infection 
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prevalence and intensity, and the important pathological effects, parasites of the genus 

Aggregata are known to be the main epizootiological agents in wild and cultured octopus 

stocks (Gestal et al., 2007).  

Infections by Aggregata initiate in the mucosal folds where the tissue ruptures at the 

basal membrane and a detachment of the epithelial cells is produced. As a consequence, the 

mucosal folds of the intestine and caecum suffer atrophy; at the intracellular level, 

displacement of the nucleus host cell to one side is visible (Gestal et al., 2002a; Poynton et al., 

1992). All of the infected tissues show hemocytic infiltration and a pericyst reaction in both 

(gamogony and sporogony) infective stages (Gestal et al., 2002a; Licciardo et al., 2005; 

Mladineo and Jozić, 2005). The capsule formed is originally composed of flattened hemocytes 

and then connective tissue elements appear (Tripp, 1974). In senescent octopuses, the 

infection is predominantly by sporogonial (few merogonial) stages that extend widely in the 

tissue, showing scarce hemocyte infiltration or fibrotic reactions which are signs of a weak 

immune system (Pascual et al., 2010). During severe infective episodes the pathology is even 

extended to the mantle and gill’s connective and epithelial tissues with similar signs of 

damage (Mladineo and Bočina, 2007).  

The injury caused by the protozoan also has an effect at a biochemical level. The 

infection produces a decrease of the pH in the infected digestive tissue and, as a consequence, 

an inaccurate functioning of the digestive enzymes, such as maltase and leucin-

aminopeptidase occurs, thus producing a malabsorption syndrome (Gestal et al., 2002b). In 

addition, heavily infected specimens show poor conditions reflected in Fulton's condition 

index, low DNA/RNA ratio, RNA/protein conversion and even a decrease of the number of 

circulating hemocytes (Gestal et al., 2007).  

Although pathologies induced by this protozoan are not fatal, they severely weaken 

the cephalopod host making it more vulnerable to other biotic and abiotic stressors (Pascual 

et al., 2007).  

A chronic infection by the coccidia Aggregata spp. in the cephalopod host offers the 

opportunity to study the immune response mechanisms in cephalopods at different 

developmental stages of the host life cycle, and different intensities of infection. Then, this 

should be established as a study model of the host-parasite relationship. 
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Fig. 5. Diagram of the life cycle of Aggregata octopiana (According to: Hochberg, 1990). 
Merogony: 1, asexual development of the parasite inside the intermediate crustacean host, 
giving rise to merozoites (m). Gamogony: after ingestion by the crustacean host and once in 
the cephalopod digestive tract, merozoites divide into (2a) male (microgametes) and (2b) 
female (macrogametes) gametes. 3, fertilization of gametes gives rise to a zygote. Sporogony: 
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4, zygote suffers multiple fission, thus starting the sporogony stage. 5, subsequent 
development, originates uninucleate sporoblasts. 6, several sporocysts develop inside oocysts. 
7, once the sporocysts are completely mature, they are freed from the infected tissue and 
released to the sea with the octopus feces. 

 

I.4. Overview of the cephalopod immune system 

 Cephalopods are molluscs with a well developed circulatory system; a systemic and 

two accessory hearts (branchial hearts) distribute the hemolymph through arteries and 

capillaries to the whole body (Schipp, 1987; Wells and Smith, 1987). Branchial hearts 

contribute to the production of hemocyanin, and the elimination of particles (Beuerlein et al., 

1998; Beuerlein et al., 2002). Similarly to other molluscs, cephalopods have a non adaptive (or 

innate) immune system, which is the most rapidly acting. The general strategy of innate 

immune detection includes numerous receptors dedicated to recognize microbial and parasite 

molecules that are conserved across broad taxa. The receptors must detect pathogen 

molecules to avoid pathogen proliferation, dissemination and finally overwhelming the host. 

The term Pattern Recognition Receptors (PRR) has been applied to denote host molecules 

that recognize microbial infection; whereas, the term Pathogen-Associated Microbial Patterns 

(PAMPs) is used to denote the structural features of microbes that are recognized (Beutler, 

2004). A far as is known, cephalopods do not have immunoglobulins and therefore they do 

not have extended protection against pathogens for future infections. Thus, the cephalopod 

immune system works on the basis of ‘cellular factors’. The hemocytes respond by 

phagocytosis, encapsulation, infiltration or cytotoxic activities to infections and they destroy 

or isolate pathogens. In addition, molecules dissolved in the serum (opsonins, agglutinins, 

lysozyme) (Fig. 6) also contribute to the immune response (Ford, 1992). 
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Fig. 6. Diagram of cephalopod innate immune defences against pathogens. 

 

 

I.4.1. Cellular factors 

 Hemocytes play a major role in the internal defense by recognizing and eliminating 

foreign materials. They are also involved in shell and wound repair (Cheng, 1975). In 

cephalopods the hemocytes (also named leukocytes) are produced in the white bodies, in the 

orbital pits of the cranial cartilages, located behind the eyes (Cowden, 1972). The white body 

is constituted by two primary lobes, of unequal size, organized into several secondary lobes 

and a large number of small lobules providing a glandular appearance to the organ (Claes, 

1996). Its embryonic development has not been studied yet (Cowden and Curtis, 1973). Inside 

the organ, strings of leukopoietic cells are found at different developmental stages (Cowden, 

1972). Their leukopoietic function is deduced from the ultra-structural similarities between 

the putative final stage of their cells and the circulating blood cells, which correspond to a 

single cell line; hence, only one type of hemocytes is found in the peripheral hemolymph 

(Claes, 1996; Cowden and Curtis, 1973; Cowden and Curtis, 1981).  

 At least two kinds of hemocytes have been identified in bivalves and gastropods 

(hyalinocytes and granulocytes) according to the presence or absence of granules, which are 

characterized by staining affinity (Chu, 2000; López et al., 1997a; Salimi et al., 2009). 

Furthermore, there is an agreement about the role of hemocytes to repair damaged tissue, to 
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transport nutrients, in digestion, and in the internal defense against non-self material (Cheng, 

1975; Chu, 2000). However, in the case of cephalopods, those ‘tasks’ are performed by the 

only type of cell present in the circulating hemolymph (Claes, 1996; Cowden and Curtis, 

1981). The number and type of hemocytes in the common octopus is the subject of Chapter 2.  

 

I.4.2. Phagocytosis of hemocytes  

 As in their molluscan relatives (López et al., 1997a) the cellular defense by cephalopod 

hemocytes involves phagocytosis (Ford, 1992; Malham et al., 1997; Malham and Runham, 

1998; Rodríguez-Domínguez et al., 2006). Phagocytosis of microbial agents or any other non-

self material is an important defense reaction (Cheng, 1975; Chu, 2000) that involves 

recognition, binding and internalization of pathogens (Fig. 7). Following non-self recognition 

and adhesion to the hemocyte membrane promoted by physical forces and ligand receptor 

interactions, hemocyte membrane invagination at the site of foreign particle adhesion results 

in the phagocytosis of the pathogen in a vesicle called the primary phagosome. Subsequently, 

the lysosomal granules move toward the primary phagosome and fuse with the membrane to 

form a secondary phagosome or phagolysosome. Finally, they discharge their enzymes such as 

phosphatases, hydrolases, esterases and amidases into the vacuole, starting the intracellular 

killing and digestion of the pathogen (Carballal et al., 1997, López et al., 1997b; Canesi et al., 

2002; Donaghy et al., 2009b).  
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Fig. 7. Phagocytosis stages performed by hemocytes to engulf pathogens. 1: Chemotaxis, 
attraction and migration towards pathogens; 2: Recognition and attachment to pathogen, 3: 
Internalization of pathogen and subsequent destruction into phagosome through enzymatic 
and cytotoxic activity (Modified from Donaghy et al., 2009b). 

 

 Phagocytosis capability has been demonstrated in Eledone cirrhosa (Malham et al. 

1997; 2002) and O. vulgaris (Novoa et al., 2002; Rodríguez-Domínguez et al., 2006). The 

hemocytes of both octopus species are able to internalize bacteria and yeast cells, 

respectively. However, different and not conclusive results have been recorded. Malham et al. 

(1997) recorded 80% of phagocytic hemocytes in E. cirrhosa when challenged with non 

opsonized Vibrio anguillarum. The longest exposure to the bacteria led to a higher percentage 

of phagocytosis; mainly if the bacteria were pre-incubated in cephalopod hemolymph free of 

cells at low temperature. This suggests that phagocytosis is assisted by opsonizing elements. 

In contrast, variable results have been recorded in O. vulgaris. Novoa et al. (2002) found 19% 

of phagocytosis in hemocytes challenged with zymosan at 18°C, whereas Rodríguez-

Domínguez et al. (2006) recorded 50% of phagocytosis in hemocytes of O. vulgaris treated 

with anticoagulant buffer and challenged with zymosan. The results demonstrated that cells 

without the presence of an opsonic factor from hemolymph had a higher phagocytic ability; 

however the incubation time had no effect (Rodríguez-Domínguez et al., 2006). 

 When an invading organism is larger than single hemocytes to be phagocytosed, then 

encapsulation occurs. Under such circumstances hemocytes surround the pathogen forming 

various layers of cells, isolating it and limiting the potential damage (Chu, 2000), but even this 

defensive response is not capable of eliminating the intruder (Tripp, 1963). Encapsulation is 
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performed by cephalopods infected by helminthes and nematodes, due to their large size 

(even when in larval forms), but it is also usually observed in octopuses, where hemocytes 

encapsulate Aggregata spp. at gamogonic stages (Fig. 8) (Sardella et al., 2000; Gestal et al., 

2002a). 

 

Fig. 8. Encapsulation observed in the octopus digestive tissue infected by Aggregata spp. (A) 
Encapsulation of Aggregata octopiana gamogonic stage in the O. vulgaris intestine (From: 
Gestal et al., 2002a). (B) Gamogonic stage of Aggregata patagonica infecting the intestine of 
Enteroctopus megalocyathus (From: Sardella et al., 2000). The arrow indicates infiltration of 
hemocytes surrounding gamogonic stage. 

 

I.4.3. Production of Reactive oxygen species (ROS) 

 Destruction of pathogens through phagocytosis or under hemocyte stimulation is 

complemented with the production of oxidative chemicals. Most frequently, these are 

represented by reactive oxygen species (ROS), collectively known as respiratory burst. In 

these conditions, an increased uptake and consumption of oxygen and stimulation of NAPDPH 

oxidase occurs (Chu, 2000). The initial metabolite is superoxide anion (O2-), which is 

dismutated to hydrogen peroxide (H2O2), and converted to other toxic ROS such as hydroxyl 

radical (OH-) and single oxygen 1O2 (Fig. 9) (Buggé et al., 2007). ROS are usually measured in 

the cellular fraction; this allows the investigation of any change in hemocyte functionality 

mediated by bactericidal or pathogen activity (Ellis et al., 2011). The most common assays 

utilized to measure ROIs are based on nitroblue tetrazolium (NBT) reduction and luminol-

dependent chemiluminiscence (LDCL). In the first case, oxygen radicals (O2-) can reduce 

yellow, water soluble, NBT to an insoluble dark blue formazan visible under the microscope 

or spectrophotometer after extracting formazan from the cells (Anderson, 1994; Pipe, 1992). 
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LDCL is used to measure the activity of myeloperoxidase/hydrogen peroxide (MPO/H2O2) 

system; Luminol generates excited aminophthalate anions that relax to the ground state with 

the production of light (Anderson, 1994). 

 Radicals are released into the extracellular medium to kill pathogenic agents. ROS 

production is a common defense mechanism noticed in bivalves as Mytilus edulis (Pipe, 1992), 

Crassosstrea virginica (Anderson, 1994), M. galloprovincialis (Arumugam et al., 2000) and 

Mercenaria mercenaria (Buggé et al., 2007). However, few records are available from 

cephalopods. Malham et al. (2002) showed that hemocytes of E. cirrhosa produce intracellular 

superoxide in response to stress. The superoxide production increases after octopus exposure 

to the air for five minutes, indicating that this radical is also produced by the animal in 

response to this kind of stress (Malham et al., 2002). By applying the reduction of 

ferricytochrome C, Novoa et al. (2002) measured the production of superoxide after 

stimulation of the circulating hemocytes and white body cells with Escherichia coli 

lipopolysacharide (LPS), zymosan and PMA. The response was obtained in the white bodies 

and in the circulating hemocytes using PMA and LPS, but the highest reaction was recorded 

when stimulated with zymosan (Novoa et al., 2002).  

 Currently, flow cytometry is a widely used tool to measure molluscan hemocytes 

immune response through the detection of fluorescence produced by each cell (Buggé et al., 

2007). Flow cytometry is advantageous since it allows almost real-time measurement of the 

response and also to analyse the response of each cell within a big sample (Davey, 2002).  

 

I.4.4. Production of Nitric oxide (NO) 

 Nitric oxide (NO) is considered part of the innate immune response and is synthesized 

after parasite infection (Rivero, 2006). NO results from the oxidation of L-arginine to citrulline 

by the enzyme nitric oxide synthase (NOS) (Fig. 9), which is present in mammals as neuronal, 

inducible and endothelial isoforms. NO is a signaling molecule with a physiological function in 

vasodilatation, secretor control, intestinal relaxation, macrophage cytotoxicity, regulation of 

developmental processes, neurotransmission and neuro-modulation (Jacklet, 1997). 

Furthermore, NO has been detected in the central nervous system of polyplacophora, 

gastropods and cephalopods (Palumbo, 2005). In cephalopods, nitric oxide synthase has been 

suggested to play a role in tactile learning (Robertson et al., 1994); the presence of NOS in the 



General introduction 

 

 
 

19 

brain of S. officinalis let to hypothesize the role of NO as a messenger molecule (Di Cosmo et 

al., 2000; Di Cristo et al., 2007). NO is a highly-reactive free radical gas that is not stored and it 

readily diffuses through membranes (Jacklet, 1997), therefore it is an effective agent against 

pathogens.  

 

 

Fig. 9. Pathways involved in the production of reactive oxygen species (ROS) and nitrogen 
species (NO) outside the cell membrane (extracellular) and inside phagosome (intracellular) 
in molluscs’ hemocytes. (From: Donaghy et al., 2009b). 

 

I.4.5. Cellular factors as tools for assessing octopus health 

 Changes in the number, morphology, viability and functional defense mechanisms of 

hemocytes can be used as an indicator of the organism’s health (Ellis et al., 2011) since 

variations have been found in relation to parasitic infections (Beckmann et al., 1992; Ford et 

al., 1993; Cochenec-Laureau et al., 2003; Allam et al., 2006; da Silva et al., 2008; Comesaña et 

al., 2012), seasonal variations (Villalba et al., 2004; Duchemin et al., 2007; Flye-Sainte-Marie et 

al., 2009) or contamination by toxic chemicals (Galloway and Depledge, 2001; Mayrand et al., 

2005; Latire et al., 2012).  

 The immune parameters are widely used to assess whether the immune system is 

capable of performing the immune functions efficiently against parasitic infections (Chu, 

2000). While parameters such as total and differential hemocyte count, phagocytic ability of 
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hemocytes and ROS production have been the subject of a considerable number of 

investigations in bivalves (Allam et al., 2006; da Silva et al., 2008; Cochenec-Laureau et al., 

2003; Comesaña et al., 2012), similar studies in cephalopods have received little attention. At 

present, the only study considering immune parameters corresponds to Malham et al. (2002), 

who studied the immune changes in E. cirrhosa after the stress produced by exposing the 

octopuses to the air during 5 min. A significant decrease of the total circulating hemocyte 

count was observed. The hypothesis is that the reduction in the hemocyte’s number is due to a 

migration of cells to tissues that are prone to injury or infection. With regard to functional 

immune assays: the phagocytic ability and intracellular superoxide production by hemocytes 

showed an increase during the 5 min of stress. As the octopus immune response was different 

from that of bivalves and gastropods, it was suggested that cephalopod immune functions 

may perform differently from such molluscs and could even be more complex than expected 

(Malham et al., 1998). 

 In this respect, the effect of the parasite A. octopiana on the octopus cellular response 

was studied in Chapter 3. Hence, phagocytic ability of hemocytes, ROS and NO production 

were measured to try to answer a question: how does the intensity of infection by the coccidia 

impact on the octopus defensive activities?  

 

I.4.6. Humoral factors 

 Research published so far has shown that marine molluscs lack an specific immune 

response and immunoglobulins. Instead, they have factors with agglutinating, opsonic, lytic, 

antimicrobial and protease-inhibition activities present in the serum. Those factors are part of 

the mollusc humoral defense (Chu, 2000). Humoral factors complement the cellular activity. 

After the internalization of a particle or pathogen, it is enclosed in a vacuole (phagosome) 

where killing and destruction takes place by toxic radicals (oxygen or nitrogen) or enzymes 

like acid phosphatase, peroxidase, β-glucuronidase, NADH oxidase and lysozyme (Cheng, 

1975; Chu, 2000). 

 The cephalopod cell-free hemolymph is the carrier of oxygen, which is delivered to the 

whole organism (Wells and Smith, 1987), but it is also the carrier of humoral components like 

lectins. Lectins are proteins or glycoproteins that bind specifically to carbohydrates. They 

cause agglutination of particles or serve as opsonins creating bridges between intruders and 
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immune cells (Horák and van der Knaap, 1997). A 260-kDa lectin was described in O. vulgaris 

by Rögener et al. (1985). Recently, Alpuche et al. (2010) described a new lectin of 66 kDa 

(OmA) found in Octopus maya. It was found to be a homologue to the type A hemocyanin from 

Octopus dofleini. Due to the specificity of the lectin to galactosamine, mannose and fucose, it 

was suggested that it could play a role in the immune response by recognizing and 

agglutinating oligosaccharides from cells and perhaps also from pathogens (Alpuche et al., 

2010). In the presence of rat erythrocytes the hemagglutinating activity of the new OmA lectin 

from O. maya was elevated (Alpuche et al., 2010). Antibactericidal activity of sera from O. 

maya was confirmed using beef erythrocytes, but sera from other cephalopods such as the 

cuttlefish S. officinalis and the squid Sepioteuthis lessoniana resulted to have higher 

agglutinating success over a wide range of bacteria (Fisher and Dinuzzo, 1991). 

 Lectins are intimately related to the complement system, a potent humoral factor 

composed of about 30 distinct plasma soluble proteins and cell surface receptors. The 

complement is activated by three different pathways: classic (activated by antibody release 

after a humoral response), lectin (activated after the recognition and binding of pathogen 

associated molecular patterns [PAMPs] by lectins) and alternative (which binds to a wide 

range of suitable acceptor sites and spontaneously activates C3). All of these pathways 

converge in the central component C3 that can be cleaved into fragments that may interact 

with different receptors residing on different cells. A product of C3 activation is the C3b, 

which opsonizes the pathogen’s surface, leading either to the formation of the membrane 

attack complex or to phagocytosis by cells (Vasta et al., 1999; Carrol et al., 2004). To date, the 

factor C3 has been identified and characterized in cephalopods but only in tissues from the 

squid Euprymna scolopes (Castillo et al., 2009). 

 Enzymes like lysozyme are also part of the mollusc defense mechanism. Its 

effectiveness against a broad variety of bacteria is due to the catalyzed hydrolysis of N-

acetylmuramic acid (1-4) N-acetylglucosamine links of the polymeric chains in the bacterial 

cell wall. Lysozyme, arylsulphatase and β-glucuronidase are closely involved in digestive and 

defensive processes, taking an active role in the destruction of microorganisms. This group of 

enzymes is highly concentrated in leukocytes, neutrophilic granulocytes and macrophages 

(Grossowicz et al., 1979), but some of them like lysozymes have also been found in the serum 

of C. virginica (McDade and Tripp, 1967) and in hemocytes and tissue from the octopus E. 

cirrhosa (Malham et al., 1998). The lysozyme activity was higher in hemocytes of octopuses 
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infected by V. anguillarum when measured immediately after injection; activity that was 

reduced after 4 h and 24 h (Malham et al., 1998). 

 The antimicrobial peptides (AMPs) also comprise one of the main humoral 

components of the innate immune system. Presumably, AMPs are produced and stored in 

granular hemocytes. They are released into the serum after bacterial stimulation in order to 

destroy the pathogen (Mitta et al., 2000). AMPs have little or no functional specificity and 

possess a broad spectrum of antimicrobial activity against Gram-positive and Gram-negative 

bacteria, fungi, yeast and in some instances viruses and protozoa (Ellis et al., 2011). Although 

AMPs have already been studied in hemocytes and in the serum of bivalves (Mitta et al., 

2000), cephalopods, among the marine invertebrates, are particularly attractive to seek 

potential antimicrobial drugs. Thus, the antimicrobial activity from the body tissue of 

cephalopods such as Sepioteuthis lessoniana, Octopus aegina, Sepia kobiensis (Ramasamy et al., 

2011) or the cuttlebone of Sepia aculeate, Sepia brevimana (Shanmugam et al., 2008) or 

Sepiella inermis (Vairamani et al., 2012) have been successfully tested against important 

human bacteria like Vibrio chlolerae, Salmonella sp., Escherichia coli or Klebsiella pneumoniae.  

 Enzymes like proteases are present in the serum as well. Proteases have multiple 

actions, regulate the fate, localization and activity of many proteins, modulate protein-protein 

interactions, take part in cell proliferation and differentiation, angiogensis, neurogenesis, 

inflammation, immunity, necrosis and apoptosis. Thus, alterations in proteolytic systems 

underlie multiple pathological conditions (López-Otín and Bond, 2008). Parasites possess 

their own proteases, and are considered virulence factors because they may contribute to the 

production of disease in the host by acting as toxins or agents that over-stimulate the host 

immune defenses. They are used by the pathogens to combat the host defense mechanisms 

allowing the pathogen invasion into the host (La Peyre and Faisal, 1995, Brown and Reece, 

2003). In consequence, the host produces inhibitors that are capable of inactivating the 

proteases involved in parasitic invasion (Armstrong, 2006). Apicomplexa parasites induce 

intra-membrane proteolysis via proteases to infect the cells, but also to egress from parasitic 

vacuole (Gorman, 2001; Sibley, 2011). The protease and inhibitory protease activity has been 

showed in protozoans and farmed bivalve molluscs, respectively (Faisal et al., 1998; 1999; 

Ordás et al., 2001; Romestand et al., 2002). In cephalopods, protease activity has been 

demonstrated in the hemolymph of the octopus O. vulgaris (Thøgersen et al., 1992) and in E. 

cirrhosa hemocytes and tissues after V. anguillarum challenge (Malham et al., 1998). 
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 Phenoloxidase (PO) is an important enzyme for pigmentation and sclerotization of 

many tissues, but it also has an active role in innate immunity. After mechanical injuries or the 

presence of microorganisms and parasites, the melanin deposition around the damaged tissue 

or intruding pathogen takes place. Thus, the melanin will physically prevent or retard the 

intruder’s growth. The activation of this enzyme is brought about by the proPO activating 

system that consists of proteins capable of binding to lipopolysaccharides. The bacteria 

triggers proPO activation through induction of proteolysis by native serine proteases 

(Cerenius and Söderhäll, 2004). The presence of proPO has been reported in the blood of a 

range of invertebrates (Smith and Söderhäl, 1991; Asokan et al., 1997). Thus, PO has been 

characterized in the ink sac of Illex argentinus (Naraoka et al., 2003) and Octopus ocellatus 

(Fan et al., 2009), as well as in the hemocyanin of O. vulgaris (Salvato et al., 1998) and S. 

officinalis (Siddiqui et al., 2006). In addition, PO activity was detected in S. officinalis embryo 

at the end of organogenesis, suggesting that PO could work in the innate defense system 

(Lacoue-Labarthe et al., 2009). Nonetheless, the study of the PO activity in the innate 

immunity of O. vulgaris as well as other cephalopod species is still deficient. 

 

I.5. Study of the cephalopod host/pathogens interaction in the ‘omics’ 

era 

 For many pathogens of cephalopod molluscs, current diagnostic techniques are rather 

limited, and screening has been restricted to histological and ultrastructural examination. 

Protozoans and anisakids are the most studied cephalopod pathogens. Most recently, 

molecular techniques for detecting and identifying pathogens in cephalopods have been 

developed as valid and suitable tools (Mattiucci and Nasceti, 2008). They are expected to be 

increasingly used in pathogen monitoring programs. In addition, molecular techniques could 

be useful to determine whether different strains of a pathogen could demonstrate genetic 

and/or virulence variations (Gestal et al., 2008). However, the routine use of DNA-based 

diagnostic tools is hampered by a number of major concerns. Not all regions of the pathogen 

DNA are equally useful as targets for molecular detection, and therefore, it is necessary to 

identify regions of the genome that may prove useful for species differentiation.  

 Expressed sequence tags (ESTs) have been sequenced from non-redundant, 

normalized cDNA libraries and are currently used as a valuable molecular tool. They have 
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been successfully applied to find genes which are involved in different physiological processes 

(e.g. respiratory chain, cell communication, cell defense). ESTs have also been successful to 

determinate genes differentially expressed, mainly in bivalves of aquaculture interest 

naturally infected by parasites such as the clam Ruditapes decussatus infected by Perkinsus 

olseni (Prado-Alvarez et al., 2009a) or in those experimentally challenged with bacteria such 

as R. decussatus (Gestal et al., 2007a) or the mussel M. galloprovincialis (Li et al., 2010; 

Pallavicini et al., 2008) in order to identify potential genetic biomarkers of resistant 

individuals against pathogens and thus, improve the aquaculture production.  

 ESTs have been successfully applied to study the symbiotic relationship between the 

cephalopod squid E. scolopes and the bacteria Vibrio fischery. In recent years 11 cDNA libraries 

have been generated from light organs of a pool of juvenile sepiolids E. scolopes with and 

without the colonizing bacteria V. fischeri. A total of 13,962 non-redundant ESTs were 

characterized. 6,061 correspond to annotated ESTs; 2,793 to hypothetical ones and 874 to 

unknown proteins (Chun et al., 2006). The data available from the cDNA library has lead to 

identify genes related to the immune system such as the complement factor C3 in tissues 

(light organ without core, central core, mantle, arm muscle, gills and white body) of juvenile 

and adult squids. The lowest level of C3 transcript was detected in arm tissue and in 

hemocytes even though those cells are the primary site of its synthesis (Castillo et al., 2009). 

Transcripts encoding proteins in the Toll/NF-B pathway have also been identified. The 

analysis showed only one Toll-Like Receptor (TLR) that probably works as a global microbe 

receptor. This result suggests a similar Toll/NF-kB pathway to those present in other 

molluscs, but further investigation is required (Goodson et al., 2005). 

 Despite the highly evolved plan of cephalopods, their importance in world fisheries 

and neurobiology model research, cephalopod genomics is poorly understood. The knowledge 

of full sequence from cephalopod proteins, genes and their regulation would contribute to 

understand biological processes involved in the development of disease, to track population 

migration or to assess how climate change affects cephalopods at molecular level. Therefore, 

Sepia officinalis, Loligo pealei and Euprymna scolopes are the first species chosen for genome 

sequencing. Then, it is expected that novelty genes are discovered in the few next years 

providing valuable genomic information for applying in medicine, ecology or aquaculture 

(Albertin et al., 2012). 
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 Nowadays, innate immunity is recognized as a complex network of interconnected 

pathways with activities dependent on many factors, including the pathogen virulence (Gardy 

et al., 2009). To study such complex network, current advances in technologies provide a 

catalog of high-throughput methodologies (also called Next Generation Sequencing 

technologies, NGS) that lead to the generation of a mass of informative data, even from non-

model organisms and at low cost (Gayral et al., 2011). Hence, in the “omics” era, the fields of 

genomics to study DNA variations, transcriptomics for genome-wide characterization of gene 

expression by measuring mRNAs, proteomics to assess the cell and tissue-wide expression of 

proteins, and metabolomics for global assessment of metabolite concentration, have been 

developed (Ju et al., 2010; Prieto-Alamo et al., 2012).  

 Databases of “omics” comprise an essential toolbox that provides detailed molecular 

information and is important for integrative biology (Prieto-Alamo et al., 2012). The huge 

amount of data files generated ranges from gigabytes to terabytes in size. Consequently, huge 

amounts of nucleic acid sequences have flooded public databases. Such information must be 

processed by sophisticated computational methods and powerful computers (Cantacessi et al., 

2012). Therefore, bioinformatics is becoming more critical about the integration of data from 

the systems analyzed. Hence, in the future, bioinformatics will allow the transformation of 

descriptive biology to a predictive science based on “omics” databases (Shinozaki and 

Sakakibara, 2009). 

 

I.5.1 Transcriptomics 

The transcriptome is the total RNAs produced in one cell or in a population of cells, 

which includes various protein-coding and non-coding RNAs. Thus, the transcriptome 

represents a small percentage of the genetic code that is transcribed into RNA molecules 

(Adams, 2008; Geng et al., 2011).  

In general terms, there are two strategies for reconstructing the transcriptome. The 

first one is the “genome guided” approach that first maps all the transcriptome sequencing 

reads to the reference genome and assembles the reads into transcripts or fragments 

according to the read mapping information. However, this strategy needs a relatively 

complete and high-quality reference genome from the organism of interest, which is not 

available for most organisms. The second strategy is the “genome-independent” approach that 
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does not need a reference genome. It directly assembles reads into transcripts and therefore, 

is the most viable strategy for de novo assembling transcriptomic projects when no reference 

genome is available (Marguera and Bahler, 2010; Geng et al., 2011).  

The commonest platforms used are 454 Life Sciences (Roche), Illumina/ (sequencing 

by synthesis, Solexa), AB SOLiD system (sequencing by ligation, Life Technologies), and Pacific 

BioSciences (RS). In the four platforms, cDNA fragments are sequenced in parallel and 

produce several short sequences of “reads”. The read lengths range from 30-100 bp with 

Illumina and SOLiD, to 200-500 bp when sequenced with 454 (Marguerat and Bahler, 2010; 

Wheat, 2010; Cantacessi et al., 2012). Longer reads (like those obtained with 454) are 

preferred to reduce the complexity of the assembly. However, when short reads are used, the 

problem of length can be alleviated by using a paired-end protocol, in which 75-150 bp are 

sequenced from both ends of short cDNA fragments (100-250 bp). Then, the overlapping 

reads are computationally joined together to form a longer read (Martin and Wang, 2011), as 

it occurs with Illumina. In fact, this strategy using the paired-end protocol, is the most 

recommended for “de novo” sequencing projects. Regarding the cost and length of reads from 

each platform, a full 454 run produces around one million reads whereas, Illumina and SOLiD 

platforms produce close to 20 million reads per lane. Nonetheless, Illumina sequencing 

approach is considerably cheaper than 454. Thus, a trade-off between length and cost of the 

transcriptomic project must be evaluated (Feldmeyer et al., 2011). 

Unlike the genome, the transcriptome dynamically changes in response to the 

environment or to intrinsic programmes. Therefore, it is a useful approach that enables the 

discovery of processes and pathways. Because the expression level of transcripts is related to 

the number of reads mapped on them, transcriptomic (also called RNA-seq method) allows 

the study of differentially expressed genes for several cell types or physiological conditions 

(Adams, 2008; Gardy et al., 2009).  

To date, most de novo transcriptomes have been generated using 454 (Roche) 

technology (Vera et al., 2008; Wang et al., 2010; Zhuang et al., 2012; Hoffman et al., 2013). 

However, Illumina technology is becoming popular and proved to be reliable even for non-

model organisms which also lack of a genome sequencing database (Crawford et al., 2010; 

Reid et al., 2011; Riesgo et al., 2012; Feldmeyer et al., 2011). In molluscs, de novo assembled 

transcriptomes have been employed to characterize the whole transcriptome (Hou et al., 

2011), to analise gene expression (McGinty et al., 2012), for evolutionary studies (Pante et al., 
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2012), to study the central nervous system (Sadamoto et al., 2012), to study the mollusc 

response against stress (Zhao et al., 2012), and also to investigate the immune response 

against pathogens (Deleury et al., 2012; Moreira et al., 2012). In contrast, despite the 

economic and ecologic importance of cephalopods, transcriptomic studies using cephalopods 

are scarce (Albertin et al., 2012). To date, transcriptomic studies have been applied to study 

the O. vulgaris central nervous system (Zhang et al., 2012) and for comparative biology and 

evolutionary studies of other invertebrates (Riesgo et al., 2012). Regarding the role of 

cephalopod hemocytes, the only available transcriptomic study has focused on the role of the 

sepiolid E. scolopes hemocytes in recognizing the symbiont bacteria V. fischery (Collins et al., 

2012).  

 

I.5.2 Proteomics 

 The full protein expressed by the genome of one organism, tissue or cell at a specific 

time is defined as proteome. Proteomics is the field developed to study the proteome through 

protein quantification, protein-protein interaction, protein function and posttranslational 

modifications (PTMs) (Diz et al., 2012).  

 The proteomes of cells are extremely complex, consisting of several thousand proteins. 

Two-dimensional poly-acrylamide gel electrophoresis (2-DE) has been used as the standard 

protein separation method. Proteins are separated according to their isoelectric point (pI) in 

the first dimension and molecular mass (Mr) in the second dimension by coupling isoelectric 

focusing (IEF) and sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE). 

Separated proteins are commonly visualized by staining with Coomassie blue dye and silver 

stain. Theoretically, 2-DE is capable of resolving up to 10,000 proteins simultaneously and 

provides information about their Mr and pI. Additionally, the spots of interest are excised from 

2-DE gel in order to identify the protein by mass spectrometry (MS) (López, 2007). One of the 

major advantages of 2-DE gel is its robustness, which has been tested in inter-laboratory 

comparisons as well as the influence of various parameters in the intra-laboratory 

reproducibility. Improvements have also been made in the image production through the new 

fluorescent stains, colloidal Coomassie blue and modern silver staining that are also mass-

spectrometry compatible. In fact, the most critical variable nowadays is the sample 

preparation. The IEF is very sensitive to many interfering compounds already present in 
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biological samples. Thus, sample preparation must be adapted to each sample type (Rabilloud 

et al., 2010). 

 In proteomics, two general strategies can be followed: 1) the bottom-up that analyses 

the peptides and therefore proteins are usually digested with trypsin enzyme; and 2) the top-

down which analyses the proteins without any modification. Additionally, when quantitative 

information is needed, two main approaches can be followed: 1) relative quantification, which 

is usually used in 2-DE analysis. When using this approach, the protein spots are visualized 

through different stains facilitating their matching and quantification with the aid of specific 

software. Then, the intensity of normalized protein spots from different gels is used to apply 

statistics, and candidate protein spots (up or down regulated) are determined. On the other 

hand, 2) absolute quantification of proteins is usually used in Liquid Chromatography coupled 

with Mass Spectrometry (LC-MS). In this case, synthetic peptides of known concentration are 

added to the samples of interest for further quantification of the proteins (Diz et al., 2012). 

 Linking the information available from transcriptomics to protein expression would 

lead to an improved understanding of cellular processes. However, proteomic and 

transcriptomic data have a low convergence as some proteins detected do not show their 

corresponding transcript (Diz et al., 2012). The information of transcripts provides a static 

overview of the ways in which a cell might use its proteins, whereas the life of the cell is a 

dynamic process (Diz et al., 2012; Vogel and Marcotte, 2012). Hence, it is not possible to 

predict the number of proteins, abundance or function based on RNA transcripts (Diz et al., 

2012). Some reasons for the absence of correlation have been attributed to i) the regulatory 

mechanisms during the gene expression like post-transcriptional mechanisms involved in 

turning mRNA into protein, ii) the nature of proteins may differ significantly in vivo, iii) 

technical problems measuring transcript and proteins (Greenbaum et al., 2003).  

 Proteomics is a powerful tool applied to study host parasitic manipulation (Biron et 

al., 2005a,b; Nelson et al., 2008; Lutz et al., 2011), host resistance/susceptibility against 

parasites (Vergote et al., 2005; Bouchut et al., 2006), tumor biomarkers (Álvarez-Chaver et al., 

2011) and biomarkers of environmental pollutants (Riva et al., 2011), speciation (Martínez-

Fernández et al., 2008), and differential expression of proteins against biotic or abiotic stress 

(Dheilly et al., 2011; Tomanek, 2011). In addition, important contributions have been made by 

proteomics to aquaculture, helping the industry to reach its main goal: high productivity of a 

better quality product. Farmed seafood organisms are susceptible to a wide range of factors 
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that can threaten the aquaculture industry with considerable economical repercussions. 

Hence, considerable efforts have been made to study the innate immune response in some 

aquaculture animals using comparative proteomics (Zhou et al., 2012). Thus, the changes in 

protein expression patterns between healthy and infected oysters Crassostrea gigas and three 

different stocks of Ostrea edulis were studied to find the bases of tolerance/resistance to 

Bonamia ostreae (Cao et al., 2009). To understand the immune response of crustacean 

hemocytes to bacteria, a proteomics approach was used to investigate the differential 

expression of proteins in the hemocytes of the prawn Penaeus monodon after Vibrio harveyi 

infection. The results showed proteins differentially expressed involved in the host defense 

like prophenoloxidase, serine proteinase-like or heat shock protein 90 (Somboonwiwat et al., 

2010). The differential expression of proteins applied in the squid E. scolopes demonstrated 

that V. fischeri induced changes in the host light organ proteome after colonizing the light 

organ (Doino and Mc Fall-Ngai, 2000). Recently, important proteins involved in the immune 

defense of this squid were identified in their light organ (Schleicher and Nyholm, 2011; Collins 

et al., 2012). Most of these proteins have been previously identified in gastropods, bivalves 

and even in sea urchins, suggesting that cephalopods also possess highly conserved proteins 

in a wide range of marine animals. Therefore, a similar immune defense pattern could be 

hypothesized. 
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I.6 Justification and objectives 

 Although cephalopods are important molluscs for ecology, fisheries and aquaculture, 

there is still a lack of knowledge about the functional and molecular basis that regulates the 

cephalopod immune defense. In light of the evident importance of O. vulgaris for aquaculture, 

the present work studies the basic immune defense activities carried out by the octopus. The 

hemocytes are the main effectors of defensive activities therefore this work is principally 

focused on the cellular immune defense: phagocytosis ability, respiratory burst and nitric 

oxide production. In addition, this study intends to establish the first molecular bases of the 

octopus immune response. New technological advances were used to study the transcriptome 

and proteome of octopuses with low and high infection by A. octopiana in order to find genes 

and proteins that could be used as biomarkers of resistance to the coccidia infection. Hence, 

the aim of the present study is to contribute to the establishment of the basis for the 

identification of host resistant/susceptibility to the A. octopiana infection that in turn, will 

provide valuable information for achieving a successful octopus aquaculture. 

 

The present dissertation has the following objectives: 

 

1. The molecular characterization of the coccidia Aggregata octopiana infecting the common 

octopus in NE Atlantic Ocean. 

2. To characterize at morpho-functional level the Octopus vulgaris hemocytes. 

3. To study the effect of the parasite Aggregata octopiana on the cellular response of the 

common octopus, Octopus vulgaris. 

4. To perform a transcriptome analysis of the Octopus vulgaris hemocytes using high-

throughput sequencing technology. The identification of genes differentially expressed in 

octopuses infected by Aggregata octopiana. 

5. To characterize the protein profile of the hemolymph of Octopus vulgaris. The analysis of 

proteins differentially expressed in octopuses infected by Aggregata octopiana. 
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Aggregata octopiana and Aggregata 
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from the NE Atlantic coast using 18S 

rRNA sequences 
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Abstract 

The coccidia genus Aggregata is responsible for intestinal coccidiosis in wild and 

cultivated cephalopods. Two coccidia species, Aggregata octopiana, (infecting the common 

octopus Octopus vulgaris), and A. eberthi, (infecting the cuttlefish Sepia officinalis), are 

identified in European waters. Extensive investigation of their morphology resulted in a 

redescription of A. octopiana in octopuses from the NE Atlantic Coast (NW Spain) thus 

clarifying confusing descriptions recorded in the past. The present study sequenced the 

18S rRNA gene in A. octopiana and A. eberthi from the NE Atlantic coast in order to assess 

their taxonomic and phylogenetic status. Phylogenetic analyses revealed conspecific 

genetic differences (2.5%) in 18S rRNA sequences between A. eberthi from the Ria of Vigo 

(NW Spain) and the Adriatic Sea. Larger congeneric differences (15.9%) were observed 

between A. octopiana samples from the same two areas, which suggest the existence of 

two species. Based on previous morphological evidence, host specificity data, and new 

molecular phylogenetic analyses, we suggest that A. octopiana from the Ria of Vigo is the 

valid type species. 
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1. Introduction 

Coccidians are obligate intracellular parasites that cause severe injuriesmainly in poultry 

and livestock (Levine 1985), but are also able to infect marine fishes and molluscs causing 

a detrimental effect on their physiological condition (Kent and Hedrick 1985; Lom and 

Dyková 1992). Cephalopods are specifically infected by coccidians of the genus Aggregata 

(Hochberg, 1990), which are heteroxenous parasites transmitted through the food web. 

Sexual stages (gamogony and sporogony) occur inside the digestive tract of the definitive 

cephalopod host, whereas asexual stages (merogony) can be found inside the digestive 

tract of the intermediate crustacean host (Hochberg 1990). 

 The genus Aggregata has a complex taxonomic history. It was first described by 

Lieberkuhn (1854) as a gregarine infecting Sepia officinalis. Schneider (1875) described a 

similar parasite infecting Octopus vulgaris, whereas the later genus was correctly classified 

as a coccidium (Schneider, 1883). Then, the genus Aggregata was assigned by Frenzel 

(1885), who described merogonic stages of the parasite in Portunus arcuatus. Finally, the 

cephalopod coccidia were classified into the family Aggregatidae by Labbé (1899). The 

taxonomy of the Aggregata species has been controversial (Hochberg, 1990), and 

confusing descriptions have been recorded in the past. The species Aggregata octopiana 

was first described by Schneider (1875) in O. vulgaris from the English Channel and 

Western Mediterranean Sea (Banyuls sur-Mer, France), and redescribed in samples from 

the NE Atlantic Ocean (Gestal et al., 1999b). Comparative ultrastructural studies revealed 

that the taxon described by others as Aggregata spinosa in the same host and locations 

using light microscopy (Moroff, 1908), was synonymous to A. octopiana (Gestal et al., 

1999b). Consequently, 10 Aggregata species have been described to date (see Table 1), 

and three of them are found in European waters: (1) A. eberthi, which is the representative 

type-species of the genus Aggregata and infects the cuttlefish S. officinalis from the 

Mediterranean Sea, English Channel and NE Atlantic Ocean (Dobell, 1925); (2) A octopiana, 

which infects the common octopus O. vulgaris and has been re-described in hosts from the 

NE Atlantic Ocean (Gestal et al., 1999b); and (3) A. sagittata, which infects the flying squid 

Todarodes sagittatus (Gestal et al., 2000). 

 Understanding cephalopod pathogens is particularly relevant to the worldwide 

aquaculture of octopus species, which has to satisfy the global demand of cephalopods for 

human consumption (Iglesias et al., 2004; Domingues et al. 2007; Solorzano et al., 2009). 

The coccidian A. octopiana is known to cause heavy infections in the digestive tract of O. 

vulgaris (Pascual et al., 1996). Gamogonic and sporogonic stages cause the host’s digestive 
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tissue to rupture (Gestal et al., 2002a).Malabsorption syndrome is a secondary effect of 

high infection rates, reducing the growth and condition of infected octopuses (Gestal et al., 

2002b) and negatively impacting octopus culture (Gestal et al., 2007b). Moreover, food 

sanitary regulations forbid commercialization of parasitized fishery and aquaculture 

products. Hence, despite Aggregata spp. not being zoonotic parasites, the octopus will be 

withdrawn from human consumption circulation as soon as oocysts are detected in muscle 

(Peñalver et al., 2008). 

 Due to the increasing importance of coccidian diseases, particularly those caused 

by Aggregata species, the use of highly sensitive molecular methods for parasite diagnosis 

becomes crucial. Furthermore, molecular approaches are also useful to characterize 

parasites, complementing morphological descriptions, and phylogenetic classification 

(Jirků et al., 2009; Rueckert et al., 2011). The species A. octopiana and A. eberthi have been 

identified and characterized in the NE Atlantic coast according tomorphological characters 

and host specificity (Gestal et al., 1999b, 2002c; Gestal and Pascual, 2002). In contrast, 

very little is known about their molecular classification and phylogenetic position, which 

could confirm their taxonomic affiliation within the genus and validate conservative and 

robust phenotypic characters used for species diagnosis Kopečná et al. (2006) generated 

the first 18S rRNA sequences for A. octopiana and A. eberthi from Croatia (Adriatic Sea); 

however, the phylogenetic position of both coccidians remained unresolved. 

 In this study, we generated new 18S rRNA nucleotide sequences for A. octopiana 

and A. eberthi from the NE Atlantic coast (Galicia, NW Spain) to assess their phylogenetic 

position, complement existing morphologic descriptions and validate their phenotypic 

characters. 
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2. Material and Methods 

2.1 Sampling and microscopic identification 

 A. octopiana was isolated from a pool of 10 infected octopuses of the species O. 

vulgaris, while Aggregata eberthi was isolated from a pool of 10 infected cuttlefishes of the 

species S. officinalis. Both cephalopod species were collected by traps, an artisanal gear 

used by local fishermen from the Ria of Vigo, Spain (24°14.09˝N, 8°47.18˝ W). The oocysts 

are easily observed as white spots on the digestive tract. Thus in the laboratory, the 

presence of Aggregata was assessed macroscopically in each of the cephalopod hosts, 

white oocysts were extracted from fresh caecum and intestine. Coccidians were identified 

using light microscopy and scanning electronmicroscopy (SEM) to analyzemorphology 

and dimensions of the fresh sporocysts and by histological analysis of the caecum, which is 

the target organ of the infection. The infected tissue was fixed in Davidson, embedded in 

paraffinwax and sectioned using aMicromHM-340 Emicrotome. Sections at 4 µm were 

stained with H–E according to standard procedures (Humason, 1979). For scanning 

electron microscopy (SEM), purified oocyst suspensionwas fixed for 4 h in 2.5% 

glutaraldehyde in 0.2 M cacodylate buffer (pH 7.4) at 4° C and washed for 30min in the 

same buffer. After dehydration in ethanol series, samples were critical point-dried in CO2 

using a Polaron E3000 and sputter-coated in a Polaron SC500 using 60% gold–palladium. 

Analysis was performed with a Philips XC30 SEM operated at 10–20 kV. 

 

2.2 Isolation and purification of the parasite 

 The infected digestive tract of cephalopods was dissected and homogenised in 

10ml of filtered sea water (FSW) 1% Tween 80 using an electric tissue grinder (IKA-Ultra 

Turrax T-25). Tissue homogenates were filtered twice with nylon meshes of 100 and 41 

µm, respectively, to remove tissue fragments. The filtrate was then centrifuged at 1000×g 

for 5min in a centrifuge Beckman GS-15R. The sporocysts were purified by means of 142 

the density gradient centrifugation method according to Gestal et al. (1999a), and counted 

in a Neubauer chamber to standardise the sample at 2×106 sporocysts/ml. Finally, 

sporocysts were preserved in 70% ethanol. 
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2.3 DNA extraction 

 Genomic DNA was extracted from A. octopiana and A. eberthi sporocysts. 

Sporocysts were resuspended in 500 µl of extraction buffer (NaCl 100 mM, EDTA 25 mM 

pH 8, SDS 0.5%) and opened by sonication on ice (5 cycles, 40W, 50 s) to release 

sporozoites. After Proteinase K (Sigma) digestion (1 mg ml−1) at 37 °C overnight, the DNA 

was purified following the phenol:chloroform:isoamil alcohol extraction method, as 

described by Sambrook et al. (1989). DNA was precipitated with ethanol and sodium 

acetate overnight at −20 °C. The precipitated pellet was resuspended in 50 µl of Tris–

EDTA (TE) buffer.  

 

2.4 DNA amplification, cloning and sequencing 

 The small subunit 18S rRNA gene of both coccidia species was amplified by PCR 

using conserved primers designed for Aggregata spp. (Kopečná et al., 2006) and derived 

from GenBank sequences: (Aggregata 1-F: 5’-ATGATGAAACTGCGAAGAGC-3’; Aggregata 2-

R: 5’-CGACGGTATCTGATCGTCTT-3’; Aggregata 3-F: 5’-GGGGGTATTTGTATTTAACAAGCA-

3’; Aggregata 4-R: 5’- CCTACGGAAACCTTGTTACGA-3’). Aggregata primers 1–2 (positions 

76–1008) amplify the initial 970 bp of the 18S rRNA gene, whereas Aggregata primers 3–4 

(positions 871–1781) amplify the next 915 bp. PCR reactions were performed in a total 

volume of 25µl containing 1µl 10 mM dNTP mix, 0.25 µl Taq DNA polymerase (Roche), 

2.5µl Taq 10× buffer, 1µl 2.5 mM MgCl2, 1µl of each primer (10 µM) and 1µl of template 

DNA at 100 ng µl−1. The temperature profile for primers 1–2 included an initial 

denaturation at 94 °C for 10 min; 35 cycles of 94 °C for 1 min, 57 °C for 1 min and 72 °C for 

1 min, and a final extension at 72 ◦C for 10 min. For primers 3–4, we used an annealing 

temperature of 55 °C. PCR products were separated on 1% agarose in TAE 1× buffer gels 

(w/v), stained with ethidium bromide including a 100-bp ladder size standard 

(Invitrogen) and visualised using ultraviolet (UV) light. Fresh PCR products were cloned 

using a TOPO TA Cloning Kit (invitrogen) according to the protocol supplied by the 

manufacturers and transformed in TOP 10 F_competent bacteria Escherichia coli 

(invitrogen). Screening of clones carrying 18S rRNA-coding region fragments was 

performed by PCR adding the positive colony directly to the PCR mixture reaction using 

the corresponding Aggregata primers. Positive clones were purified by digestion with the 

enzymes exonuclease I and shrimp phosphatase (SAP) (Amersham Pharmacia Biothech) 

for 1 h at 37 °C. The enzymes were then denatured for 15 min at 80 °C. The purified PCR 

products were bi-directionally sequenced using the proper Aggregata pair of primers and 
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using ABI 3130 Genetic Analyzer according to the manufacturer’s directions (Applied 

Biosystems, Carlsbad, CA, USA). 

 Sequenced fragments from multiple clones belonging to each of the two 

Aggregrata species were then assembled together into two consensus sequences (see 

below). Based on the obtained cloned sequences, the specific primers RV-F: 5’-

GCTTATTAAATCAGTTATAGTT-3’204; RV-R: 5’-ATATTTACACACATTCTAATTC-3’ 

(positions 20–1619) were designed and used to amplify almost complete 18S rRNA 

sequences for each species (annealing temperature of 54 °C). Primers Aggregata 5-F: 

5’-AAGCTCGTAGTTGCAGTTTTGA-3’; Aggregata 6-R: 5’-AACTAAGAACGGCCATGCAC-3’ 

(positions 544–1178) equivalent to 662 bp were designed to amplify the internal 

sequence at an annealing temperature of 54 °C. All sites available in these new two 

sequences were also present in the two consensus sequences assembled from multiple 

Aggregata clones. 

 

2.5 Phylogenetic analysis 

 In addition to the new 18S rRNA sequences generated in this study for A. octopiana 

and A. eberthi from Ria of Vigo, sequences of 33 Apicomplexa taxa available at GenBank 

were used in the phylogenetic reconstruction. The GenBank accession numbers of the18S 

rRNA gene sequences used are as follows: Theileria buffeli (AF236097), Theileria sp. 

(U97055),  Babesia sp. (AY048113), Babesia conradae (AF158702), Eimeria alabamensis 

(AF291427), Eimeria bovis (U77084), Eimeria falciformis (AF080614), Eimeria arnyi 

(AY613853), Cyclospora cayetanensis (AF111183), Cyclospora papionis (AF111187), 

Cyclospora colobi (AF111186), Isospora belli (U94787), Isospora felis (L76471), Goussia 

janae (AY043206), Goussia carpelli (GU479640), Goussia metchnikovi (FJ009244), 

Sarcocystis gracilis (FJ196261), Sarcocystis neurona (U07812), Toxoplasma gondii 

(L37415), Neospora caninum (GQ899206), Neospora sp.(BPA1 U17345), Hepatozoon canis 

(EF622096), Hepatozoon catesbianae (AF130361),  Calyptospora spinosa (FJ904637), 

Calyptospora funduli (FJ904645), Adelina grylli (DQ096836), Adelina bambarooniae 

(AF494059), Adelina dimidiata (DQ096835), Tridacna hemolymph apicomplexan 

(AB000912), Klossia helicina (HQ224955) clon 43, K. helicina (HQ224956) clone 26, A. 

octopiana from the Adriatic Sea (DQ096837), and A. eberthi from the Adriatic Sea 

(DQ096838). Representative species of Babesia and Theileria were used as outgroups. 
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 All sequences were aligned in MAFFT v6 (Katoh et al. 2005; Katoh 2008) under the 

Q-INS-i algorithm, which takes into account RNA secondary structure. Ambiguous regions 

in the resulting alignment were identified and removed using GBlocks 0.91b (Castresana 

2000). Aggregata phylogenetic relationships were inferred using maximum likelihood 

(ML) and Bayesian inference coupled with Markov chain Monte Carlo (BMCMC). ML trees 

were built in RAxML v7.2.0 (Stamatakis et al., 2008) using 1,000 searches and 10 runs. 

JModelTest v1.0.1 (Posada, 2009) was used to select the appropriate model of evolution 

under the Akaike Information Criterion (Posada and Buckley, 2004). The general time 

reversible (GTR) model (Tavaré, 1986), with invariable sites (I = 0.13) and gamma 

distribution (G= 0.63) to account for the among site rate heterogeneity was chosen. Clade 

support was assessed using the non-parametric bootstrap procedure (Felsenstein, 1985) 

with 5,000 bootstrap replicates run in the portal CIPRES Science Gateway portal (Miller et 

al., 2010). BMCMC trees were built in MrBayes v3.1.2 (Ronquist and Huelsenbeck, 2003). 

Three independent BMCMC analyses were run in CIPRES with each consisting of four 

chains. Each Markov chain was started from a random tree and run for 5×106 cycles, 

sampling every 1000th generation. Model parameters were unlinked and treated as 

unknown variables with uniform default priors. They were estimated as part of the 

analysis. Convergence and mixing were monitored using Tracer v1.5 (Rambaut and 

Drummond, 2009). All sample points prior to reaching stationary were discarded as burn-

in. The posterior probabilities for individual clade obtained from separate analyses were 

compared for congruence and then combined and summarized on a 50% majority-rule 

consensus tree. 

 

3. Results 

 Phenotypic identification of both A. octopiana and A. eberthi was performed by 

light microscopy, histology and SEM (Fig. 1). The morphed as part of the analysed oocysts, 

sporocysts and sporozoites was consistent with that previously described as the type 

species from the NE Atlantic (Dobell, 1925; Gestal et al., 1999b) (see Table 1). A total of 13 

and nine 18S rRNA partial sequence clones of A. octopiana and A. eberthi, respectively, 

were sequenced and assembled to obtain two overlapping 50% majority-rule consensus 

partial 18S DNA sequences of 1624 bp for A. octopiana and 1686 bp for A. eberthi. 

Variation among A. octopiana clones was <0.55%, whereas variation among A. eberthi 

clones was <0.25%. In addition, single sequences of similar length taken in one single PCR 

amplification were taken for each species in order to confirm the assembled fragments. 
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We used the consensus sequences in all phylogenetic analyses to take into account intra-

species genetic variation. The consensus sequences of A. octopiana and A.eberthi were 

deposited with GenBank under the accession numbers KC188342 and KC188343, 

respectively.  

 

Fig. 1. Morphology of A. octopiana and A. eberthi. (A) Histological section of the digestive 

tract of O. vulgaris showing sporocyst of A. octopiana containing 8 sporozoites. (B) 

Histological section of the digestive tract of S. officinalis showing sporocyst of A. eberthi 

containing 3 sporozoites. (C) SEM photograph of A. octopiana sporocyst showing the spiny 

wall. (D) SEM photograph of A. eberthi showing the smooth sporocyst wall. 

 

 ML and BMCMC phylogenetic searches generated identical topologies, hence only 

the ML tree with corrected branch lengths is presented (Fig. 2). In our analysis, two main 

coccidian clades were recognised, and one of them, the adeleorinids clade, included A. 

octopiana and A. eberthi (Fig. 2). The aggregatids from the Ria of Vigo and the Adriatic Sea 

formed a highly supported monophyletic group [(bootstrap proportion (bp) = 100%, 

posterior probability (pP) = 1.0)].  

 In our 18SrRNAMLtree, the minimum genetic divergence (corrected branch 

lengths) observed between different recognized coccidian species pairs ranged from 0.1% 
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to 15.1%, with most cases above 3%. A genetic divergence of 15.9% was observed 

between A. octopiana from the Ria of Vigo and A. octopiana from the Adriatic Sea, whereas 

a genetic divergence of only 2.4% was found between A. eberthi from the Ria of Vigo and A. 

eberthi from the Adriatic Sea (Fig. 2). 

 

 

Fig. 2. Maximum likelihood cladogram of Apicomplexa evolutionary relationship. 

Corrected branch lengths estimated under the GTR+G+I evolutionary model are shown 

above branches and bootstrap proportions (if ≥70%)/posterior probability (if ≥0.95) are 

shown in bold below branches.  
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4. Discussion 

 According to their histological and ultrastructural features, A. octopiana and A. 

eberthi, have been successfully characterized in samples from the NE Atlantic Ocean by 

Gestal et al. (1999b, 2002c) and Gestal and Pascual (2002). Now, the molecular 

characterization carried out in this work showed a broad similarity to the two Aggregata 

sequences available at GenBank. Our phylogenetic analyses were consistent with what is 

known from previous coccidian studies, where Eimeriidae and Sarcocystidae families 

formed well supportedmonophyletic groups (bp = 100%; pP = 1.00). Both ML and 

Bayesian phylogenies strongly support (bp = 99%, pP = 0.99) a clade formed by 

Aggregatidae and Adeleidae species. Within this clade, Aggregata species are 

evolutionarily close to the adeleorinid Hepatozoon, Klossia and Adelina, the last being the 

most basal group, as also suggested by the ML tree in Kopečná et al. (2006). This makes 

adeleorinids the most primitive group of the Eucoccidiorida, as stated by Levine (1985), 

sharing with aggregatids the formation of the sporocyst and the excystation through a 

longitudinal suture (Gestal et al., 1999b; Kopečná et al., 2006). As in Kopečná et al. (2006), 

however, our 18S rRNA tree cannot accurately discriminate the basal relationships and 

position of the genus Aggregata. As previously suggested for other Apicomplexa (Barta et 

al., 2012), additional taxa and new genetic markers will be required to resolve the 

relationships among these parasites. 

 Our tree shows that A. octopiana and A. eberthi from the Ria of Vigo cluster with 

their respective counterparts A. octopiana and A. eberthi from the Adriatic Sea (Fig. 2); 

however, the high genetic divergence (15.9%) observed between the two A. octopiana 

samples suggests that they represent different species (congeneric divergence). On the 

contrary, the genetic divergence estimated between A. eberthi samples (2.5%) falls within 

the range observed among populations from the same species (conspecific divergence). 

 Coupled with molecular data, phenotypic characters are also required to classify 

coccidians (Tenter et al., 2002). Among them, one of the most conspicuous characters is 

the number of sporozoites per sporocyst (Lom and Dyková, 1992). From the Adriatic Sea, 

scarce and confusing records about the sporozoite number of coccidians infecting 

cephalopods exist. Mladineo and Jozić (2005), for example, reported O. vulgaris infected by 

coccidian of the genus Aggregata with four to five sporozoites. The Adriatic coccidia fit 

with the usual size range of A. octopiana from the NE Atlantic (Gestal et al., 1999b). There 

are differences, however, with regard to the number of sporozoites (eight sporozoites per 

sporocyst for A. octopiana), and the spiny sporocyst wall, which are the most noticeable 
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specific features. Based on the number of sporozoites, the Aggregata sp. from Adriatic Sea 

resembles A. sagittata, which infects only the squid Todarodes sagitattus (Gestal et al., 

2000), or A. valdesensis, which infects O. tehuelchus in SW Atlantic (Sardella et al., 2000). 

Interestingly, a second record by Mladineo and Bočina (2007) also mentions coccidia with 

eight sporozoites infecting the Adriatic O. vulgaris, which suggests the presence of A. 

octopiana. Thus, following morphologic characters, these records suggest two different 

Aggregata species infecting O. vulgaris in the Adriatic Sea. In addition, the absence of 

consistent and reliable morphological information about the coccidia sequenced by 

Kopečná et al. (2006) makes it difficult to identify the Adriatic Aggregata sp. correctly. 

Therefore, detailed morphological characterisation and accurate identification of the 

Aggregata species occurring in the Adriatic Sea are needed. 

 O. vulgaris has a worldwide distribution including the Southern Indian Ocean 

(Roper et al. 1984; Guerra et al. 2010). This octopod is now considered to form different 

populations with differences in reproductive structures and parasite specificity (Mangold 

1998; Guerra pers. comm.). Because coccidia are host-specific parasites, the distinct 

number of sporozoites in coccidia recorded from the Adriatic Sea (Mladineo and Jozić, 

2005; Mladineo and Bočina, 2007) suggests the possibility of different octopus 

populations harboring different Aggregata parasites. 

 Therefore, based on previous morphological evidence (Gestal et al., 1999b; Gestal 

and Pascual, 2002; Gestal et al., 2002c), host-specificity data and the new molecular 

phylogenetic analyses presented herein, we conclude that the Aggregata species 

parasitising the common octopus O. vulgaris from the Ria of Vigo (NW Spain, NE Atlantic) 

is A. octopiana, the valid type species. We also confirm the identification of A. eberthi 

infecting the cuttlefish S. officinalis from the same locality, validating the known 

phenotypic characters as useful diagnostic tools. 

 Further effort is needed to sample cephalopod hosts harboring Aggregata species 

at different geographic locations in the NE Atlantic and worldwide. Moreover, new genetic 

markers need to be combined with the 18S rRNA gene to improve phylogenetic analysis 

and complement the morphological taxonomy and classification of this poorly understood 

coccidian group. 
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Two different morphotypes of hemocytes observed in the O. vulgaris hemolymph. 
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Abstract 

Mollusc hemocytes are responsible for several immunological functions including killing 

and eradication of microorganism. Therefore, characterization of the circulating 

hemocytes and their immune activities are required to assess the octopus health. In the 

present work, the hemocytes of Octopus vulgaris were morphologically and functionally 

characterized. Light microscopy, electron microscopy (TEM and SEM) and flow cytometry 

analyses revealed the existence of two hemocyte populations. Large granulocytes showed 

U-shaped nucleus, numerous granules in the cytoplasm and measured a mean of 11.6 µm ± 

1.2 in diameter. Stained hemocytes showed basophilic granular inclusions and some 

vacuoles. Small granulocytes showed a mean of 8.12 µm ± 0.74 in diameter, a round 

nucleus occupying almost the entire cell and few or not granules in the cytoplasm. Large 

granulocyte presented different types of granules by TEM. In addition, histochemical 

stains showed glycogen deposits and lysosomic activity. Phagocytosis and the associated 

respiratory burst were measured by flow cytometry. Large granulocytes are the principal 

cells that develop both phagocytosis and ROS. Octopus hemocytes showed high variable 

ability to engulf latex beads, rising up to 56% after 2 h of incubation. Zymosan induced 

effectively higher ROS production than controls. Nitric oxide (NO) was measured in 

hemocytes against different stimuli during a time curse. Zymosan induced the highest NO 

production, following by PMA and LPS. The maximum response was recorded at 3 h of 

incubation. This study is the first tread towards understanding the O. vulgaris immune 

system by applying new tools to provide a most comprehensive morpho-functional study 

of their hemocytes. 
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1. Introduction 

 Cephalopods are molluscs with a close circulatory system, where the hemolymph 

is restricted to blood vessels and capillaries (Cowden and Curtis, 1981). Molluscs 

hemocytes, the circulating cells of the hemolymph, are involved in several functions such 

as wound repair, nutrient digestion, transport and excretion. In addition, they play an 

important role in the internal defense (Cheng, 1975; Chu 2000). Although studies focused 

on bivalve and gastropod mollusc’s diseases and defense mechanisms have been 

performed, little attention has been placed on the defense mechanism of cephalopods. 

Cephalopods are the subject of important fisheries and biomedical studies, serving 

as host for parasites like Anisakis sp. that can infect humans (Hochberg, 1990). In addition 

they have a great potential as aquaculture species (Iglesias et al., 2007). However, the 

characterization and functionality of these mollusc hemocytes has not been fully studied 

(Ford, 1992). The general agreement differentiates two types of cells in bivalves and 

gastropods, granulocytes and hyalinocytes, according to the presence of cytoplasmic 

inclusions (Cheng, 1975; Donaghy et al., 2010). In contrast, available studies performed by 

classical microscopic techniques recognize a single cell type in cephalopods. These cells 

are round shaped, with several cytoplasmic inclusions and U-shaped nucleus resembling 

mammalian monocytes (Cowden and Curtis, 1981; Malham and Runham, 1998). The 

leukopoietic organ of cephalopods is certainly known as the white body, located behind 

the eyes in the orbital pits of the cranial cartilages (Cowden, 1972). Studies performed by 

light and electron microscopy on Octopus vulgaris (Cowden, 1972), Octopus briareus 

(Cowden and Curtis, 1973) and Sepia officinalis (Bolognari, 1949; Claes, 1996) described 

the morphology of precursor stages of cells developed in the white body before 

maturation and release to the circulating hemolymph.  

 The non-adaptive immune system of invertebrates is composed by cellular and 

humoral components, which in a combined action control the infection by pathogens. 

Among these mechanism, phagocytosis, encapsulation, and production of toxic radicals of 

oxygen and nitrogen are developed to combat pathogens (Ellis et al., 2011). 

 Up to date, few studies have been conducted to identify the hemocyte function in 

cephalopods (Ford, 1992). Cephalopods’ hemocytes phagocytosis of the bacteria Vibrio 

anguillarum and zimosan A was assayed using traditional light microscopy techniques in 

Eledone cirrhosa and Octopus vulgaris, respectively (Malham et al., 1997; Novoa et al., 

2002; Rodríguez-Domínguez et al., 2006). Linked to phagocytosis is the release of 

oxidative chemicals like reactive oxygen species (ROS), named respiratory burst; and 
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reactive nitrogen species (RNS) like nitric oxide (NO), both acting as killing agents (Tiscar 

and Mosca, 2004).  

 Conventional methods applied to bivalves for measuring ROS, as reduction of 

nitroblue tetrazolium, that measures intracellular radicals (Anderson et al., 1994) or 

cytrochrome-C to measure extracellular oxygen radicals (Wootton et al., 2003) have been 

also used in cephalopods. Intracellular ROS was measured in E. cirrhosa hemocytes after 

exposure the octopuses to the air for 5 minutes (Malham et al., 2002). In O. vulgaris, 

extracellular ROS was observed in hemocytes following stimulation with zymosan. The 

same stimuli was effective to induce significant NO production, whereas Escherichia coli 

lypopolysacharide (LPS) induced a weak reaction (Novoa et al., 2002). 

 Differences in methods used for hemocytes classification or measurement 

techniques to study the molluscan immune response could rise to disparities in the 

results. Therefore, automated methods that can remove that bias are valuable for further 

research in the field (Ashton-Alcox and Ford, 1998). Flow cytometry is used to compliment 

time consuming techniques based on physical separation of cells. This methodology 

provides information about different characteristics including their size and granularity, 

very valuable parameters to characterize cell populations and has been widely used to 

characterize bivalve and gastropod hemocyte populations (Ashton-Alcox and Ford, 1998; 

Allam et al., 2002). In addition, flow cytometry have been used to measure cellular defense 

parameters as phagocytosis, respiratory burst and production of nitric oxide 

simultaneously, in Mytilus galloprovincialis (García-García et al., 2008), Haliotis tuberculata 

(Travers et al., 2008), Crassostrea ariakiensis (Donaghy et al., 2009a), Haliotis discus discus, 

Turbo cornutus (Donaghy et al., 2010) and Ruditapes decussatus (Prado-Alvarez et al., 

2012).  

 O. vulgaris is an important mollusc for commercial fisheries worldwide and 

aquaculture. Therefore, understanding the immune system of this cephalopod is required 

to assess the effect of environmental factors and natural pathogens, which will help in the 

future to prevent economical looses in aquaculture. The purpose of the present study is 

the morphological and functional characterization of the circulating hemocytes of O. 

vulgaris by light and electron microscopy complimented for first time with flow cytometry.  
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2. Material and methods 

2.1 Biological material and hemolymph collection 

 O. vulgaris from 65-220 mm mantle length were collected by traps, an artisanal 

gear used by local fishermen, from the Ria of Vigo, Spain (24° 14.09’N, 8° 47.18’W) and 

transported to the laboratory. Octopuses were placed in culture tanks of open seawater 

system at 15 °C for 24 h to acclimate before experimentation.  

Following ethical procedures (Directive 2010/63/EU) octopuses were 

anesthetized using 7.5% magnesium chloride (MgCl2) according to Messenger et al. 

(1985). Hemolymph was withdrawn from the cephalic aorta using a disposable syringe (1 

ml) containing different solutions depending on the procedure. Hemolymph from each 

octopus was used immediately or transferred into a vial and kept on ice until use. 

 

2.2. Morphological characterization of O. vulgaris hemocytes 

2.2.1 Light microscopy: fresh and fixed hemocytes 

2.2.1.1 Cells in suspension 

 Prefilled-syringes with 0.22 µm filtered seawater (FSW), 4% paraformaldehyde 

solution (in 0.1 M phosphate-buffered saline (PBS), pH 7.4) or 2.5% glutaraldehyde (in 0.2 

M sodium cacodylate buffer pH 7.4) were used to dilute (1:1) the hemolymph. A 

subsample of crude hemolymph (without dilution and without anti-aggregating solution) 

was centrifuged for 5 min at 300 × g and 4 °C). The hemocytes were then re-suspended in 

Squid Ringer Solution (SRS: 530 mM NaCl, 10 mM KCl, 25 mM MgCl2, 10 mM Ca Cl2 and 10 

mM HEPES buffer, pH 7.5). Preparations of 100 µl of SRS re-suspended hemocytes and 

diluted hemolymph samples were immediately observed at light microscopy DM2500 

(Leica) equipped with Nomarsky contrast to enhance the contrast of fresh non-stained 

hemocytes. Hemocyte diameters were measured (at least 200 cells) using Leica 

Application Suite software v4.  
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2.2.1.2 Hemolymph cell monolayer 

 Hemolymph cells monolayer were prepared by cell adhesion and cyto-

centrifugation. For both cases crude hemolymph (without anti-aggregating solution), 

hemolymph diluted 1:1 in FSW and cells re-suspended in SRS were used. To perform 

spontaneous cell adhesion 100 µl of each hemocyte solution was settling onto a glass slide 

and allowed to adhere for 20 min in a moist chamber at 15 °C. Cyto-centrifugation was 

carried out with 100 µl of hemocyte solution at 200 × g for 5 min in a Cytospin 4 

cytocentrifuge (Thermo Scientific). Hemolymph cell monolayers were fixed in 100% 

ethanol for 1 min and stained for 1 min with each of the two solutions included in the 

rapid Hemacolor® kit (Merck). Glass slides were gently washed in distilled water and 

mounted in DPX resin (BDH, Chemicals). Hemocyte diameters were measured as 

previously mentioned.  

 

2.2.2. Electron microscopy analysis 

 Fresh hemolymph (100 µl) was fixed for 4 h in 2.5% glutaraldehyde in 0.2 M 

sodium cacodylate buffer (pH 7.4) at 4 °C and washed for 30 min in the same buffer for 

scanning electron microscopy (SEM) study. Samples were then dehydrated in an ethanol 

series, critical point dried in CO2 using a Polaron E3000 and sputter-coated in a Polaron SC 

500 using 60% gold-palladium. Hemocytes were examined with a Philips XL 30 scanning 

electron microscope operated at 5 kV. 

 Transmission electron microscopy (TEM) was applied to circulating hemocytes 

and white body tissue. Small portions of white body and fresh hemolymph were fixed in 

2.5% glutaraldehyde in 0.2 M sodium cacodylate buffer pH 7.4. After 4 h at 4 °C, hemocytes 

and tissue were washed for 12 h at 4 °C in 0.2 M sodium cacodylate buffer pH 7.4 and, 

post-fixed in buffered 2% OsO4 for 3 h at the same temperature. Hemocytes were pelleted 

and pre-embedded in 4% agar at 40 °C. Small agar pieces containing fixed hemocytes and 

white body samples were dehydrated in a graded ethanol series and embedded in Epon 

resin. Semi-thin sections obtained by diamond knife were stained with methylene blue. 

Ultrathin sections were double stained with uranyl acetate and lead citrate, and visualized 

using a JEOL 100CXII TEM operated at 60 kV. 
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2.2.3. Cytochemical characterization of the white body and circulating hemocytes 

2.2.3.1. Periodic Acid Schiff (PAS) in circulating hemocytes 

 Periodic acid Shiff (PAS) technique was applied for detection of polysaccharide in 

semi-thin sections obtained from Epon resin embedded pieces (see above). Oxidation of 

sections was carried out with 1% periodic acid for 10 min. Tissue sections were washed 

with water, stained with Schiff reagent during 20 min and a final washed was done. 

Periodic acid was avoided for controls (Lobo-da-Cunha et al., 2010). 

 

2. 2.3.2. Arylsulphatase 

 Samples were obtained as previously mentioned for TEM assays (see above). For 

lysosomal enzymes detection, circulating hemocytes and white body tissue were fixed for 

1 h at 4 ˚C in 2.5% glutaraldehyde (diluted in 0.4 M cacodylate buffer pH 7.4). Samples 

were washed in acetate buffer 0.2 M pH 5.0 for 30 min, incubated during 60 min at 35 ˚C in 

medium containing BaCl2, p-nitrocatechol sulphate in acetate buffer 0.1 M pH 5.0. For 

controls, p-nitrocatechol sulphate was omitted. Post-fixation was done during 2 h at room 

temperature in 1% OsO4 plus 1% potassium ferrocianure in cacodylate buffer (Hopsu-

Havu et al., 1967).  

 For all the electron microscopic samples, the semi-thin sections obtained were 

stained with metylene blue and azur II.  

 

2.2.4. Flow cytometry (FCM) analysis 

 Hemocyte population was determined in fresh crude or FSW diluted hemolymph 

using a FACScalibur flow cytometer (Becton Dickinson; Franklin Lakes, NJ) equipped with 

cell-sorting and cell-concentrator modules. Hemocyte population was discriminated in 

density plots according to the relative flow-cytometric morphological parameters: side 

scatter (SSC) that measure internal complexity, and forward scatter (FSC) that measure 

cell size, using a logarithmic and lineal scale, respectively. Fixed hemolymph in 4% 

paraformaldehyde solution (in 0.1 M PBS, pH 7.4) was used to isolate the population of 

interest by cell sorting. Cells were centrifuged 300 × g, 4 °C, 10 min and placed under glass 

coverslips for optical identification using a microscope Leica DM 2500. 
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2.3. Functional characterization of O. vulgaris hemocytes 

2.3.1. Cell counting and hemocyte viability 

Immediately after bleeding, cell counting was carried out using a Neubauer 

chamber. Cell viability was determined by Trypan blue exclusion test (Weeks-Perkins et 

al., 1995) in fresh and SRS re-suspended hemocytes. Cell mortality was assessed by flow 

cytometry labeling cells with 5 µl of 7-amino actinomycin D (7-AAD, BD Biosciences). After 

15 min of incubation at 15 °C in the dark, the fluorescence was detected in the FL-3 

channel of the flow cytometer using Cell Quest software (BD Biosciences). 

 

2.3.2. Phagocytosis assay 

 Flow cytometry phagocytosis protocol was adapted from García-García et al. 

(2008) and assayed on 92 individuals. From each octopus, 1 ml hemolymph was extracted 

and centrifuged 300 × g, 4 °C, 5 min. Supernatant was discarded and replaced with the 

same volume of SRS anti-aggregating solution to avoid clotting. The hemocyte solution 

was maintained on ice for 10 min, while cell counting was performed. Hemocyte samples 

were centrifuged again as described above, re-suspended in FSW and 100 µl were 

dispensed in triplicates into 96-wells plate. After 30 min for cell adhesion at 15 °C in the 

dark, 100 µl of flourescein-labelled 1.2 µm latex beads (Molecular Probes, Invitrogen) 

were added at a ratio of 1:10 (hemocyte:beads). Control hemocytes were exposed to FSW. 

After 2 h incubation at 15 °C in the dark, excess of beads was removed by gently washing 

twice with 100 µl PBS. Attached cells were collected in 200 µl PBS supplemented with 20 

µl of 0.8% trypan blue (in PBS) to quench external fluorescence. A total of 50,000 events 

were measured through the FL-1 channel. Results were expressed as the percentage of 

cells with at least one internalized bead. In addition, to confirm the phagocytic ability of 

cells, 100 µl of crude and washed (SRS) hemolymph were used to prepare hemolymph cell 

monolayers by cell-adhesion in presence of 100 µl of zymosan A (1 mg/ml) following the 

protocol yet described. After 30 min of incubation at 15 °C, excess of particles was 

eliminated by gently washing twice with PBS. Cell monolayers were fixed in 100% ethanol 

and stained using Hemacolor® kit (Merck). 
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2.3.3. Respiratory burst (ROS production) 

 Production of oxygen radicals was measured by flow cytometry using the CM- 2’,7’-

dichlorofluorescein diacetate probe (DCFH-DA, Molecular Probes). DCFH-DA diffuses into 

the cells where the intracellular esterases cleave to DCFH, which is oxidized by reactive 

oxygen species (ROS) to the highly fluorescent DCF. Subsequent oxidation yields 

fluorescence proportional to intracellular ROS (Hégaret et al., 2003). One hundred 

microlitres of FSW diluted hemolymph (1:1) were placed into 96-wells plate. Cells were 

incubated 30 min at 15 °C in dark for cell adhesion. The supernatant was removed and 100 

µl of FSW containing 5 µM CM-DCFDA and 0.4% DMSO final concentration were added per 

well. Cells were incubated 10 min on ice in the dark. The supernatant was removed and 

hemocytes were washed twice with 100 µl FSW before being stimulated adding 100 µl 

zymosan (1 mg/ml). Superoxide dismutase (SOD, 15 µl at 300 U/ml, Sigma) or of NG-

methyl-L-arginine acetate salt (NMMA, 10 µl at 1mg/ml, Sigma) inhibitors were added to 

determine whether H2O2 and NO, respectively, contributes to the oxidation of DCF-DA. 

Controls were exposed to the same volume of FSW. After 60 min of incubation at 15 °C in 

the dark, ROS were measured by flow cytometry in cells re-suspended in PBS. A total of 

50,000 events were measured and data were collected as mean fluorescence of the 

sample. The oxidative activity is expressed as mean fluorescence in arbitrary units (A.U.). 

The assay was performed in the hemolymph of 57 octopuses. 

 

2.3.4. Nitric oxide production (NO) 

 The NO production was assayed in 89 octopus hemolymph by the Griess reaction 

(Green et al., 1982) that quantifies nitrites (NO2-), a stable product that result from the 

degradation of NO. Briefly, 100 µl of the withdrawn crude hemolymph were exposed to 

100 µl zymosan (1 mg/ml final concentration), while 100 µl of FSW was added to controls. 

After 2 h of incubation at 15 °C, 50 µl of supernatants were carefully removed from each 

well and placed in new ones. Afterwards, 100 µl of 1% sulfanilamide (Sigma) in 2.5% 

phosphoric acid were added to each well followed by 100 µl of 0.1% N-naphthyl-

ethylenediamine (Sigma) in 2.5% phosphoric acid. After 5 min of incubation at room 

temperature, the optical density at 540 nm was measured (Multiscan Spectrophotometer, 

Labsystems). An additional assay was performed in order to test different stimuli: 

zymosan (2 mg/ml), phorbol myristate acetate (PMA) and Escherichia coli 

lipopolysaccharide (LPS, Sigma) at 2 µg/ml final concentration, respectively, at different 

incubation times (30 min, 1, 3, 6, 24 and 48 h). A total of three pools of 4 octopuses each 
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were assayed. The molar concentration of nitrite in all samples was determined from 

standard curves generated using known concentrations of sodium nitrite.  

 

2.4. Statistical analyses 

 One-way analysis of variance (ANOVA) and Tukey test, when needed, were carried 

out to compare phagocytic ability, respiratory burst and nitric oxide production. The 

phagocytic percentage data were transformed to arc sine of the square root before 

ANOVA. The mean fluorescence intensity value of oxidative activity and nitrite 

concentration of samples were logarithmic (LN) transformed before ANOVA. The 

Kolmogorov-Smirnov (K-S) was used to test normality of variables whereas Levene test 

was used to check homogeneity of variances before statistical analysis. NO measured in 

pool samples were compared using a Student’s t test. Results were expressed as the mean 

±E.S. and differences were considered significant at p<0.05. All the analyses were 

performed with the software Statistica v6.0. 

 

3. Results 

3.1 Morphological and cytometric characterization of hemocytes 

3.1.1 Light microscopy: fresh and fixed hemocytes 

 Live cells and cytological analyses of fixed hemocytes revealed a predominant type 

of circulating hemocytes in the O. vulgaris hemolymph, measuring a mean of 10.57 µm ± 

0.41 in diameter (10-12.57) (Table 1). Examined by light microscopy, fresh and fixed 

hemocytes were rounded in form, with visible numerous cytoplasmic inclusions and 

refringent vacuoles (Fig. 1A,B). In addition, a second type rounded or ovoid hemocytes 

with fewer or even without granules in cytoplasm and nucleus occupying almost the entire 

cell were also observed (Fig. 1C). The mean diameter of these cells was 9.27 µm ± 0.68, but 

showed a wide range of variation (5.55-9.98) (Table 1). Fresh cells, FSW-diluted or cyto-

centrifuged hemocytes extend thick pseudopodia; while hemocytes re-suspended in SRS 

sent out many thin pseudopodia. Hemocytes in SRS showed pseudopodia with time delay, 

whereas fresh hemocytes in crude hemolymph rapidly sent out pseudopodia, showing a 

quickly cell to cell association and forming dense cellular clots as soon as 20 min of 
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observation. Hemocytes in FSW spread and attach to the slide forming cellular clots 

around 30 min of observation (Fig. 1D).  

 

Fig. 1. Live hemocyte on fresh hemolymph of O. vulgaris. (A) Hemocytes showing (n) U-

shaped nuclei and granules (g) in the cytoplasm. (B) Hemocyte showing granules, 

refringent vacuole (v) and thin pseudopodia (Ps) formation. (C) Small hemocyte in 

hemolymph (g). (D) Hemocytes in FSW forming cellular clots (20x). 

 

 After staining with Hemacolor® most of the cells were round to ovoid in shape and 

measuring a mean of 12.5 µm ±1.10 in diameter (10.23-14.97) (Table 1). The U-shaped 

nucleus was eccentric in the abundant cytoplasm. The nuclei/cytoplasm ratio had a mean 

of 0.72 ± 0.08 (0.59-0.87). All hemocytes presented visible basophilic granules in 

cytoplasm (Fig. 2A). Additionally, a second type of rounded or ovoid hemocytes was 

observed. They measured a mean diameter of 9.12 µm ± 0.71 with wide variations ranging 

7.98 – 9.9 µm (Table 1). The nucleus was large round to ovoid with few or thin cytoplasm 

and scarce granules or totally absent (Fig. 2B, C). The nuclei/cytoplasm ratio had a mean 
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of 0.75± 0.06 (0.65–0.84). Stained cells demonstrate the aggregating ability and formation 

of filaments constituted by cell to cell association.  

 

Fig. 2. Hemolymph cell monolayers stained with Hemacolor®. (A) Large cells showing U-

shaped nuclei and basophilic granules (arrows). (B) Two hemocyte types could be 

distinguished: large (L) and small (S) granulocytes. (C) Detail of Large and small 

granulocytes. 

 

3.1.2 Electron microscopy 

 Most of the hemocytes observed by SEM were large (11 µm) and round, with 

shallow surface indentations and many thin pseudopodia. These cells showed a high 

ability to extend completely and attach to the surface (Fig. 3A). Small hemocytes (3.7-8 

µm) with irregular surface, shallow indentations or protrusion and few thin pseudopodia 

were also distinguished (Fig. 3B). Thus, two types of cells with differences in surface and 

pseudopodia were found (Fig. 3C). 

 

 

Fig. 3. Scanning electron transmission of O. vulgaris hemocytes. (A) Large extended 

hemocytes of irregular surface and numerous pseudopodia. (B) Small hemocytes with 

shallow indentations and thin pseudopodia. (C) Comparative of large and small hemocytes 

showing differences in surface and pseudopodia.  



Characterization of the O. vulgaris hemocytes 

 

 56 

 One morphotype of cell was found by TEM on circulating hemocytes. The cells 

were round in shape, with a plasmatic membrane that displays a smooth undulating 

surface and short pseudopodia. Chromatin is accumulated in electron-dense clumps in the 

periphery of nucleus (Fig. 4A). Cells exhibit endoplasmic reticulum around the nucleus. 

Numerous inclusions corresponding to granules of different sizes were observed in the 

cytoplasm (Fig. 4B). Inclusions were mostly spherical. Some of them displayed irregular 

outlines and occasionally small rod-like inclusions. Small and large inclusions showed a 

configuration of different electron-density core and medium electron-density, 

corresponding to different types of granules (Fig. 4C,D). Some of the dense inclusions 

could putatively contain glycoproteins. 

The white body tissue analyzed by TEM showed cells at two different 

developmental stages. One of the cell stages fit to secondary leucoblast, an intermediate 

stage of development between primary leucoblast and mature hemocytes. The cell surface 

seemed to be covered by a thin layer of electron-dense material. Chromatin was 

condensed through the entire nucleus with some small clumps. The cytoplasm presented 

very few medium electron-dense and electron-dense inclusions (Fig. 4E). The second 

developmental stage could correspond to a transitional cell previous to hemocyte 

maturity, showing a nucleus most compact and less condensed chromatin. The nucleus 

shape became irregular and a noticeable increase of electron-dense and medium lectron-

density granules was distinguished in the cytoplasm (Fig. 4F). 

 

3.1.3 Cytochemistry characterization of the white body and circulating hemocytes 

 The PAS technique performed in semithin sections showed a positive reaction in 

hemocytes’ granules of different size. The reaction was observed as an intense magenta 

stain in a faint magenta cytoplasmic background while other cells were weakly stained 

(Fig. 5A). The PAS positive reaction observed demonstrates the presence of 

polysaccharides in circulating hemocytes. 

 A positive reaction was found for arylsulphatase in ultrathin sections of circulating 

hemocytes observed by TEM, confirming that the specifically filled electron-dense bodies 

observed corresponded to lysosomes (Fig. 5B). In controls, all structures were free of 

barium deposits (data not shown). Cells in the white body showed also a positive reaction, 

confirming the presence of lysosomes. However it was not observed in all cells, which 

could be attained to differences in the developmental stages present inside the white body.  
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Fig. 4. TEM micrographs of O. vulgaris hemocytes and white body cells. (A-B) Circulating 

hemocytes in the O. vulgaris hemolymph. U-shaped nucleus, dense and medium-dense 

cytoplasmic inclusions (arrows), vacuoles (v) and pseudopods (ps) are observed (A: 

5,300x; B: 8,000x). (C-D) Detail of granules in the cytoplasm of circulating hemocytes 

(10,000x). (E-F) Cells developed inside the O. vulgaris white body: (E) secondary 

leucoblast showing a large nucleus (n), chromatin condensed (5,300x). (F) Transitional 

cell, previous to become a mature circulating hemocyte, the nuclei is starting to acquire 

their typical U-shape and few granules are observed in cytoplasm (5,300x). 
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Fig. 5. Cytochemistry of O. vulgaris hemocytes. (A) Periodic acid Schiff (PAS). Light 

micrograph of circulating hemocytes showing stained glycogen deposits (arrows) in the 

cytoplasm. (B) TEM micrograph showing positive reaction of arylsulphatase (5,300X). 

Lysosomes are visible in the cytoplasm of circulating hemocytes (arrows). 

 

 

3.1.4 Flow cytometry 

 According to the two-parameter plots, size (FSC) and granularity (SSC), two 

populations were recognized in octopus hemolymph by flow cytometry and were 

designated as R1 and R2. Hemocytes of the R1 fraction with high FSC and SSC are large 

sized cells with high granularity, representing the 82% (ES ± 2.47) of the hemocytic 

population and were designated large granulocytes. Hemocytes of the R2 fraction with low 

FSC and low SSC value were small to medium sized cells with fewer granules, constituted 

the 18% (ES ± 2.13) of the hemocytic population and were designated as small 

granulocytes (Fig.6A). Fixed hemocytes (in 4% paraformadehyde) were sorted and 

immediately observed by optical microscopy. Isolated cells from R1 population were large, 

with a mean diameter of 11.6 µm ± 1.2 (9.32–15.56), round or ovoid in shape, visible U-

shaped nuclei and numerous granules in cytoplasm (Fig. 6B, C) (Table 1). Hemocytes 

isolated from R2 population were small to medium sized, with a mean diameter of 8.12 µm 

± 0.74 and wide variations (6.69–9.99 µm) in size (Table 1). They were round in shape, the 

round nucleus occupies the cell almost entirely, and showed a thin cytoplasmic layer and 

few or absent granules in cytoplasm (Fig. 6D-E). 
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Fig. 6. Flow cytometric determination of the hemocyte populations of O. vulgaris. (A) Size 
(FSC) and internal complexity (SSC) density plot showing two hemocyte populations. 
Phase contrast micrographs and stained hemocytes isolated by cell sorting from R1 (B-C) 
and small hemocytes from R2 (D-E).  
 

 

Table 1. Microscopic characterization of the hemocyte populations of the O. vulgaris 

hemolymph (at least 200 cells were measured)(mean ± DS). 

 Hemocytes in 
suspension 

Stained 
hemocytes 

Hemocytes 
isolated by sortin 

Large  
granulocyte 

10.57 µm ± 0.41 
(10-12.57) 

12.5 µm ±1.10 
(10.23-14.97) 

11.6 µm ± 1.2 
(9.32–15.56) 

Small  
granulocyte 

9.27 µm ± 0.68 
(5.55-9.98) 

9.12 µm ± 0.71 
(7.98 – 9.9) 

8.12 µm ± 0.74 
(6.69 – 9.99) 

 

 

3.2 Functional characterization of the O. vulgaris hemocytes 

3.2.1. Cell counting and hemocyte viability 

The mean number of total circulating hemocytes counted in individual octopus 

was 10.3 × 106 (SE ± 8.1×105) varying from 4.9 × 105 to 32 × 106 (SE ± 8.1 × 105). The 

hemocyte mortality assessed by flow cytometry reached the 7% of the total cells. In order 

to check the effect of the anti-aggregant solutions used in the experiments, the hemocyte 

mortality was analyzed. Thus, the hemocyte viability achieved through the Trypan blue 

exclusion test was ≥95% in crude hemolymph and close to 90% in samples treated with 

SRS and FSW (Fig.7).  
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Fig.7. Comparative hemocyte viability in (A) crude hemolymph and (B) treated with anti-

aggregating solution (SRS and FSW) in a time course. 

 

3.2.2. Phagocytic ability 

Light microscopy observations showed that hemocytes of O. vulgaris were able to 

engulf zymosan A and fluorescent latex beads (Fig. 8A, B). By flow cytometry, the 

phagocytosis of latex beads was detected in the hemocytes as an increase of the 

fluorescent level registered in the FL1-H channel (Fig. 8C). The two cell populations 

showed different ability to phagocyte fluorescent latex beads. The mean percentage of 

phagocytosis was 13% reaching up to 56% in R1. The mean percentage of phagocytosis in 

R2 was 3% reaching up to 9% after incubation of 120 min. Phagocytic activity recorded 

from both cell populations showed a wide variability among individuals. 
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Fig. 8. Phagocytic ability of hemocytes. Light micrographs of hemocytes phagocyting 

zymosan (A) and fluorospheres (B). (C) Phagocytic activity recorded by flow cytometry. 

The histogram of fluorescence in FL1-H channel represents the phagocytic activity 

recorded in the O. vulgaris hemocytes: M1, hemocytes that not engulfed fluorospheres; M2, 

hemocytes that engulfed one or more fluorospheres. 

 

3.2.3. Respiratory burst (ROS production) 

ROS production was measured using the oxidation of nonfluorescent DFCH to the 

highly fluorescent DCF (Fig 9A). Significant differences (p<0.05) were found between the 

mean fluorescence value of non-stimulated (controls) hemocytes compared to stimulated 

samples. After 60 min, oxidative activity in stimulated hemocytes of R1 increased to 12 

A.U. (3-31 A.U. ± 0.94). Whereas, the oxidative activity in hemocytes from R2 increased up 

to, in average, 5 A.U. (2-17 A.U. ± 0. 32). Hemocytes pre-incubated with SOD before 

stimulation with zymosan showed a slight inhibition of the respiratory burst (p>0.05); 

while pre-incubation with the nitric oxide synthase inhibitor NMMA did not suppress 

respiratory burst (p<0.05) in O. vulgaris hemocytes (Fig. 9B).  
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Fig. 9. Respiratory burst measured in O. vulgaris hemocytes. (A) Representative oxidative 

activity in the main hemocyte population (R1). (B) Respiratory burst measured in the 

hemocytes populations following stimulation with zymosan and treated with oxygen and 

nitrogen radicals inhibitors SOD and NMMA (p<0.05) (mean ± SE). (*) Differences are 

considered significant at p<0.05. 

 

3.2.4. Nitric oxide (NO) production 

The concentration of nitrite (NO2-) produced by zymosan A- stimulated hemocytes 

was significantly (p<0.05) higher compared to the basal level detected in control 

hemocytes. The mean nitrite concentration obtained in unstimulated hemocytes was 16 

µM (SE ± 2), whereas stimulated hemocytes produced 31 µM (SE ± 3) nitrite (p<0.05) (Fig. 

10A).  

The differential ability of O. vulgaris hemocytes to release NO during a course of 

time showed that challenge of hemocytes with zymosan resulted in the highest NO 

production (33 µM SE ± 4) (p<0.05), followed by PMA and LPS. The maximum value of 

nitrite recorded using PMA as stimulus was 31 µM (SE ± 3) after 3 h of incubation 

(p>0.05). LPS reached 21 µM (SE ± 6) after 6 h of incubation (p>0.05) (Fig. 10B). 
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Fig. 10. Nitric oxide production in O. vulgaris hemocytes. (A) NO measured in hemocytes 

incubated with zymosan during 2h, 15 °C (p<0.05). Time course evolution of NO 

production using different stimuli (mean ± SE). (*) Differences are considered significant 

at p<0.05. 
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4. Discussion 

 In molluscs, characterization of the hemocyte populations is useful to evaluate 

their capacity to respond against pathogens and environmental stress (Hégaret et al., 

2003). Hence, the present work is the first attempt to examine the populations and 

immune related activities of the circulating hemocytes of O. vulgaris combining light and 

electron microscopy with flow cytometry analysis. The advantage of flow cytometry to 

analyze a large number of cells in short time and gating cellular subpopulations became 

this method a more precise tool to study cell populations (Ashton-Alcox and Ford, 1998). 

Consequently, recent studies have been used to classify molluscan hemocytes using flow 

cytometry (Donaghy et al., 2009a,b; 2010; Prado-Alvarez et al., 2012; Ray et al., 2013).  

 Previous studies carried out on light and transmission electron microscopy in 

Octopus briareus (Cowden and Curtis, 1973) and the sepiolid Euprymna scolopes (Nyholm 

and Mc Fall-Ngai, 1998; Koropatnick et al., 2007) indicates the only occurrence of one type 

of granular cells measuring, in average, 10 µm in the circulating hemolymph. Based on 

light and electron microscopy, and flow cytometry analysis, our results indicate that two 

morphological hemocyte types occur in the O. vulgaris hemolymph. Flow cytometry 

analysis allowed identifying accurately two different cellular populations that were 

confirmed by sorting, after cytocentrifugation and light microscopy observation. Thus, a 

new classification scheme can be established referring them as large granulocytes, with a 

mean diameter of 11.6 µm, U-shaped nucleus, abundant cytoplasm and high granularity; 

and small granulocytes, with a mean of 8.12 µm in diameter, nucleus occupying almost the 

entire cell and lower granularity. Stained cell monolayers revealed that most hemocytes 

possess basophilic granules as in bivalves (Chu, 2000), and previously described in the 

single type of hemocytes recognized in O. vulgaris, O. minor and O. ocellatus (Kondo et al., 

2003). However, our results demonstrated the presence of a second type of small 

hemocytes with very few or without granules, easily identified by flow cytometry due to 

their low complexity and corroborated by stained techniques of light microscopy.  

 Hemocytic populations and activities in common octopus could vary with inter and 

intra individual factors as well as the methodology used for study. A similar pattern has 

been stated in other molluscs (Ashton-Alcox and Ford, 1998). Stained large granulocytes 

showed a slight increase in cell diameter related to the size observed by other techniques, 

similar to those observed in the hemocytes of Ruditapes decussatus (López et al., 1997a). 

The small granulocytes (R2) showed a wide range of cells with high variability in diameter 

and occasionally including hemocytes smaller than 5 µm. These smallest cells were not 
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easily recovered from sorting neither observed by TEM, suggesting that they could be 

easily lost during microscopic methods (cytospin, TEM procedure).  

 Malham et al. (1998) suggest that new maturing hemocytes could be released from 

the white body to the hemolymph to compensate the blood loss. Then, a sequence of cell 

maturity similar to that suggested for Crassosstrea rizophorae (Rebelo et al., 2013) could 

be present in the octopus hemolymph. We hypothesize that small granulocytes (R2) could 

be starting maturing cells with a thin cytoplasm and absent granules. As the hemocytes 

mature, cells might enlarge developing more granules in the cytoplasm, and increasing the 

cell complexity. However, this hypothesis must be confirmed in the future. 

 The ultrastructural study of O. vulgaris hemocytes agree with Cowden and Curtis 

(1981) description, since two types of granules were found in the hemocytes. The assays 

herein performed demonstrated that lysosomes are present in the O. vulgaris white body 

cells and circulating hemocytes. The scarce observation of lysosomes in white body cells 

agreed with the low (9%) phagocytic activity reported by Novoa et al. (2002). Circulating 

hemocytes also showed lysosomes which reveal their phagocytic ability as occurs in 

bivalve hemocytes (Cheng, 1975). Glycogen granules were also observed in octopus 

hemocytes, with some cells weakly or not stained. The variation in glycogen deposits in 

the hemocytes of the intertidal Littorina littorea were attained to the need of energy store 

for using during anoxia (Gorbushin and Iakovleva, 2007). Similarly, Travers et al. (2008) 

explained the large glycogen deposits observed in Haliotis tuberculata hemocytes as a 

common strategy in intertidal molluscs. Glycogen was reported in O. vulgaris, but not in O. 

briareus hemocytes. However, despite octopuses are able to displace in the intertidal zone, 

such glycogen variations might be attained as a response to seasonal or environmental 

variation (Cowden and Curtis, 1981).  

 Total hemocyte count was highly variable in O. vulgaris, similar to those previously 

recorded by Rodríguez-Domínguez et al. (2006). Whether individual variability in octopus 

hemocytes is common or due to (biotic or abiotic) stressors remains to be elucidated. The 

percentage of viable cells in crude hemolymph was slightly higher than in anti-agregating 

solution. However, our results showed that crude hemolymph is disadvantageous for 

functional essays because the quickly formation of cellular clots. Clots formation 

neutralizes invaders (Cowden and Curtis, 1973) and prevents bleeding (Féral, 1988), 

which hampers the measurement of functional responses in cephalopod’s hemocytes.  

 Considering different hemocyte subpopulations imply putative different 

functionality. Therefore, the defensive activities like phagocytosis and production of 
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cytotoxic factors like respiratory burst and nitric oxide of each subpopulation is required 

to evaluate the health of individuals (da Silva et al., 2008; Comesaña et al., 2012). 

Phagocytosis is a highly important mechanism implied in the invertebrate internal 

defense. Therefore, the proportion of hemocytes that is phagocytically active in the 

hemolymph provides relevant information for assessing the health of the organisms (Ellis 

et al., 2011). Functional studies performed on bivalve hemocytes showed that mainly, but 

not only granulocytes have a high ability to phagocytose latex beads or zymosan (García-

García et al., 2008; Travers et al., 2008; Donaghy et al., 2009a,b; 2010). Until now, the 

phagocytic ability of O. vulgaris hemocytes has been measured by conventional methods of 

microscopic assessment (Novoa et al., 2002; Rodríguez-Domínguez et al., 2006). Our 

results verified the ability of O. vulgaris hemocytes to phagocytose zymosan and 

demonstrate also by flow cytometry that octopus hemocytes are capable to ingest 

fluorescent latex beads. Large granulocytes were the most active cells showing a higher 

phagocytic capability than small granulocytes, which showed a positive but very low 

phagocytosis. A high variability in the phagocytic ability of the hemocytes was observed, 

that could be derived from natural fluctuations in the octopus hemocytes. Nonetheless, the 

results obtained are similar to that reported for other molluscs, such as Haliotis discus 

discus (Donaghy et al., 2010) Haliotis tuberculata (Travers et al., 2008) and Ruditapes 

decussatus (Prado-Alvarez et al., 2012) in both, phagocytic percentage and hemocyte 

capability.  

 Reactive oxygen species (1O2, H2O2, HO), derived from the oxidative metabolic 

event named respiratory burst, are employed for antioxidant defenses to combat 

pathogenic infections (Chu, 2000; Lesser, 2006). The generation of oxygen radicals has 

been investigated in bivalves by different methodologies such as luminol or lucigening 

chemiluminescence (Volety and Chu, 1995; Bramble and Anderson, 1999); citrochromo-C 

reduction (Wootton et al., 2003); and reduction of nitroblue tetrazolium (Anderson et al., 

1992; Pipe, 1992). The extracellular ROS production was measured in populations of O. 

vulgaris hemocytes in response to LPS and zymosan using ferricytochrome C (Novoa et al., 

2002). The same procedure was applied to E. cirrhosa hemocytes in response to phorbol 

myristate acetate (PMA), bacteria and LPS, but no ROS production were detected (Malham 

and Runham, 1998). In contrast, intracellular ROS were accurately measured by reduction 

of NBT in response to air exposure stress in the same species (Malham et al., 2002). Flow 

cytometry has been demonstrated to be very sensitive in the detection of respiratory burst 

activity compared with the classic luminol-dependent chemiluminiscence or NTB 

reduction (Goedken and De Guise, 2004). This methodology allowed us to demonstrate 

that O. vulgaris hemocytes were capable to produce ROS, measured through DCF 
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fluorescence. The fluorescence yielded by large granulocytes was higher than small 

granulocytes. This is consistent with a higher rate of phagocytosis in large granulocytes 

compared to the small ones. Thus, as has been described in other molluscs, large 

granulocytes could be the most effective cells to engulf pathogens (Hégaret et al., 2003; 

Goedken and De Guise, 2004). Respiratory burst was inhibited by SOD, indicating that the 

probe is oxidized by H2O2. The NMMA inhibitor of NOS did not induced a decrease in ROS 

production, which lead us to conclude that oxidation of DCFH-DA was derived from ROS 

(Possel et al., 1997; Buggé et al., 2007; Lesser, 2006). 

 Nitric oxide is involved in immune defense inactivating pathogens after diffusion 

through cell membranes (Rivero, 2006). O. vulgaris hemocytes showed a high ability to 

release NO in response to zymosan after 2 h of incubation, obtaining higher values than 

those observed in other molluscs (Tafalla et al., 2002; 2003) and thus, suggesting that 

octopus could have a strong response against potential pathogens. Our results showed 

that zymosan induced the highest NO production followed by PMA and LPS. Zymosan has 

been successfully used to stimulate NO production in O. vulgaris and other molluscs 

(Novoa et al., 2002; Tafalla et al., 2003; García-García et al., 2008). PMA is capable to cross 

the cell membrane for inducing NO production. In octopus hemocytes, the highest values 

reached after 3 h of incubation suggest a slow, but strong reaction. A previous study 

reported that LPS induced a weak stimulation in O. vulgaris hemocytes (Novoa et al., 

2002). However, the present results showed that LPS also induced a strong reaction after 

30 min and up to 6 h of incubation. After that time, NO dropped to low values similar to 

those recorded in the white body cells at 24 h of incubation (Novoa et al., 2002). To our 

knowledge, this is the first study reporting several stimuli and incubation times to induce 

NO production in O. vulgaris hemocytes. Further studies are needed to reveal whether 

pathways activated by zymosan, PMA and LPS are similar to those reported in Lymnaea 

stagnalis (Wright et al., 2006) or Mytilus galloprovincialis (García-García et al., 2008). 

Hence, having a framework to reveal the pathways activated by parasites. 

 

In conclusion, in the present study the morphological and functional 

characterization of the hemocytes of O. vulgaris was performed for the first time 

combining microscopic and flow cytometry methodologies. By cytometric analysis two 

subpopulations were characterized in the hemolymph of O. vulgaris: large granulocytes 

and small granulocytes. Microscopic studies confirmed that both types of cells differed in 

cell size and complexity attained to the quantity of granules present in the cytoplasm. 

Particularly, small granulocytes showed a wide range in diameter. However, they differ 

markedly in granularity from large granulocytes, which are the major cells in the octopus 
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hemolymph. Large granulocytes possess numerous lysosomes making them the main 

effectors of phagocytosis and ROS production. In contrast, small granulocytes have a 

limited phagocytic ability, and consequently, a limited respiratory burst. The present 

results establish the basis for developing studies focus on the involvement of O. vulgaris 

hemocytes in the ability of controlling pathogen infections as well as the influence of 

environmental factors in the octopus cellular response. Further investigations using 

fluorescent antibodies would improve the hemocyte classification and would be valuable 

to understand the specific immunological functions of each hemocyte subpopulation and 

to distinct if additional hemocyte differences exist. 
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Abstract 

Octopus vulgaris is an important cephalopod species in world fisheries and in recent years 

it has been gained importance as an emergent aquaculture species. The protozoan 

Aggregata octopiana has been recorded as one of the most dangerous parasite that threats 

the health of octopuses in both wild and reared conditions. The A. octopiana infection 

intensity was measured in the digestive tract of octopuses and two groups of infection, one 

showing a low parasite load, corresponding to healthy individuals; and a second one, 

showing a high parasite load, corresponding to sick individuals were performed. Cellular 

defense parameters (phagocytosis, respiratory burst (ROS) and nitric oxide (NO) 

production) were measured in the octopus hemolymph. In addition, its relationship to i) 

the infection degree (measured as total amount of infection or distributed by groups of 

infection (sick/healthy) and ii) to the octopus origin (wild or reared in floating cages) 

were measured. Moreover, octopus biometric data (sex, length, weight, gonadic 

development) and season of collection were also tested to know their contribution on the 

octopus cellular response. Results indicated that season of collection and total parasitic 

infection were the most important factors affecting the phagocytic ability of hemocytes. 

The infection intensity was significantly and positively associated with the increase in 

phagocytosis, which was little higher in autumn relative to winter and spring. Total 

infection had a negative effect on cytotoxic reaction of hemocytes. ROS and NO production 

decreased with the A. octopiana infection increase. Particularly, a markedly decrease in NO 

was observed in heaviest octopuses. Moreover, comparing wild and reared octopuses, the 

cytotoxic activity notably decreased in the former group. The present results evidenced for 

the first time that the intensity of infection by A. octopiana severely weaken the octopus 

cellular immune response. Additionally, here is showed that the negative coccidia effect 

seems to be maximized in octopuses reared in floating cages. 
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1. Introduction 

 The common octopus (Octopus vulgaris) is one of the world’s economically 

important species, subject of active fisheries and highly appreciated as food. The stocks 

present wide annual fluctuations due to their own biological characteristics like non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

overlapping generations and thus, lack of buffering of the population; but also, due to the 

influence of environmental conditions like temperature that impact on spawning and 

recruitment success (Pierce et al., 2008). Hence, the economic importance of O. vulgaris 

and the need to diversify marine aquaculture products have encouraged the research of 

cephalopod culture taking advantage of its rapid and easy acclimatization to captivity 

conditions, their rapid growth, and their high protein content and high food conversion 

rate (Vaz-Pires et al., 2004). However, the stress developed in farmed facilities promotes 

parasitic outbreaks (Berthe, 2005). The gastrointestinal protozoan Aggregata octopiana is 

one of the most dangerous pathogen affecting wild and cultured octopuses (Pascual et al., 

1996; Gestal et al., 2007b). This intracellular coccidian produces a strong hemocytic 

infiltration, followed by fibrosis, necrosis and rupture of the basal membrane inducing 

atrophy of the intestinal mucosa (Gestal et al., 2002a). The acidification lumen of infected 

tissues originated by the coccidia causes the malfunction of absorption enzymes (Gestal et 

al., 2002b). Furthermore, octopuses highly infected (up to 3 × 106 sporocyst/g infected 

tissue) show a decline in the number of circulating hemocytes, plasmatic protein and the 

octopus condition, which is reflected in the reduction of the octopus weight (Gestal et al., 

2007b).  

 In cephalopods, as other mollusk, the internal defense against pathogens relies on 

their innate immune system, composed by humoral (diluted molecules in plasma) and 

cellular (developed by hemocytes) factors that impede the pathogen grow (Ford, 1992). 

Cellular defense is carried out by the hemocytes (Malham and Runham, 1998). Defensive 

role of hemocytes includes mechanisms like encapsulation, mainly for large particles; 

nacrezation, phagocytosis or production of free toxic radicals. Phagocytosis is the main 

mechanism to remove pathogens, whereas the generation of toxic radicals like reactive 

oxygen and nitrogen species (ROS and NO, respectively) are used to destroy the engulfed 

pathogens (Cheng, 2000).  

 The formation of oxygen radicals is called respiratory burst. The source of these 

oxidants is the superoxide anion (O2−) that undergoes enzymatic dismutation to produce 

hydrogen peroxide (H2O2), giving rise to other highly toxic radicals (Cheng, 2000). The 

nitric oxide (NO) is synthesized by the enzyme nitric oxide synthase through the oxidation 
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of L-arginine to citrulline. In vertebrates and invertebrates, NO participate in physiological 

processes as neurotransmitter and cardiovascular system (Palumbo, 2005), but also it’s a 

free radical produced by hemocytes as microbicidal and antiparasitic molecule. NO react 

with superoxide anion and produces peroxinitrite (ONOO-), which is highly toxic for cells 

(Ottaviani et al., 1993; Rivero, 2006).  

 The cellular defense mechanisms are crucial to eradicate pathogens through 

phagocytosis and its further destruction by ROS and NO. This defensive mechanism has 

been detected in bivalves like Crassostea gigas (Goedken et al., 2005) or Crassosstrea 

virginica infected by Perkinsus marinus (Volety and Chu, 1995; Anderson et al., 1995, 

1999). The enzymes involved in defense function of Mytilus galloprovincialis have been 

studied by Carballal et al. (1997), whereas the phagocytic ability of mussels infected by 

Perkinsus atlanticus have been studied by (Ordás et al., 1999). NO production by M. 

galloprovincialis hemocytes was also demonstrated (Tafalla et al., 2002) as well as in 

Ruditapes decussatus (Tafalla et al., 2003) and the gastropod Biomphalaria glabrata (Hahn 

et al., 2001). In addition, cellular defense mechanism have been demonstrated through in 

vitro experiments in the cephalopod Eledone cirrhosa (Malham and Runham, 1998; 

Malham et al., 2002), Euprymna scolopes (Davidson et al., 2004; Nyholm et al., 2009) and 

Octopus vulgaris (Novoa et al., 2002; Rodríguez-Domínguez et al., 2006). 

 In the present work, we have studied the cellular response of O. vulgaris naturally 

infected by A. octopiana. The aim of the study is to understand the effect of the infection on 

the octopus cellular defense capability. Thus, phagocytosis, respiratory burst and nitric 

oxide radical’s production were measured in octopuses harboring low and high degrees of 

coccidian infection. In order to determinate whether culture conditions have an additional 

effect on the octopus immune defense, the cellular defensive activities were also assessed 

between wild and reared octopuses in floating cages. 
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2. Material and methods 

2.1 Biological material and hemolymph collection 

 In all, 110 live O. vulgaris (55 males and 45 females) with an average body weight 

(BW) of 935 g and mantle length of 80-220 mm (Table 1) were randomly collected by 

traditional traps, an artisanal gear used by local fishermen, from the Ria of Vigo, Spain (24 

º 14.09´ N, 8 ° 47.18´ W). From these, 40 live octopus (15 males and 25 females ) ranging 

780-1915 g BW and 110-167 mm ML (Table 2) were collected at random off an ongrowing 

floating cage system in the Ria de Aldan, Galicia, Spain (NE Atlantic: 42° 15′N 8°48′W). The 

floating cage system is formed by 12 cylindrical cages of 10 m3 each one and 250 PVC dens 

harboring 200 animals per cage. In the laboratory, octopuses were kept in culture tanks of 

open seawater system at 15 °C for 24 h to acclimate before experimentation.  

 According to ethical procedures for experimentation with cephalopods 

(Moltschaniwskyj et al., 2007), the animals were anesthetized whit 7.5% magnesium 

chloride (MgCl2) (Messenger et al., 1985). A dorsal incision was made through the mantle 

muscle and hemolymph was withdrawn from the cephalic aorta. For each individual, a 

disposable syringe (1 ml) containing different solutions depending on each procedure (see 

below) was used. Hemolymph from each octopus was used immediately or transferred 

into a vial and kept on ice until use. Octopuses were dissected; sex and weight of 

reproductive organs were recorded to determine the gonadic stage according to Hayashi 

Index following Guerra (1975). 

 

2.2. Cell counting and hemocyte viability 

Crude hemolymph was withdrawn through the cephalic aorta using a disposable 

syringe (1ml). Immediately after bleeding, cell counting was carried out using a Neubauer 

chamber. Viability of octopus hemocytes was determined by Trypan blue exclusion test 

(Weeks-Perkins et al., 1995) in samples of fresh hemolymph at 15 °C. 

 

2.3 Counting of coccidia Aggregata octopiana 

 The digestive tract of each octopus was dissected, weighted and homogenized in 

10 ml of filter sea water (FSW) 1% Tween80 using an electric tissue grinder (IKA-Ultra 

Turrax T-25). Homogenates were filtered twice using a nylon mesh of 100 µm and 41 µm, 
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respectively to remove tissue. The filtrate was then centrifuged 1000 × g, 4 °C, 5 min in a 

centrifuge Beckman GS-15R. The number of sporocyst was counted in Neubauer chamber 

and standardized as number of parasites infecting a unit gram of each octopus digestive 

tract (spor/g). The intensity of infection was confirmed through observation of caecum 

sections processed by standard histological methods (Humason., 1979). According to the 

level of infection determined by the number of sporocyst per gram of digestive tract tissue, 

and the analysis of the histopathology observed in caecum sections, octopuses were 

classified into two groups: healthy (0 to 5 × 105 spor/g), without histological caecum 

damage; and sick (5 × 105 to 2,08 × 107 spor/g), showing a strong caecum damage. 
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2.4 Flow cytometry (FCM) assays of the immune-related activities of hemocytes 

 Flow cytometry protocols of phagocytosis and detection of respiratory burst were 

adapted from García-García et al. (2008). Cell viability was determined by Trypan blue 

exclusion test (Weeks-Perkins et al., 1995) in crude hemolymph and treated with SRS and 

FSW. The three functional essays were performed on each octopus when possible.  

 

2.4.1 Phagocytic capability of hemocytes 

 The hemolymph withdrawn from each octopus was centrifuged 300 × g, 4 °C, 5 

min. Plasma was discarded and replaced with the same volume of Squid Ringer Solution 

(SRS-25mM MgCl2 , 10mM CaCl2, 10mM KCl, 530mM NaCl and 10mM HEPES buffer, pH 

7.5) to avoid aggregation. Antiaggregant solution SRS was then discarded by 

centrifugation as mentioned above and re-suspended in filtered sea water (FSW). From 

this hemocyte solution, 100 µl were dispensed in triplicates into 96-wells plate. After 30 

min of cell adhesion at 15 °C in the dark, 100 µl of flourescein-labelled 1.2 µm latex beads 

(Molecular Probes, Invitrogen) were added at a ratio of 1:10 (hemocyte:beads). Control 

hemocytes were exposed to FSW. After 2 h incubation at 15 °C in the dark, excess of beads 

was removed by gently washing twice with 100 µl PBS and attached cells were collected in 

200 µl PBS supplemented with 20 µl of 0.8% trypan blue (in PBS) to quench external 

fluorescence. A total of 50,000 events were measured through the FL-1 channel. Results 

were expressed as the percentage of cells with at least one internalized bead. The 

experiment was performed in the hemolymph of 89 octopuses. 

 

2.4.2 Respiratory burst assay 

 Production of oxygen radicals was measured by flow cytometry using the CM- 2’,7’-

dichlorofluorescein diacetate probe (DCFH-DA, Molecular Probes). DCFH-DA diffuses into 

the cells where the intracellular esterases cleave to DCFH, which is oxidized by reactive 

oxygen species (ROS) to the highly fluorescent DCF. Subsequent oxidation yields 

fluorescence proportional to intracellular ROS (Hégaret et al., 2003). One hundred 

microlitres of FSW diluted hemolymph (1:1) were placed into 96-wells plate. Cells were 

incubated 30 min at 15 °C in dark for cell adhesion. The supernatant was removed and 100 

µl of FSW containing 5 µM CM-DCFDA and 0.4% DMSO final concentration were added per 

well. Cells were incubated 10 min on ice in the dark. The supernatant was removed and 
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hemocytes were washed twice with 100 µl FSW before being stimulated adding 100 µl 

zymosan (1 mg/ml). Fifteen microliters of SOD (300 U/ml) or 10 µl of NG-methyl-L-

arginine acetate salt (NMMA, Sigma M7033) inhibitors were added to determine whether 

H2O2 and NO, respectively, contributes to the oxidation of DCF-DA. Controls were exposed 

to the same volume of FSW. After 60 min of incubation at 15 °C in the dark, ROS were 

measured by flow cytometry after cells re-suspended in PBS. A total of 50,000 events were 

measured and data were collected as mean fluorescence of the sample. The oxidative 

activity is expressed as mean fluorescence in arbitrary units (A.U.). The assay was 

performed in the hemolymph of 71 octopuses. 

 

2.5 Nitric oxide production (NO) 

 Production of nitric oxide was measured through the quantification of nitrites by 

the Griess reaction (Green et al., 1982). One hundred of hemolymph was placed into 96-

well plates per triplicate. For each sample, hemocytes were stimulated with 100 µl of 

zymosan (1 mg/ml final concentration) and 100 µl of FSW were added to controls. Cells 

were incubated for 2 h at 15 °C in the dark. Then, 50 µl of each sample were placed in 

individual wells. One hundred of 1% sulfanilamide (Sigma) in 2.5% phosphoric acid, 

followed by 0.1% N-naphthyl-ethylenediamine (Sigma) in 2.5% phosphoric acid was 

added to each well. The optical density at 540 nm was measured after 5 min of incubation 

at room temperature using a Multiscan spectrophotometer (Labsystems). The molar 

concentration of nitrite in the sample was determined from standard curves generated 

using known concentrations of sodium nitrite. The essay is based on 89 octopuses. 

 

2.6 Statistical analysis 

 The mean data of immune parameters (phagocytosis, ROS, NO) were compared 

between groups of healthy and sick octopuses using a Student’s t–test. Results are 

expressed as the mean ± standard error of the mean (ESM). Differences were considered 

significant at p ≤0.05.  

 The octopus cellular responses (phagocytosis, ROS and NO production) were 

standardized for each individual as follows: cellular response +/ number of circulating 

hemocytes per ml. In order to determinate the effect of A. octopiana infection on the 

standardized immune parameters, a multiple linear regression analysis was performed 
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including total amount of infection and groups of infection (healthy/sick) as independent 

variables. Possible interactions between amount and group of infection were included. In 

addition, octopus biometric factors (sex, weight, length and gonadic stage), season of 

collection and origin (wild or reared in floating cages) were also included in the analysis to 

study their relationship with the octopus immune parameters. A stepwise (backward) 

procedure based on the Akaike’s information criterion (AIC) was used to select the final 

model; that is at each step, the variable leading to the minimum AIC was identified and 

removed from the model. All the statistical analyses were performed using the R software 

(R Development Core Team, 2006). 

 

3. Results 

3.1 General pattern of prevalence and intensity of infection 

 A total of 99% (109/110) of octopuses analyzed were found infected by the 

protozoan A. octopiana. The intensity of infection ranged from 0 to 2 × 107 spor/g. 

Gamogony and sporogony life stages were observed in sick octopuses. Both stages were 

occasionally surrounded by pericyst reactions of connective tissue, and strong hemocytic 

infiltration and big tissue distension was observed in the caecum and intestine, causing 

rupture of the basal membrane (Fig.1A). In cases of heavy infection host cells undergo 

necrosis. Most of the infected tissue is replaced by parasites, which leads to a loss of 

intestinal epithelium and destruction of the tissue organ architecture (Fig. 1B). In contrast, 

no significant inflammation neither pericyst reaction was found in caecum tissue of 

healthy octopuses (Fig. 1C, D).  
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Fig. 1. Histological sections of O. vulgaris digestive tract. (A) Infected tissue showed 
distention. (B) Rupture of tissue organ architecture showing sporogonial stages. (C) 
Digestive tissue from lowly infected octopus. (D) Single oocyst infecting digestive tissue of 
lowly infected octopus. 

 

3.2 Cellular immune parameters  

3.2.1. Hemocyte density 

 Total circulating hemocyte counts ranged between 2 × 105 and 3 × 107 cells/ml. 

Hemocyte viability achieved through the Trypan blue exclusion test was ≥95% in crude 

hemolymph and ≥90% in samples treated with SRS and FSW.  

 

3.2.2. Phagocytic capability of hemocytes 

 Phagocytosis measured from octopus hemocytes showed wide variations (1-56%, 

SEM ± 1.1). When comparing groups of infection, the percentage of phagocytic hemocytes 

was higher in sick than healthy octopuses (Fig. 2A). The multiple regression analysis 

performed showed that an increase in the intensity of total amount of infection leads to a 



Immune parameters of O. vulgaris  

 

 81 

significant increase of phagocytosis (Table 3). The interaction between infection amount 

and group of infection (sick/healthy) was not significant. Regarding the remaining 

variables, season of collection and octopus sex also stayed in the final model, although the 

influence of sex was not significant; phagocytosis in autumn was significantly higher than 

in winter and spring (p=0.00155). Thus, the group of variables total infection, sex and 

season included in the model through the automatic backwards stepwise AIC criterion 

explained the 27.65% of the variance observed in the phagocytic ability of the hemocytes. 

 

3.2.3 Respiratory burst 

 Respiratory burst measured in total octopuses showed a mean of 12 A.U. (ESM± 

0.94). When comparing groups of infection, ROS production was slightly higher in sick 

than in healthy octopuses (Fig. 2B). An increase in the total coccidian infection leads to a 

significant decrease of ROS production (Table 3), while the interaction between infection 

amount (total infection) and group of infection (sick/healthy) was not significant. In 

addition to infection, the variable origin was the only retained by the model (p=2.86e-5), 

showing that wild octopuses produced less ROS than those reared in floated cages. The 

group of variables total infection and origin (reared/wild octopuses) retained by the 

model explained the 24.35% of the variance observed in ROS production.  

 

3.2.4 Assay of nitric oxide (NO) 

 The NO produced by octopus hemocytes was similar between sick and healthy 

individuals (Fig. 2C). The regression analysis performed showed that there is a significant 

interaction (at a 10% of significance level) between infection amount and group of 

infection (p=0.0617), indicating that the increase of infection causes a decrease in NO 

production only for lowly infected octopuses (Table 3). Concerning additional variables, 

octopus weight and origin were included by the model, being both of them significant at p≤ 

0.1 and p≤ 0.01, respectively. The NO production decreases in heaviest octopuses. When 

comparing wild and reared specimens, a lower NO production is yielded by wild octopuses 

than reared in floating cages (Table 3). Thus, according to the variables retained by the 

model, infection, octopus weight and origin explained the 17.25% of variation in NO 

production. 
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Fig.2. Cellular defensive 
activities measured in 
healthy (low infection) and 
sick (high infection) O. 
vulgaris hemocytes. (A) 
Phagocytic percentage 
recorded in hemocytes. (B). 
Respiratory burst, and (C) 
Nitric oxide (NO) produced 
by hemocytes from both 
octopus infection group. 
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Table 3. Relationship between octopus cellular immune response, total infection (recorded 
from whole specimens), infection by group and gonadic development. 

  Estimate Std. Error t-value P (>|t|)  

Phagocytosis 

Intercept 3.446e-7 4.925e-7 0.700 0.4860  

Total infection 1.496e-13 7.366e-14 2.031 0.0454 *  

Autumn 2.080e-6 6.353e-7 3.274 0.00155 **  

Spring -3.237e-7 6.529e-7 -0.496 0.62135  

Summer 1.049e-6 8.526e-7 1.230 0.22204  

Sex (Male) 8.010e-7 4.933e-7 1.624 0.1082  

ROS 

Intercept 7.198e-6 1.145e-6 6.285 2.68e-8 ***  

Total infection -5.746e-13 2.110e-13 -2.724 0.0082 **  

Wild -4.928e-6 1.098e-6 -4.487 2.86e-5 ***  

NO 

Intercept 2.004e-5 5.379e-6 3.726 0.00035 *** 

Total infection 
-6.450e-

13 
5.804e-13 -1.111 0.2697 

Healthy 
(Low infection) 1.932e-5 6.576e-6 2.938 0.0042 ** 

     
Weight (g) -5.518e-9 3.118e-9 -1.770 0.0805 · 

Wild -1.409e-5 4.473e-6 -3.150 0.00228 ** 

Interaction 
(total infection: 
low infection) 

-4.959e-

11 2.618e-11 -1.895 0.06170· 

 

    *P<0.05 

  **P<0.01 

***P<0.001 

  ·P<0.1 
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4. Discussion 

The coccidian A. octopiana is a common parasite recorded in O. vulgaris at high 

prevalence and variable intensity of infection (Pascual et al., 1996). This coccidia causes 

severe digestive tissue rupture, strong hemocytic infiltration and affects the correct 

nutrient absorption (Gestal et al., 2002a,b). The infection is as much a cause of 

malnutrition as a consequence, and therefore, it could be difficult to ascribe the cause and 

effect once a severe infection is established. Nonetheless, the infection plays a major role 

in presentation of malnutrition (Hughes and Kelly, 2006) that affects the cell-mediated 

immune response (Fekete and Kellems, 2007). Because the recognized negative impact of 

coccidiosis in the octopus nutrition, the present study assesses the effect of the coccidian 

A. octopiana on the cellular immune defense of Octopus vulgaris.  

Quantification of the strength of associations is valuable to understand the relative 

importance that different factors and forces have on pathologies. In the current work 

biometric variables (sex, weight, length, gonadic stage), season of collection, infection and 

origin (wild/reared in floating cages) were tested to known their relationship with the 

octopus cellular immune response. 

Season of collection, particularly autumn, was the most important variable 

associated to phagocytic ability of hemocytes and related to A. octopiana pathology. 

According to Gestal (2000) the highest intensity of coccidia infection in the Ria of Vigo are 

recorded from autumn to spring, when the putative A. octopiana intermediate host 

Palaemon serratus is highly available. According to the data, here is verified that the 

highest intensity of coccidian infection is recorded in autumn, but season itself is 

important for phagocytic ability even when comparing specimens with the same amount 

of infection. Seasonality determinates the intensity of infection in the octopus and here is 

showed that phagocytosis is significantly stimulated by the infection of coccidia, mainly in 

autumn. Phagocytosis is an effective mechanism developed by hemocytes against 

pathogen invaders (Cheng, 2000) and thus this mechanism could acts against coccidia 

infection. According to the obtained results, an increase in the intensity of infection 

induces an increase in the phagocytic activity of hemocytes. In O. vulgaris, coccidiosis 

results in a self-limiting disease. Therefore, the gradual increase of infection by A. 

octopiana does not disrupt the phagocytic ability of hemocytes, except in severe outbreaks 

(infection of 2 × 107 spor/g) when phagocytosis was almost inhibited. At this level of 

infection malabsorption syndrome causes a gradual onset of host weakness, being 
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favorable for concurrent parasitic and bacterial secondary infections (Gestal et al., 2002b, 

2007).  

Internalization and following destruction of pathogens are accomplished by a 

cytotoxic response through the production of oxygen and nitrogen radicals (Cheng, 2000). 

The respiratory burst assay measures the reactive oxygen species (ROS) elicited by 

hemocytes for pathogen destruction, through fluorescence proportional to radicals 

produced by cells (Hégaret et al., 2003). Thereby, our results showed that hemocytes from 

sick octopuses were not able to yield a high respiratory burst. Hence, it is suggested that A. 

octopiana infection restricts the capability of ROS production, which is a mechanism of 

resistance used by parasites and bacteria to prevent the oxidative burst associated with 

phagocytosis (Canesi et al., 2002). Whilst ROS is efficiently produced in healthy octopuses, 

a decline started in octopuses infected by 4 × 106 spor/g with subsequent decrease 

according to the infection degree increase. The present result is consistent with Volety and 

Chu (1995) that recorded not significant reduction in respiratory burst, measured by 

chemiluminiscence, in Crassosstrea virginica hemocytes exposed to 3 × 106 live P. marinus 

cells. However, respiratory burst was suppressed in oyster hemocytes exposed to 7.5 × 106 

– 5 × 107 live P. marinus cells (Volety and Chu, 1995; Anderson et al., 1999). Probably, a 

similar suppression pattern is observed in O. vulgaris harboring 8 × 106 up to 1.2 × 107 A. 

octopiana spor/g, suggesting a similar strategy used by A. octopiana and P. marinus to 

infect the host cells without triggering the host’ cell respiratory burst. Whether A. 

octopiana possess a mechanism to suppress ROS and how it acts on the octopus 

hemocytes, remains to be clarified. However, it could be achieved through the production 

of acid phosphatase or proteases like P. marinus (Volety and Chu, 1995; Garreis et al., 

1996), Pseudoperkinsus tapetis (Ordás et al., 2000; 2001) and Bonamia ostrea (Morga et al., 

2009). 

Nitric oxide (NO) is a highly reactive and unstable free-radical gas used as 

antiparasitic by vertebrates and invertebrates because the strong reactivity of NO with 

oxygen and reactive oxygen species (Rivero, 2006). The capability for producing NO has 

been demonstrated in O. vulgaris hemocytes (Novoa et al., 2002) as in other molluscs like 

Ruditapes decussatus (Tafalla et al., 2003), Lymnaea stagnalis (Wright et al., 2006), C. 

virginica (Villamil et al., 2007) and Ruditapes philippinarum (Jeffroy and Paillar, 2011). 

However, no studies had been performed related to the association between the NO 

production and the level of cephalopod host infection by A. octopiana. Our results showed 

that healthy octopuses are capable to release NO. However, an increase in A. octopiana 

infection affects the NO production causing a decrease in cytotoxic activity. Differences in 
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NO production against parasitic infections reflect the role of this molecule in the host 

defensive response. For example, a study performed in C. virginica demonstrated that 

infection with P. marinus induces a rapid NO increase in oysters. Consequently, NO could 

be an important molecule for preventing proliferation of P. marinus in C. virginica (Villamil 

et al., 2007). Contrarily, any significant difference was found in NO produced by Ostrea 

edulis infected and non infected by B. ostrea, suggesting that this molecule is not an 

effective mechanism to eliminate the parasite (Comesaña et al., 2012). Taking in count 

differences in molluscan defensive response and that nitrite decrease according to A. 

octopiana infection increase, the obtained results showed that NO could be effective to 

avoid the proliferation of A. octopiana, but seems to be suppressed to favors its own 

survival. Moreover, decrease in NO is markedly in heaviest octopuses. A cumulative 

pattern of infection is commonly observed in filter feeder bivalves due to an increased 

filtration rate in biggest individuals (Villalba et al., 2005; Flye-Sainte-Marie et al., 2009). 

Similarly, the A. octopiana infection, which is transmitted through the food-web, have also 

a cumulative effect of the parasite during life span, leading to an increase of infection 

intensity with size and weight in octopuses caught in the Ria of Vigo (Gestal, 2000). 

Consequently, the current decrease of NO in heaviest individuals could be linked to the 

strong coccidia infection. 

In addition to the infection effect, the cellular immune response between wild and 

reared octopuses in floating cages was studied. According to AIC, the condition of wild or 

reared in floating cages was only retained for models of cytotoxic cellular response. Wild 

octopuses exhibited lower ROS and NO production that those reared in floating cages. 

Thus, it implies that stressful conditions in floating cages make octopus trigger a highest 

ROS and NO production. Gestal et al. (2007b) recorded a decrease in plasmatic proteins 

and muscular protein concentration in octopuses reared in floating cages. The data herein 

provided complement those findings showing that stressful culture conditions could 

maximize the negative impact of coccidia infection on the octopus cellular immune 

response. Hence, these results also supports the fact that A. octopiana is a dangerous 

pathogen for octopus culture (Gestal et al., 2007b).  

In conclusion, the present study investigated the effect of A. octopiana on the 

octopus cellular immune response. Here is evidenced that healthy octopuses (lowly 

infected) has higher phagocytic activity than sick (highly infected) ones, but respiratory 

burst and NO decreased when A. octopiana proliferation occurs. In addition, here is 

showed that a high cytotoxic response measured in octopuses reared in floating cages 

could be derived from the synergic effect of stress developed in culture conditions and 
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coccidia infection. The cellular immune parameters measured represented a suitable tool 

for assessing the immunological status of O. vulgaris naturally infected by A. octopiana. 

Additionally, the present study emphasizes the need for supplementary studies to 

complement the immunological assessment and to disclose the octopus genes responsible 

for coccidia resistance.  
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Abstract 

 Octopus vulgaris is an important organism for aquaculture; however, the octopus 

well-being is impaired by different pathogens, being one of the most important the 

gastrointestinal the coccidian parasite Aggregata octopiana. The coccidiosis induces 

malabsorption syndrome in octopus, which is reflected in economical losses. To date, the 

molecular basis of octopus resistance to pathogens in general, and coccidiosis in 

particular, are unknown. Therefore, the present study provides the first insights of the O. 

vulgaris resistant/susceptibility at the transcriptomic level using high-throughput Illumina 

sequencing technology. A comparative gene expression analysis of the hemocytes of 

octopuses showing high and low parasite infection degree by A. octopiana, corresponding 

to sick and healthy individuals, respectively, was performed. A total of 75,571,280 high 

quality reads were obtained for high infected octopus group, and 74,731,646 for low 

infected ones. The reads were assembled in 254, 506 contigs from which 48,225 contigs 

were successfully identified. The presence of putative immune-related genes involved in 

several immune pathways like NFkB, TLR signalling pathway, complement cascade and 

apoptosis were identified. In addition, a total of 539 genes were found differentially 

expressed between sick and healthy individuals. Of these, up and down regulation of 

different genes involved in immune recognition and host-pathogen interaction was 

confirmed by RT-qPCR in samples of high infected octopuses. New data herein provided 

establishes the molecular basis for searching biomarkers of octopus immune response and 

pathogen resistance that will contribute with valuable knowledge for improving the 

octopus aquaculture. 
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1. Introduction 

Octopus vulgaris is the most important octopus species in worldwide fisheries 

(Boyle and Rodhouse, 2005; Globefish, 2007). It represents a major protein resource in 

most fish-eating countries, being of great commercial importance in Mediterranean, South 

American and Asian countries as well as Atlantic at NW Spain and Portugal (Otero et al., 

2005). The octopus culture on an industrial scale has gained increasing attention due to 

the declining of landings by fishery and the socio-economic relevance of this species 

(Iglesias et al., 2007). The octopus culture in tanks and in floating cages (Sendao, 1998; 

Chapela et al., 2006; Iglesias et al., 2007) have showed favorable results, however, 

mortality have also been recorded (García-García and Cerezo-Valverde, 2006; Prato et al., 

2010; Estefanell et al., 2011), which has encouraged studies on the disease caused by 

different pathogens (Gestal et al., 2002b; 2007).  

 

The gastrointestinal coccidian parasite Aggregata octopiana (Protozoa: 

Apicomplexa) has been noted as the most important epizootiological agent in wild and 

cultured octopus stocks from European waters (Pascual et al., 1996; Gestal, 2000). The 

infection by A. octopiana induces ulceration, partial destruction of the digestive tract and 

decrease or malfunction of absorption enzymes (Gestal et al., 2002a,b). Although enteritic 

coccidiosis is not a primary cause of death, it is likely that the malabsorption syndrome 

produced, may impair the octopus growth and health (Gestal et al., 2002b).  

 

Mollusc hemolymph, specifically hemocytes, is the most important factor in 

different physiological functions, such as nutrition and detoxification. Moreover, mollusc 

hemocytes play also a major part in the cellular defence against pathogens (Cheng, 1975). 

Although molluscs lack a specific immune system, the innate response involving 

circulating hemocytes and molecular effectors seems to be an efficient defence method to 

respond to external aggressions by detecting the molecular signatures of infection. The 

role of the hemolymph and hemocytes in physiological functions and immune system of 

bivalve molluscs have been the objective of a large quantity of studies. However, few data 

have been published related to cephalopods until present. Thus, few studies are focussed 

on functional immune assays on the white octopus Eledone cirrosa (Malham et al., 1997; 

1998), the Pacific sepiola Euprymna scolopes (Nyholm et al., 2009; Davison et al., 2004; 

Altura et al., 2011; Goodson et al., 2005; Koropatnick et al., 2007) and only a couple of 

works are found in O. vulgaris (Rodríguez-Domínguez et al., 2006; Novoa et al., 2002; 

Castellanos and Gestal, 2013 in press).  
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Cephalopods shares characters with lower invertebrates, but also shows advanced 

features such as no larval phase in ontogenesis, a vertebrate-like eye, a highly centralized 

nervous system and a close circulatory system, where the hemolymph is restricted to 

blood vessels and capillaries. Therefore, all these characters suggest that cephalopods are 

a special and high evolved branch of molluscs. In fact, cephalopods has served as models 

for neurobiological (Grant et al., 2006), learning (Robertson et al., 1994, 1996) and 

circulatory system studies (Wells and Smith, 1987). However, the development of 

molecular biology research in cephalopods and in O. vulgaris in particular has been scarce. 

To date, transcriptomic studies have been restricted to an ecological framework in the 

sepiolid E. scolopes through cDNA libraries (Chun et al., 2006) and EST collections 

(Goodson et al., 2005; Castillo et al., 2009). Related to the common octopus, the only 

genomic studies performed was a comparative analysis of gene expression carried out 

through an EST collection of the O. vulgaris ocular chamber (Ogura et al., 2004). Recently, 

Illumina Solexa sequencing technology was employed to characterize the transcriptome of 

the central nervous system of O. vulgaris (Zhang et al., 2012), and 454 pirosequencing 

have also been employed to understand the role of circulating hemocytes of E. scolopes 

(colonized by the symbiotic bacteria Vibrio fischeri) in the squid/Vibrio association 

(Collins et al., 2012).  

 

Illumina short reads have been used to build transcriptomic datasets in non-model 

species (Feldmeyer et al., 2011; Riesgo et al., 2012). The combination of short inserts and 

longer reads increase the ability to fully characterize any genome or transcriptome. Thus, 

the assembly of short reads data into accurate, contiguous transcript sequences 

demonstrates that assembly of long, potentially full-length transcripts assemblies is 

indeed possible (Mizrachi et al., 2010). In addition, the relative low cost and good results 

obtained in de novo transcriptome sequencing from different organisms make the Illumina 

RNA-Seq technology (Paired-End, 100 bp reads) an useful tool for the study of the octopus 

immune response transcriptome. 

 

In this study, we present the first hemocyte transcriptomic analysis of the 

cephalopod O. vulgaris by generation of a de novo sequencing an annotation of transcripts 

from the octopus hemocytes and thus, improving significantly the amount of mollusc data 

available to the specific community. In addition, the study here presented provides new 

information of the transcriptional expression pattern of the octopus hemocytes against the 

coccidiosis. Moreover, here we present new information for future research on the 

development of immune-related genetic markers, providing a useful tool for future 
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aquaculture applications on selective pathogen-resistant programs of this economically 

important species. 

 

2. Materials and Methods 

 

2.1. Animal sampling hemolymph extraction and counting of the coccidian A. 

octopiana 

Specimens of O. vulgaris naturally infected by A. octopiana were collected by traps, 

an artisanal fishing gear used by local fishermen from the Ria of Vigo, Spain (24° 14.09’N, 

8° 47.18’W). The octopuses were maintained in filtered sea water tanks at 15 °C during 24 

h. Before hemolymph extraction, each octopus was anaesthetized using 7.5% magnesium 

chloride (MgCl2) according to Messenger et al. (1985) and following ethical procedure 

(Moltschaniwskyj et al., 2007). A dorsal incision was made through the skin and mantle 

muscle behind the head to withdraw hemolymph with a disposable syringe (1 ml) directly 

inserted into the cephalic aorta. One milliliter of hemolymph of each octopus was 

centrifuged at 12000 × g, 4 °C for 5 min. The pellet of hemocytes was re-suspended in 1 ml 

of Trizol reagent (Invitrogen) and stored at -80 °C until proceed to analysis. 

 

 The digestive tract from each octopus was dissected and homogenized in 10 ml of 

filter sea water (FSW) 1% Tween80 using an electric tissue grinder (IKA-Ultra Turrax T-

25). To remove tissue fragments, the homogenates were filtered twice with a nylon mesh 

of 100 µm and 41 µm, respectively. The filtrate was then centrifuged 1000 × g, 4 °C, 5 min 

in a centrifuge Beckman GS-15R. Finally, the number of sporocyst was counted in 

Neubauer chamber. The sporocyst number is referred as the number of parasites infecting 

a unit gram of octopus digestive tract (spor/g) in order to state the infection degree. The 

intensity of infection was confirmed through the observation of caecum sections 

processed by standard histological methods (Humason, 1979). Hence, taking into account 

the level of infection and the histopathological damage, two groups of infection were 

formed: the first one, with a high parasite load (6 × 106 to 2 × 107 spor/g; hereafter termed 

high infection group); and the second one, with a low parasite load (0 to 2 × 103 spor/g; 

hereafter termed the low infection group). Samples from the first group showed important 

caecum damage, and were considered as being from sick animals. The second group of 

samples with a light or no histological caecum damage was considered as being from 

healthy animals. Both groups of infection were confirmed using a Student’s t-test analysis 

(p<0.05) performed in Statistica 6.0.  
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2.2. RNA isolation, paired-end mRNA Seq library preparation and sequencing 

Total RNA from hemocytes of 5 highly and 5 lowly infected octopuses selected for 

each group was extracted according to the Invitrogen protocol. After RNA extraction, 

samples were treated with Turbo DNase free (Ambion) to eliminate DNA. The RNA 

samples were purified using RNeasy Mini Kit (Quiagen), quantified using a NanoDrop 

ND1000 spectrophotometer and the RNA quality was assessed in a Nano and Pico Chips 

Bioanalyzer (Agilent). A total of 1.5 μg of RNA from each of the 5 animals per group was 

pooled to construct the mRNA libraries according to Illumina standard protocol. Thus, two 

mRNA libraries (one from the pool of octopuses with high infection, and one from the pool 

of low infection) were performed in a Genome Analyzer (GAII) at the Functional Genomics 

Service (Progenika Biopharma Company, Vizcaya, Spain). Briefly, mRNA was purified 

using oligo (dT) probes and then fragmented into small pieces using divalent cations 

under elevated temperature. The cleaved RNA fragments were used for first strand cDNA 

synthesis using random primers. This was followed by second strand cDNA synthesis 

using DNA polymerase I and RNaseH. The products were purified and enriched for 

attachment to the Illumina flow cell. The two hemocyte libraries were generated using the 

Paired-end Cluster Generation kit v4. The libraries were validated by processing an 

Agilent DNA 1000 chip on a 2100 Bioanalyzer (Agilent) and quantified by qPCR using 

complementary primers of the library adapters with the KAPA SyBR FAST Universal qPCR 

kit (KAPA Biosystems). The cDNA libraries were sequenced on the Illumina sequencing 

platform (GA III) equipped with a paired-end module performing 105 cycles per read on 

two flow cell lanes. 

 

2.3. De novo Transcriptome generation: transcript assembly 

Prior to assembly we applied filters to remove low quality reads and bases, by 

using Condetri (Smeds and Künstner, 2011). Base trimming was done from the 3´end of 

each read to remove bases with a quality less than Q20 up to a minimum length of 80 

bases. Reads not reaching the 80 nucleotide length were removed from further analysis. 

ConDeTri allows filtering in a paired manner. The filtered Illumina paired-end and 

remaining orphan reads for both sequenced samples were used together for assembly. 

First, an initial assembly was performed using Trinity (Grabherr et al., 2011). The Trinity 

assembly was then used as a long sequence to help re-assembly with VELVET (Zerbino 

and Birney, 2008). Finally, Oases is used to produce transcript clusters called contig 

(Schulz et al., 2012). The use of these two pieces of software allows us to test a wide range 

of K-mer lengths (25 for Trinity and 31, 35, 39, 43 for Velvet) and algorithms for assembly, 
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and to obtain a consensus transcriptome that may cover the hemocyte transcriptome 

spectrum. Sequence assembly was performed as shown in Fig. 1. 

 

 
 

Fig. 1. Sequence of tasks and data processing for obtaining the cDNA library of the O. 

vulgaris hemocytes. 

 

 
 
2.4. Assembly validation and Functional annotation 

 To assess the coverage of the assembly, homology search of the assembled 

transcriptome was performed against the Swissprot using BLASTx with an E-value 

threshold of 1e-3. BLASTx results were passed through a custom Perl script that merged 

the assembly Fasta sequence and summarized information to produce a table. Functional 

annotation was performed using Blast2GO v2.5.0 (Conesa et al., 2005; Conesa and Götz 

2008; Götz et al., 2008) using the default annotation parameters (Blast e-value threshold 

of 1e-3, Gene Ontology annotation threshold of 55). The Gene Ontology (GO) terms 

associations for “Biological process”, “Molecular function” and “Cellular component” were 

performed using BLASTx algorithm against the Uniprot database.  
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2.5. Comparative analysis 

 The library of the O. vulgaris hemocytes here generated was compared with 

sequences of the cephalopods Euprymna scolopes (35,420 ESTs) and O. vulgaris (31,929 

ESTs); and the bivalves Mytilus galloprovincialis, (19,617 ESTs), Crassostrea gigas 

(206,388 ESTs) and Ruditappes philippinarum (23,649 ESTs) deposited in NCBI public 

database. BLASTn algorithm was carried out for testing the sequence similarity with a 

threshold e-value less than 1e-5. The sequences were compared with the longest contig 

from each of the transcripts identified in O. vulgaris hemocytes. 

 

2.6 Identification of immune-related genes 

 To identify the putative genes involved in the immune response, the sequences 

obtained in this study were screened using the GO terms at level 2 assigned to each 

sequence after annotation and confirmation of its relationship with the immune response. 

They were also revised based on an immune system process and response to stimulus 

keyword list elaborated in our lab. BLASTx was used to identify the putative immune 

related transcripts looking for these specific keywords in the hit descriptions of proteins 

of the NCBI database which had been demonstrated to have involved in immune response. 

The immune-related genes identified from our high-throughput sequencing results were 

grouped in 4 different pathway related to complement, Toll-like receptor, NF- B and 

apoptosis. 

 

2.7. Transcripts differentially expressed against the infection 

Differential expression of transcripts between conditions (sick and healthy 

animals) was evaluated with TopHat (Trapnell et al., 2009) and Cufflinks (Trapnell et al., 

2010) using the generated assembly as reference for mapping of reads for each condition 

and determining the relative transcript abundance by measuring FPKM (expected 

fragments per kilobase of transcript per million fragments). All p-values were adjusted 

with a false-discovery rate (FDR) correction for multiple testing by the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). The transcripts were considered 

significant at p<0.05. 

 

2.8. Expression analysis of selected genes by quantitative real time PCR (RT-qPCR) 

The differential expression of eight genes selected from the transcriptomic library 

and related to the innate immune response were analysed by RT-qPCR in three different 

tissues. Total RNA was extracted from hemocytes, caecum and gills of 5 individual octopus 
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from each infection group (showing high and low infection by A. octopiana) using TRIZOL 

reagent (Invitrogen) and following the manufacture′s instruction. The RNA concentration 

was quantified using a NanoDrop ND2000 spectrophotometer (Thermo Scientific). First 

strand cDNA was synthesized using Maxima First Strand cDNA Synthesis Kit for RT-PCR 

(Thermo Scientific) using 1 µg of total RNA, treated with DNAse (QUIAGEN) to remove 

remaining genomic DNA. For each of the selected genes, forward and reverse primers 

were designed using primer 3 software 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) (Table 1). PCR efficacy (E) 

was calculated for each primer pair by determining the slopes of standard curves 

according to Pfaffl (2001). The β-actin gene was determined as the best reference gene 

(HKG) through NormFinder (Andersen et al., 2004), geNorm (Vandesompele et al., 2002) 

and Bestkeeeper (Pfaffl et al., 2004) algorithms. RT-qPCR reactions were performed in 

triplicate and in a total volume of 25 µl using a 7500 FAST Thermocycler (Applied 

Biosystems) sequence detector in 96-microwell plates. Each well contained 1 µl of cDNA 

(dilution 1/10), 12.5 µl of SYBR green PCR master mix (Thermo Scientific) and 0.5 µl of 

each diluted primer (10µM). The standard cycling conditions were two steps method: 95 

°C for 10 min; 40 cycles of 95 °C 15 s, and 60 °C for 1 min. The expression of selected genes 

was normalized using β-actin gene and analyzed following the Pfaffl method (2001). 

Results were expressed as the mean ± standard deviation. Fold units were calculated 

dividing the normalized expression values of tissues samples in sick individuals by the 

normalized expression values of healthy ones. Data were analyzed using a Student’s t-test 

and differences were considered statistically significant at p<0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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Table 1. Primer sequences used in RT-qPCR. 

Primer name Primer sequence 5´– 3´ 
Amplicon 

bp 

TLR F TATGGGTACCTGCAGATGGT 137  

TLR R TGAAAGCTGCTCATGTGAAA  

Caspase F AAGGTTCGTGGTTTATGCAA 115 

Caspase R TGGAATTCTAAAGAGGCAACA  

Galectin-F TCCCTCTCCATCTCAATCCAA 100 

Galectin-R ACAGGCAATGGATGTCGTTCT  

C1q-F ACCAAGGTGGCACTGAGA 130 

C1q-R TCGCCCTCATGGAGAGT  

PGRP-F GAGCTGCTCCACAACTGC 119 

PGRP-R CGACACCATTTCCACCA  

Serpin-F TGACAAATGCTGAGAAGACAAGAAT 111 

Serpin-R GAACCGATTGAGGTGTCAAACTT  

LITAF-F CGGCCCAGAACCAAAAGAA 100  

LITAF-R TCCAGAGACCAGCCATGTTAAA  

PRDX-F CCAGTGCCAGTCTCTTTGAACA 100 

PRDX-R AGTGCACCTGGTACACCAAAAA  

 

 

3. Results and Discussion 

The general goal of this study was to generate a representative set of genes 

expressed in hemocytes, the cells responsible for cellular defence of the common octopus. 

The information herein obtained would be useful for further analyses of comparative 

immunology and cephalopod’s immune response against pathogens. 

 

3.1. Illumina sequencing and reads assembly 

To obtain the de novo transcriptome of the circulating hemocytes from adult 

octopuses, and to analyze the octopus gene expression profile against the infection by the 

parasite A. octopiana, the paired-end Illumina sequencing platform was used. A total of 

150,302,926 raw reads with an average length of 105 bp were produced (Table 2). The 
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Q20 percentage (sequences of high quality indicator) was of 97.6% (75,571,280 reads) for 

the pool of high infected individuals, and 97% (74,731,646 reads) for the pool of low 

infected individuals. After filtering to remove low quality reads, a total of 127,019,711 

(84.5%) clean reads were obtained from both pools of samples. Reads from both levels of 

infection were assembled together sequentially with Trinity (Grabherr et al., 2011) and 

VELVET (Zerbino and Birney, 2008). In this manner, the transcriptome reflects specific 

genes from each infection group plus additional genes putatively common to both groups 

of infection. Further alignment of sequences belonging to each infection group against the 

entire transcriptome generated allowed us detecting the gene expression from each case. 

Trough assembly, 254, 506 contigs were generated with a mean length of 669 bp and a 

maximum of 19,120 bp (Table 2). Hence, the theoretical transcriptome length for O. 

vulgaris was 170.24 Mb. The distribution of contig length and the number of contigs by 

cluster are shown in Figure 2. 

 

Table 2. Summary statistics of the transcriptome sequencing and assembly for O. vulgaris 

hemocytes library. 

 

Sequences before Filtering  

Number of reads 15,030,2926 

Total Megabases 15781,8 

Sequences after Filtering  

Number of reads 127019711 

Total Megabases 13180,8 

Assembly Statistics  

Number of reads assembled 42826899 

Number of contigs 254506 

Total consensus Megabases 170,24 

Average contig length 669 

N50 contig length 1632 

Range contig length 100-19120 

Number of contigs >500bp 87408 

Number of clusters 228314 

Number of clusters with 1 contig 214607 

Number of clusters with >1 contig 13707 

Percentage of contigs annotated by SwissProt 18,9% 

Percentage of contigs functionally annotated 13,7% 
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Fig. 2. (A) Length distribution of contigs obtained from O. vulgaris hemocytes 

transcriptome library. (B). Distribution of occurrences (frequency) of protein identified in 

NCBI.  
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3.2. BLASTx search in SwissProt database 

Contig gene annotation was performed through BLASTx search against the 

SwissProt database using a cut-off E-value of 10-3. Using this approach, a total of 48,225 

(18.95%) contigs presented a significant BlastX hit (E-value<1e-3). In contrast, 81.05% of 

assembled sequences did not matched to know proteins probably because the lack of 

molecular data of cephalopod species. Therefore, a high number of potentially novel genes 

are herein presented. Figure 3 indicates that sequences with highest number of matches 

were Homo sapiens with 1,073,995 occurrences, whereas the sea urchin 

Strongylocentrotus purpuratus (with 2,088 at position 35) was the single marine 

invertebrate homologue to common octopus sequences. These results clearly indicate the 

limited representation of cephalopods in public databases. In fact, for O. vulgaris only 32, 

279 records in nucleotide sequence databases; 35 in ESTs, 251 in proteins and 13 in gene 

databases are deposited in GenBank. The majority of the sequences belong to taxonomic 

and central nervous system studies. Consequently, the present results highlight the need 

of contributions to increase the number of annotated sequences of cephalopods in public 

databases, which will help to discover new genes that allow understanding their entire 

biology, and such is the case in this work, genes related to the octopus innate defence that 

would be valuable for future applications in aquaculture. 
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Fig. 3. Top 35 hit sequences matching O. vulgaris assembled sequences. 

 

3.3. Functional annotation based on GO 

 Gene Ontology (GO) assignments were carried out at level 2 to classify the 

functions of the proteins differentially expressed between levels of infection and blasting 

the UniProt database. Based on sequences homology, three main categories were 

identified: cellular component, molecular function and biological process. Relative to 

cellular components (Fig. 4A), the highest percentage of GO corresponded to cell and 

organelle proteins, with 38% and 32% respectively. Within the molecular function 

classification (Fig. 4B), binding and catalytic activity were the most represented groups, 

with 57% and 29% respectively. Related to the biological process (Fig. 4C) cellular (17%) 

and metabolic process (15%) were the highest represented groups; in addition, biological 

(12%) and response to stimulus (8%) showed also a high percentage.  
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3.4 Comparative analysis 

 Comparison between the transcriptome of the O. vulgaris hemocytes and 

sequences available in NCBI for E. scolopes showed a 0.85% (301 hits) shared by both 

cephalopod species. In the comparison with O. vulgaris 20% (6402 hits) of sequences were 

coincident, whereas 0.06% was shared with C. gigas (135 hits), 0.40% with M. 

galloprovincialis (79 hits) and 3.80% with R. philippinarum (900 hits).  

 

 According to the present results, a low percentage of transcripts are shared among 

these molluscan species. This result stated again that a high number of potentially novel 

genes are herein presented. However, it should be noted that mollusc nucleotide and EST 

sequences available in the public databases and used for the comparison analysis are 

obtained from different tissues, and few are from hemocytes. This is the case of E. scolopes, 

where most of the information relative to this squid belongs to the light organ (Goodson et 

al., 2005; Chun et al., 2006; Castillo et al., 2009). Consequently, a low percentage of 

sequences are shared between our O. vulgaris database and E. scolopes. As it was expected, 

the major percentage was coincident when comparing O. vulgaris sequences. However, the 

comparison also includes sequences available from varied tissues as arms (Riesgo et al., 

2012) or the central nervous system (Zhang et al., 2012), but no specifically from 

hemocytes. Regarding bivalves, the highest percentage was obtained after comparing O. 

vulgaris and R. philipparum. Considering that up-dated molecular data is available for 

bivalve’s hemocytes (Zhang et al., 2009; Moreira et al., 2012;Philipp et al., 2012), the 

present results suggest that a set of transcripts is highly conserved between the octopus 

and the manila clam. Nevertheless, additional molecular data is needed to perform 

appropriate comparisons among mollusc species and specific tissues as hemocytes.  
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Fig. 4.Distribution of second level GO annotation in three categories: (A) cellular 

component, (B) molecular function and (C) biological process.  
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3.5. Immune transcriptome analysis 

Hemocytes are the key effectors of cellular defence activities against invader 

agents. When challenged by pathogens, the octopus raises a strong and effective innate 

immune response (Malham and Runham, 1998) and therefore, immune genes are of 

particular interest to understand i) how the host-cell biological processes are altered by 

pathogens, and specifically by the A. octopiana infection; in consequence, ii) how the host 

faces the infection. The O. vulgaris immune system was stimulated by the natural infection 

of the coccidia A. octopiana. Differences in intensity of parasitism allowed to identify 

different gene expression in response to coccidiosis. A selection of GO immune-related 

terms allowed us to identify more than 3% of the predicted proteins with a possible 

immune function. This relative low annotation is probably due to the lack of molecular 

data of cephalopods in public databases and the high potential novel genes. Among the 

different transcripts identified, a significant number of putative immune-related genes 

involved in several immune pathways like NF B, TLR signalling pathway, complement 

cascade and apoptosis were recognized (Fig. 5, 6, 7), suggesting that similar ancient 

mechanisms are shared with other molluscs.  

 

3.6. Complement pathway and related proteins 

The complement system is a complex pathway comprised by more than 30 plasma 

and membrane-associated proteins that interact from direct cell lysis to the enhancement 

of cellular responses. Consequently, it is a vital component of innate immunity. 

Complement is activated by three different pathways: classical, lectin and alternative. All 

three share in common the component C3 as the central molecule where known activation 

pathways converge (Carroll, 2004; Dunkelberger and Song, 2010). Homologs to 

complement C3 have been identified in diverse marine organisms like the horseshoe crab 

Carcinoscorpius rotundicauda (Zhu et al., 2005), the sea urchin Strongylocentrotus 

purpuratus (Al-Sharif et al., 1998), the carpet-shell clam Ruditapes decussatus (Prado-

Álvarez et al., 2009) and the sea cucumber Apostichopus japonicus (Zhou et al., 2011). To 

date, the complement component C3 known in cephalopods was identified and 

characterized in the sepiolid E. scolopes (Castillo et al., 2009; Schleicher and Nyholm, 2011; 

Collins et al., 2012). Additionally, Collins et al. (2012) identified components of the 

complement cascade like CR1, CR2, C4b or C1qbinding protein in the proteome of E. 

scolopes hemocytes.  

 

The O. vulgaris database herein presented contains putative homolog molecules of 

the complement signaling pathway (Fig. 5) such as C3, C3R, C5R, C1S, molecules MBL, 
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Ficolin and the C1q binding protein. C1q is a subcomponent of the complement C1 

complex that plays a role in the classical pathway, but also in the recognition of microbial 

surfaces (Wang et al., 2013).  

 

2-Macroglobulin (3 transcripts) is present in our O. vulgaris library. It is one of the 

most representatives of a group of plasma proteins that include complement components 

(Borth, 1992). This is a protein evolutionarily conserved in the innate immune system, 

operating as opsonin to bind and mark proteases for allowing subsequent recruitment of 

cells for endocytosis and intracellular proteolytic degradation of pathogens (Armstron, 

2010). An 2-macroglobulin protein about 180kDa capable to inhibit proteinases of 

different catalytic class was purified from the O. vulgaris plasma (Tørgersen et al., 1992), 

and represents the second most abundant protein in the hemolymph of Sepia officinalis 

(Vanhoorelbeke et al., 1993). Recently, an 2-macroglobulin was identified in the 

proteome of E. scolopes hemocytes (Collins et al., 2012). 

 

Fibronectin is a cell-adhesive protein that forms a complex with fibrin and 

mediated the adhesion of epithelial cells as a provisional matrix against skin wound 

healing in mammals. In invertebrates, fibronectin is involved in cell aggregation, migration 

and putatively correlates with invertebrate wound healing, and was isolated from the 

hemolymph of Pinctada fucata (Suzuki and Funakoshi, 1992). In cephalopods, the cell 

migration towards injured tissues is known (Féral, 1988). In fact, it has been suggested as 

a strategy to immobilize pathogens (Cowden and Curtis, 1981). Two fibronectin 

transcripts are here reported in the O. vulgaris library, providing molecular evidence of its 

presence in the octopus hemocytes. However, future studies of its molecular 

characterization would allow understanding how octopus hemocytes are capable to form 

clots quickly and thus to test whether cell aggregation is an effective defense activity. In 

addition, other putative immune molecules related to the complement and clothing 

pathway such as kalikrein (1 transcript) and Sushi, Von Willebrand factor (3 transcript) 

(VWF) has also been identified in O. vulgaris library. Similarly, the sushi domain has been 

identified in the proteome of E. scolopes hemocytes (Collins et al., 2012). 

 

 



Transcriptomic analysis of the O. vulgaris hemocytes 

 

 106 

 
Fig. 5. Complement and clotting pathway. Brown figures indicate proteins identified in O. 

vulgaris library; and blue figures indicate the absent ones. C1q: complement C1q binding 

protein; C1R: C1r subcomponent; C1S: complement C1 subcomponent; C2: complement 

component 2; C4: complement component 4; C3: Complement component 3; C3a: 

anaphylatoxin subcomponent 3a; C3b: opsonin subcomponent 3b; C5: complement 

component; C3R: C3 receptor; C5R: C5 receptor; MBL: Manose-binding lectin. MASP1/2: 

mannan-binding lectin serine protease 1/2; F12: factor 12; F11: factor 11; 2M: alpha-

macroglobulin; F2,3,5,7,8,9,10: coagulation factors 2,3,5,7,8,9,10; MPC: CD46, membrane 

cofactor protein VWF: von Willebrand factor;  KLKB1: kallikrein B1; PROC: protein C; 

PROS1: protein S (alpha); THBD: trombomodulin.   

 

3.6.1. Pattern recognition receptors (PRRs) 

3.6.1.1 Lectins 

 Lectins are sugar-specific binding proteins with direct participation in innate 

immune functions as LPS-binding molecules, agglutination, recognition and phagocytosis 

through opsonisation and complement-activating factors. Therefore, lectins are valuable 

to recognize potential invaders and may be critical to the internal defence of marine 

molluscs (Vasta et al., 1999; Dodd and Drickamer, 2001). Few reports regarding the 

isolation and biochemical characterization of lectins and their role as non-self recognition 

molecules are available in cephalopods. The only ones identified and biochemically 

characterized are those from O. vulgaris (Rögener et al., 1985) and Octopus maya (Fisher 

and Dinuzzo, 1991; Alpuche et al., 2010). In the O. vulgaris library here reported, homolog 

sequences of mannose binding C-lectin (MBL) (2 transcripts), galectin (1 transcript) and a 



Transcriptomic analysis of the O. vulgaris hemocytes 

 

 107 

different carbohydrate binding lectins (malectin) have been putatively found (1 

transcript).  

 

3.6.1.2 Peptidoglycan recognition proteins  

 Peptidoglycan recognition proteins (PGRPs) specifically recognize bacterial 

peptidoglycan from Gram-positive and Gram-negative bacteria. This protein is conserved 

from insects to mammals and has diverse functions in antimicrobial defence (Steiner, 

2004; Royet et al., 2011). To date, four PGRP transcripts are known from cephalopods, all 

of them identified in a cDNA library from the sepiolid E. scolopes. According to the amino 

acid sequences it was predicted that EsPGRP1 have a cytosolic cellular localization, 

EsPGRP2 possess an N-terminal signal peptide that suggest EsPGRP2 is secreted into the 

extracellular environment. EsPGRP3 includes a glycosylphosphatidylinositol (GPI)-

anchored protein that suggests EsPGRP3 is an extracellular extrinsic membrane protein, 

whereas EsPGRP4 putatively has two N-terminal transmembrane domains that suggest it 

is an integral membrane protein (Goodson et al., 2005). Recently, Collins et al. (2012) 

described a new PGRP (EsPGRP5) putatively capable of degrading bacterial peptidoglycan 

and its derivatives. The PGRPs are herein reported for the first time in the O. vulgaris 

library. The analysis led to the identification of three PGRPs in the circulating hemocytes 

of the octopus hemocytes. Further characterization of O. vulgaris PGRPs and studies to 

determinate their specific localization is required. 

 

 3.6.1.3. Toll-like receptors 

 Toll-like receptors are responsible for initiating inflammatory responses against 

invading pathogens in invertebrates and vertebrates. The Toll receptors provides the 

trans-membrane molecules linking the extracellular (where contact and recognition of 

pathogens occurs) and intracellular (where signalling cascades leading to cellular 

responses are initiated) compartments (Vasselon and Detmers, 2002; Engelmann et al., 

2005). Some TLR are found in the cell membrane (TLR 1, 2, 4, 5, 6, 10); while others 

remain intracellularly due to they are anchored in the endosome (TLRs 3, 7, 8, 9). 

However, all TLRs contain (in the N-terminal end) a leucine-rich repeat (LRR) motif which 

mediates ligand binding. In addition, a highly conserved cytoplasmic domain termed Toll-

IL-1R (TIR) is present and its function is as a binding site for downstream adaptor 

molecules (Ospelt and Gay, 2010). Toll-like receptors and some other genes involved in 

this pathway were described in the light organ of E. scolopes, where Toll-like receptor 

architecture is consistent with that known from mammals and insects (Goodson et al., 

2005). The results obtained from our sequences showed transcripts encoding homologue 
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to the TLR-2, TLR-3 (1 transcript), TLR-4 and TLR-6 (1 transcript). In addition, most of the 

central proteins belonging to the TLR signalling pathway (the adaptor MyD88, IRAK, 

TRAF6 proteins) have been identified in this transcriptome analysis (Fig. 6). TLR-2 has the 

ability to recognize several ligands like peptigoglycan, bacterial lipopeptides, lipoteichoic 

acid and even protozoa like Trypanosoma cruzi (Campos et al., 2001; Beutler, 2004). Such 

versatility in binding several ligands has been explained by its ability to build 

heterodimers with other TLRs and to use co-receptors for the recognition of certain 

molecules (Ospelt and Gay, 2010). TLR-3 binds endogenous ligand from necrotic cells and 

double stranded RNA from virus, which in vertebrates induces the synthesis of type I 

interferons (IFN- /β) with subsequent antiviral and immunostimulatory activities 

(Takeda and Akira, 2003). TLR-4 transduces the signals of lipopolysaccharide (LPS). Once 

the lipid is recognized, leads to the production of a wide range of immunostimulatory 

cytokines and chemokines mediated by mitogen-activated protein kinases (MAPKs) or 

NF B pathways. In addition, several transcripts containing leucine rich repeat (LRR) 

domains and some immunoglobulin superfamily members containing also LRR have been 

identified in our library (48 transcripts in total). According to the different recognition 

roles of the TLRs found, the precise gene characterization and functional analysis of the 

identified TLRs in O. vulgaris have to be undertaken as the next step to understand their 

importance in the octopus immune system.  

 

 3.6.2 Cytokines 

 Cytokines are cell-signalling proteins that regulate inflammation and infection in 

the body (Miyajima et al., 1992). They can be released through complement receptor-

mediated signaling or by pathogens through a wide array of pattern recognition receptors 

(PRR) (Lacy and Stow, 2011). Two transcripts of the putatively identified as IL-17 were 

found in our O. vulgaris library. IL-17 is involved in inflammatory process during infection 

and in the pathogenesis of chronic inflammation in autoimmune diseases. But also, is 

capable of activating NF- B transcription factor in different cell types like macrophages or 

intestinal epithelial cells (Witowski et al., 2004; Roberts et al., 2008). In addition, the 

growth factors granulin (1 transcript), fibroblast growth factor 1 (FGF1) (1 transcript), 

fibroblast growth factor receptor 2 (FGRF2) (2 transcripts), transforming growth factor 

beta receptors (TGFβ) (2 transcripts), vascular endothelial growth factor (VEGF) (1 

transcript), epidermal growth factor (EGF) (2 transcripts) and bone morphogenic protein 

(BMP) were found in the O. vulgaris transcriptome. To date, the molecular characterization 

of a single VEGF receptor ortholog have been performed in the bobtail squid Idiosepius 
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paradoxus. The homology with other VEGF receptors indicates that it could play an 

evolutionary conserved function in cardiac development (Yoshida et al., 2010). 

 

 3.6.3. NF B pathway 

 The nuclear factor- B (NF- B) is rapidly activated by a wide diverse agents and 

cellular stress conditions including bacterial lipopolysaccharide (LPS), microbial and viral 

pathogens, cytokines and growth factors (Hatada et al., 2000). NF- B pathway include 

molecule members as RELA (p65), NF- B1, NF- B2, c-REL and RELB that activates 

transcription from NF- B binding sites in target genes (Li and Verma, 2002). Signal 

transduction is processed through the inhibitory proteins known as inhibitors of NF- B 

(I Bs). There are several I Bs (I Ba, I Bb, I Bg, I B ) with different affinities for 

individual NF- B dimmers (Gilmore, 2006). Proinflammatory cytokines and pathogen 

associated molecular patterns (PAMPs) works through different receptors like the tumor 

necrosis factor (TNF) receptor (TNFR) and TLR–IL-1 receptor superfamilies. Those 

receptors activates the I B kinase (IKK) complex consisting of catalytic kinase subunits 

(IKK  or IKKβ) (Bonizzi and Karin, 2004). Following activation, NF- B dimers are 

liberated from cytoplasmic complexes with ankyrin-repeats containing I B. The released 

NF- B translocate to the nucleus, bind DNA and activate transcription of genes encoding 

chemokines, cytokines that are important for innate immune response to invading 

microorganisms (Bonizzi and Karin, 2004). The NF- B pathway seems an evolutionarily 

conserved innate immune pathway that is also present in mollusks. After bacterial 

challenge, a Rel protein of C. gigas was characterized in hemocytes, although it was also 

expressed in tissues like gills, heart or stomach (Montagnani et al., 2004). Likewise, the 

I B gene was characterized in the pearl oyster P. fucata. In cephalopods, the NF- B 

pathway was disclosed by the findings of molecules like IKKg,TRAF6, I B-like, IRAK4 and 

REL-like from juvenile E. scolopes light organs (Goodson et al., 2005). Now, transcripts 

found in this O. vulgaris library are coincident with such previous findings identified in E. 

scolopes, such as IRAK4, I B and TRAF6. Additionally, molecules like TRAF2, TRAF3, 

TRAF5, IKK , IKKβ, RIP, TAK1, among others that had never been found in cephalopods, 

have been putatively identified in this work (Fig. 6). 
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Fig. 6. TLR/NF- B signaling pathway. Brown rectangles indicate proteins identified in the present 
Octopus vulgaris library and blue rectangles indicate the absent ones. Brown rectangles with red 
letters indicate proteins in the NF- B pathway. AKT: RAC-alpha serine/threonine-protein kinase. 
API1: Transcription factor AP-1.Casp8: Caspase 8. FADD: FAS-associated via death domain. IκB: 
Inhibitor of NF-κB. IKK : Inhibitor of nuclear factor kappa-B kinase subunit epsilon. IRAK4: 
Interleukin-1 receptor-associated kinase 4. IRF3: Interferon regulatory factor 3. IκB : NF-kappa-B 
inhibitor alpha. JNK: c-Jun N-terminal kinase. MEKK1: Mitogen-activated protein kinase knase 1. 
MKK4/6: Mitogen-activated protein kinase kinase 4/6. MyD88: Myeloid differentiation primary 
response protein MyD88: Mtor: Mechanistic target of rapamycin. NF-Κb: Nuclear factor kappa-B. 
PI3K: Phosphatidylinositol 3 kinase. PIM1: Proto-onocogene serine/threonine-protein kinase pim-
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1. p105: nuclear factor NF-kappa-B p105 subunit. RAC1: Ras related C3 botulinum toxin substrate. 
Stat-1: Signal transducer and activator of transcription 1. SOCS-2/5: Suppressor of cytokine 
signaling. TAB1: TAK1-binding protein1. TAK1: TGF-beta activated protein kinase kinase 1. TIRAP: 
Toll-interleukin 1 receptor domain-containing adaptor protein. TLR2: Toll-like receptor 2. TLR4: 
Toll like receptor 4. TOLLIP: Toll interacting protein (      direct inhibition). TRAF3: TNF receptor-
associated factor 3. TRAF6: TNF receptor-associated factor 6. MAVS: Mitochondrial antiviral 
signaling protein that activates NF-kappa B and IRF 3. INF /β: Interferon alpha/beta receptor. 
IRAK1-2: Interleukin receptor associated kinase 1, 2. IRF7: Interferon regulatory factor. P38MAPK: 
p38 mitogen-activated protein kinases. ECSIT: evolutionarily conserved signaling intermediate in 
Toll pathways. 

 

 

 3.6.4. Antimicrobial peptides (AMP) 

Antimicrobial peptides are small molecular weight proteins with broad ability to 

kill or neutralize Gran-negative and Gram-positive bacteria, fungi, parasites or virus 

(Hancock and Scott, 2000). AMPs are capable to disrupt the pathogen membrane by pore 

formation or a detergent-like solubilization, leading to cell lysis (Izadpanah et al., 2005). Of 

these AMPs the bactericidal permeability-increasing protein (BPI) is produced by 

polymorphonuclear leukocytes, but also in epithelial cells. Mucosal epithelia that co-exist 

with microbes and microbial products express BPI and therefore, it probably contribute to 

the maintenance of immunologic homeostasis at mucosal surfaces (Canny and Levi, 2008). 

In contrast to common AMPs, BPI is notable for its high affinity to lipopolysaccharides 

(LPS) of gram-negative bacteria. Thus, the interaction with LPS triggers the BPI 

antimicrobial activity (Elsbach, 1998). At least three light-organ proteins in the BPI/LBP 

(lipopolysaccharide-binding protein) family were sequenced from E. scolopes. The role of 

these proteins in the context of the mutualism squid/Vibrio relationship is under study 

(Krasity et al., 2011). Now, a single transcript of BPI protein is provided from the O. 

vulgaris library. Additional studies are needed to understand the role of this protein in the 

octopus cellular defense.  

 

 3.6.5. Stress response genes 

In addition to immune defense, the host system possesses mechanisms to reduce 

damaging effects of stress from diseases or environmental pressure (Kassahn et al., 2009). 

Pathogens induce stress to the organisms health, thus, reactive oxygen and nitrogen 

species are produced by host to control the infection. The use of the antioxidant system is 

part of the innate immune defense responsible to maintain those reactive species at low 

basal levels (Manduzio et al., 2004). Production of nitrogen species as nitric oxide is 

mediated by the enzyme nitric oxide synthase (NOS). One transcript of NOS and one 

transcript of the protein nitric oxide synthase trafficker (NOSTRIN) were putatively 
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identified in the O. vulgaris library. Superoxide dismutase (SOD), glutathione peroxidases 

(Gpxs), peroxiredoxins (Prxs) and catalases are involved in the antioxidant systems (Abele 

and Puntarulo, 2004; Lesser, 2006). SODs are metalloenzymes that removes O2
- and avoids 

the subsequent dismutation of superoxide radical into hydrogen peroxide (Abele and 

Puntarulo, 2004), whereas Prxs are scavenger of hydrogen peroxide and alkyl 

hydroperoxides (Li et al., 2011). In this study, 3 transcripts homologous to SOD and 1 

transcript of Prxs genes, respectively, were found. Other redox factors such as peroxisome 

(3 transcripts) were also observed. Peroxisomes cointain the enzyme catalase, which 

decomposes hydrogen peroxide by converting it to ware, or by using it to oxidize 

additional compounds (Cooper et al., 2000). Abundant transcripts of myeloperoxidase 

were found from a cDNA library of the E. scolopes symbiotic light organ (Tomarev et al., 

1993). In addition, SOD, peroxirredoxins, peroxidases and glutathione peroxidase were 

also identified in the squid light organ proteome and transcriptome (Schleicher and 

Nyholm, 2011; Collins et al., 2012). 

 Heat-shock proteins (HSPs) serve as molecular chaperones that protect cells from 

the toxic effects of heat and modulate stress response (Lindquist and Craig, 1988; Tsan 

and Gao, 2009). In addition, their activity is close related to the immune innate response, 

involved in apoptosis, NF- B regulation (Parcellier et al., 2003), antigen presentation, 

activation of lymphocytes and macrophages, and activation and maturation of dendritic 

cells (Tsan and Gao, 2009). From the O. vulgaris library HSP13, HSP27, HSP70, HSP71, 

HSP74, HSP76, HSP83, HSP85, HSP90 were identified.  

 

 3.6.6. Apoptosis 

 Apoptosis is a common physiological process for removal damaged or potential 

dangerous cells, but also a major defence mechanism against pathogens (Sahtout et al., 

2001). Two pathways can be triggered: i) intrinsic (also named mitochondrial), initiated 

by internal cellular damage; and ii) extrinsic, initiated by environmental stimuli that lead 

to cell death. The central components of the apoptosis pathway are the proteases 

caspases. They are divided as initiator caspases (caspase 2, 8, 9, 10) that cleave and 

activate the effector caspases (3, 6, 7) (Sokolova, 2009). Apoptosis have been studied in 

marine invertebrate like the abalone Haliotis diversicolor (Huang et al., 2010), the mussel 

M. galloprovincialis (Romero et al., 2011) or the shrimp Penaeus monodon (Xian et al., 

2013). However, apoptosis process has not been studied in cephalopods nor records exist 

for molecules of apoptosis pathway. Consequently, the first records of apoptotic 

components are herein provided. In O. vulgaris library the initiators: caspase 8 (3 
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transcripts) and 10 (1 transcript); and three effectors: caspases 3 (4 transcripts), 6 (1 

transcript), 7 (4 transcript) were identified (Fig. 7).  

 

 
 

Fig. 7. Apoptosis pathway in Octopus vulgaris. Green ellipse indicates proteins identified in the 
present O. vulgaris library and blue ones indicate absence. (         direct inhibition)AKT/PKB: RAC-
alpha serine/thereonine-protein kinse/ Protein kinase B. AIF: Apoptosis-inducing factor 1 
mitochondiral. ATM: Ataxia telangiectasia mutated protein. BAX: Apoptosis regulator BAX. Bcl2: 
Apoptosis regulator Bcl-2. Bcl-XL: Bcl-2 like protein 1. BI1: BAX inhibitor-1. Casp 3, 6, 7, 8, 10: 
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Caspase 3,6, 7, 8, 10. Cytc: Cytochrome c. DFF40, 45: DNA fragmentation factor of 40kD, 45kD. 
FADD: FAS-associated via death domain. IAP: Inhibitor of apoptosis. IKK: Inhibitor of nuclear factor 
kappa-Bkinase. IκB : MyD88: Myeloid differentiation primary response protein MyD88. NF-kappa-
B inhibitor alpha. IL3R: Interleukin 3 receptor. NFκB: Nuclear factor kappa-B. PI3K: 
Phosphatidylinositol 3-kinase. p53: Tumor suppressor p53. RIP1: Receptor interacting 
serine/threonine-protein kinase1. TRADD: TNF receptor superfamily 1 alpha-associated via death 
domain. TRAF2: TNF-receptor-associated factor 2. TRAIL: TNF-related apoptosis-inducing ligand. 
Apaf1: Apoptotic protease-activating factor. FLIP: FADD-like apoptosis regulator. PTEN: 
Phosphatidylinositol-3, 4, 5-trisphosphate 3 posphatase and dual specificity protein phosphatase 
PTEN. Smac: second mitochondria-derived activator of caspase. Chk1/2: checkpoint kinases 1, 2. 
 

 

 3.6.7. Other proteins 

Serin protease inhibitor (SERPIN) proteins are important element of the host 

defense to inactivate proteases secreted by pathogens and to restrict their invasion 

(Armstron, 2006). Protease inhibitors have been found in Crassostrea virginica (Faisal et 

al., 1998) and Chlamys farreri (Wang et al., 2009), but it have not been described from 

cephalopods. A total of 6 transcripts corresponding to SERPIN were identified in the O. 

vulgaris library. Biochemical, functional and molecular characterization of SERPIN is 

needed to understand whether and how the octopus’ hemocytes use this protein to 

counteract coccidiosis.  

 

Angiopoietin is a protein that regulates angiogenesis, the process of formation of 

new blood vessel from other pre-existent ones (Muñoz-Chápuli, 2011). This protein is a 

Tie2 receptor agonist that is expressed in vertebrate’s lung (Valenzuela et al., 1999). A 

protein putatively similar to angiopoietin-like 4 (2 transcripts) was identified in our O. 

vulgaris library, which is not surprising due to cephalopods possess the most complex 

circulatory system of all the invertebrates. Furthermore, the VEGF described in the squid I. 

paradoxus makes hypothesize that the processes of vascular growth in cephalopods could 

be comparable to vertebrates. The process of vascular growth involves endothelial cells in 

vertebrates. However, in I. paradoxus and in cephalopods, is unknown and therefore, 

additional evidence is required to clarify the process of vascular growth in these molluscs. 

Meanwhile, the vascular grow in invertebrates would not be comparable with the 

vertebrate angiogenesis (Muñoz-Chápuli, 2011). 

 

 Peroxisome proliferator-activated receptors (PPARS) termed , β or g belongs to 

the nuclear receptor superfamily involved in lipid metabolism and inflammation. They 

heterodimerize with retinoic X receptor for activation and alter the transcription of target 

genes after binding to response elements or peroxisome proliferator-response elements 
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(PPREs) (Schoonjans et al., 1996). PPARS are, in general, anti-inflammatory and can 

interact with transcription factors involved in inflammation such as NF-κB, activator 

protein-1 (AP-1) and STAT (Anthony et al., 2012). A total of 3 transcripts corresponding to 

PPARS were found in the O. vulgaris library. 

 

Cluster of differentiation (CDs) are cell surface molecules expressed on various cell 

types in the immune system. They are markers that identify a particular lineage or 

differentiation stage, that has a defined structure and that is recognized by a group of 

monoclonal antibodies. Using this approach, certain CD markers have been revealed in 

small coelomocytes of the earthworm Eisenia foetida (Engelmann et al., 2002; 2011) and 

coelomocytes of the purple sea urchin Arbacia punctulata (Lin et al., 2001). In addition, 

CDs molecules similar to mammalian were found in the leech Hirudo intestinalis (Macagno 

et al., 2010), whereas CD63 molecule (3 transcripts) was found in the transcriptome of E. 

scolopes hemocytes (Collins et al., 2012). In the present O. vulgaris library, CD11b (1 

transcript) CD13 (1 tanscript), CD26 (2 transcripts), CD36 (1 transcript), CD53 (4 

transcripts), CD63 (1 transcript), CD81 (1 transcript), CD98 (2 transcript) were recorded. 

Finding these molecules suggest that some proteins marked by specific CDs and known to 

participate in vertebrate immune response could also be present in the common octopus. 

The commonest functions attributed to CD antigens are to promote cell-cell interactions 

and adhesion; and to transducer signals that lead to lymphocyte activation (Cooper, 2001). 

However, additional studies are needed to clarify whether similar functions are carried 

out in O. vulgaris. The useful of CDs herein found for identification and characterization of 

O. vulgaris hemocytes needs to be assessed.  

 LPS-induced TNF-α factor (LITAF) is a transcription factor that regulates 

inflammatory cytokines in response to LPS stimulation and thus, controls TNF-α 

expression. This gene have been identified in gastropods (Jiang and Wu, 2007; De Zoysa et 

al., 2009) and bivalves species (Zhu and Wu, 2012; Moreira et al., 2012; Philipp et al., 

2012). In this study, we have found two transcripts similar to LITAF, which have not been 

reported from cephalopods before. 

 

 The Jaw1 (Lymphoid-restricted membrane protein, LRMP) is a protein localized in 

the cytoplasmic face of the endoplasmic reticulum (Behrens et al., 1996) with structural 

features of proteins that link the nuclear envelope to the cytoskeleton (Lindeman and 

Pelegri, 2012) and expressed in a developmentally regulated fashion in the B and T cell 

lineages (Behrens et al., 1994). A single transcript of Jaw1 protein was found in O. vulgaris 

hemocytes. However, B and T cell lineages have never been described in cephalopods.  
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 Allograft inflammatory factor-1 (AIF-1) is a cytokine-responsive macrophage 

molecule, inducible by cytokines as IFN-g, IL1β or IL-18 (McDaniel et al., 2012). AIF-1 

seems to develop a fundamental role in the processing of the inflammatory responses and 

is also associated to inflammatory diseases like bowel diseases (Morohashi et al., 2003; 

McDaniel et al., 2012). AIF-1 have been characterized in coelomocytes of Antarctic sea 

urchin Sterechinus neumayeri (Ovando et al., 2012) and the pearl oyster, Pinctada 

martensii (Li et al., 2013). In the present study, one transcript of AIF-1 is reported for first 

time in cephalopods. 

 

 Leukocyte receptor cluster (LRC) is located on human chromosome 19q13.4 and 

similar receptors are located on mouse chromosome 7. These genes, the killer 

immunoglobulin-like (KIR) receptors, expressed on natural killer cells (NK) and cytotoxic 

T cells; and the leukocyte Ig-like receptors (LILRs), expressed mainly on cells of the 

myeloid lineage constitute a subset of the Ig gene superfamily (IgSF) and some member 

mediate innate recognition (Barrow and Trowsdale, 2008). Knowledge of LRC is based on 

vertebrates (Yoder et al., 2001; Viertlboeck and Göbel, 2011), but nothing have been 

described before in cephalopods or any other invertebrate. In the present study, a total of 

3 transcripts were found in the transcriptome of O. vulgaris hemocytes. 

 

 The results so far reported provide a general overview of the proteins encoded by 

the common octopus hemocytes. Until date, few transcriptome studies have been 

performed in cephalopod’s hemocytes. Consequently, the present results proceed from a 

comparison with all the available sequences (belonging to different organisms) in public 

databases. Cellular components and proteins involved in metabolic processes were 

commonly found. However, here is also provided information relative to immune proteins 

expressed by the O. vulgaris hemocytes. Highly important receptors as Toll, lectins, 

cytokines; and proteins never recorded before in cephalopods as fibronectin, SERPIN or 

caspases suggest that the immune defense strategy in octopus is similar to other molluscs. 

However, proteins as leukocyte receptor cluster or allograft inflammatory factor-1, 

reported in vertebrates, were also found in the transcriptome of the octopus hemocytes. 

Further work must be carried out in order to characterize, at molecular and functional 

levels, such kind of proteins related to vertebrate immune defense and thus, confirm their 

identity. While doing this work, the present findings pave the way to reveal if cephalopods 

are markedly different from the rest of molluscs due to anatomical features, but also, due 

to differences in innate immunity among them.  
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3.7. Differentially expressed transcripts in response to coccidia 

infection 

 Cufflink program was used to analyze the reads of both infection condition and 

reports transcripts that are differentially expressed using a rigorous statistical analysis. 

From the two sample groups, the assembled contigs were transformed into RPKM (Reads 

Per Kilo bases per Million reads) to calculate abundance differences of each gene with 

further false discovery rate analysis. Thus, a set of 539 genes was differentially expressed 

(p<0.05) between sick and healthy octopuses. Of them, a total of 312 genes were 

successfully identified in public databases (a representative number of transcripts have 

been included in Table 3). The remaining 227 assembled sequences did not matched with 

known proteins probably due to the scarcity of the molecular representation of 

cephalopod species.  
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3.8. Quantitative RT-qPCR of selected genes 

To quantify differences in gene expression, RT-qPCR was performed for the 

selected genes as PRRs (galectin, PGRP, C1q, TLR), protease inhibitors (SERPIN), 

inflammatory response (LITAF), cell antioxidant system (PRDX-2), and apoptosis 

(Caspase-3). The gene selection was based, primarily, on their significant expression 

observed in the transcriptomic library; but also, additional genes were selected due to 

their implication in the host-immune response to pathogens despite they were not 

significant. Thus, for most of the genes tested, the mRNA expression showed the same 

trend of gene expression as in RNA-seq analysis, supporting thus the sequencing results 

and demonstrating the suitability of the method followed for the de novo sequencing of the 

O. vulgaris hemocytes. 

 

In order to get a first insight on whether the tested genes reflect a mechanisms to 

combat the coccidia infection, RT-qPCR analysis of selected genes was performed in 

hemocytes, responsible for cellular defensive mechanisms (Chu, 2000); but also in caecum, 

which is the target organ of A. octopiana infection (Hochberg, 1990); and in gills, which are 

continually in contact to surrounding environment and potential pathogenic agents 

(Mladineo and Bočina, 2007). 

 

In hemocytes, only galectin (1.02 fold increase) and TLR (0.73 fold increase) were 

up regulated in sick octopuses. In contrast, all the genes tested were up-regulated in 

caecum infected, but only some PRRs were up-regulated in gills (Fig. 8). Galectins play 

crucial roles in signaling and molecular recognition processes (Vasta et al., 1999). Kim et 

al. (2008) found higher expression of Manila clam galectin in tissues highly infected by 

Perkinsus olseni. The up-regulation of the galectin in hemocytes and caecum of sick 

octopus suggest that it could be acting as an opsonin. Consequently, could be involved in 

the recruitment of hemocyte to the caecum, where A. octopiana (gamogonic and 

sporogonic stages) occurs.  

 

 Toll-like receptor-2 (TLR-2) was up-regulated in all tissues tested, but mainly in 

the caecum from sick octopus group (Fig. 8). Up-regulation (0.73 fold increase) of TLR-2 in 

circulating hemocytes suggests that cells could detect parasite-derived ligands or 

endogenous molecules such as HSP and thus trigger an inflammatory response (Vabulas et 

al., 2001). The TLR-2 has a crucial role in tolerance against commensal flora to maintain 

gastrointestinal homeostasis, but is also important for recognition of pathogens (Ospel 

and Gay, 2010). Low levels of expression of TLR-2 are detected in digestive tissue of 

Transcriptomic analysis of the O. vulgaris hemocytes 
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healthy individuals, whereas a high expression has been related to chronic inflammatory 

diseases, such as inflammatory bowel disease (Candia et al., 2012). In octopus, TLR-2 was 

markedly up-regulated (2.58 fold increase) in caecum of sick octopuses compared to 

healthy ones, which is in agreement with the digestive tissue rupture and hemocytic 

infiltration described by Gestal et al. (2002a). The present finding indicates that 

coccidiosis induces the expression of TLR-2 in a disease specific manner as occurs in the 

inflammatory bowel disease.  

 

 Most of the genes tested were also involved in pathogen recognition, detoxification 

and apoptosis, and all of them were down-regulated in hemocytes (Fig. 8). Some reports 

found up-regulated C1q protein in hemocytes infected by Perkisus marinus (Prado-Álvarez 

et al., 2009b), whereas LITAF expression is up-regulated after bacterial challenge in 

Haliotis discus discus (De Zoysa et al., 2010). Bacterial challenge induces acute phase 

response and P. marinus give rise to a chronic infection similar to coccidiosis in octopus. 

C1q has been proposed involved in pathogen recognition, but there is not clear how 

chronic coccidiosis could interact with C1q, LITAF and additional genes down-regulated in 

the octopus circulating hemocytes. Contrarily, a markedly up-regulation of genes was 

found in the caecum from sick octopuses. An up-regulation was observed in C1q binding 

protein and PGRP showing 4.86 fold increase. C1q and TNF-  are known to be produced in 

response to infection as inducers of proinflammatory activators (Kishore et al., 2004). 

Thus, an assembly of functions of C1q and LITAF could be occurring in caecum of sick 

octopuses, activating both genes for inducing proinflammatory response (Kishore et al., 

2004).  

 

 PGRP are effective PRR that recognize bacterial peptidoglycan (Steiner, 2004). This 

PRR was highly expressed in caecum. An up-regulation was also found in E. scolopes 

hemocytes (4.7 fold change) suggesting that PGRP are directly influenced to establish a 

symbiotic relationship with V. fischery. However, PGRP also regulate the microbiota inside 

the gut (Royet et al., 2001). Thus, an up-regulation (4.61 fold increase) in the octopus 

caecum suggests that microbiota is not longer controlled by PGRP, which could be attained 

to the severely damaged octopus digestive tissue and the impaired immune response. In 

addition, a slight but up-regulation of SERPIN (0.15 fold increase) was observed in the 

host caecum. This suggest that inhibitor of proteases are active. According to the gene 

expression results the high infection by A. octopiana also induces a strong ROS production. 

Consequently, up-regulation of antioxidant proteins like PRDX-2 is needed to regulate the 

levels of toxic radicals that can also damage the host tissue (Bandyopadhyay et al., 1999). 
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Thus, notably up-regulation of PRDX-2 was recorded in caecum of sick octopuses (Fig. 8). 

High coccidiosis provokes severe rupture of tissue (Gestal et al., 2002a). As a result, 

damaged cells must be eliminated to maintain homeostasis inside the organ. Therefore, 

Caspase-3 which is a type of effector caspase (Sokolova, 2009), was markedly up-

regulated (1.02 fold increase) in caecum and can be attained to a task for eliminating 

tissue damaged. However, there is not clear how the Caspase-3 can regulate the 

progression of coccidiosis.  

 

 From gills, the highest up-regulated gene was C1q binding protein (2.93 fold 

increase), followed by PRDX-2 (1.32 fold increase) and SERPIN (1.09 fold increase) in sick 

octopuses. C1q could putatively work as an opsonising protein. Similar up-regulation was 

observed in protease inhibitors and PRDX-2, suggesting that the octopus cellular defence 

is acting against potential pathogens present in the sea water. The A. octopiana infection 

resides in the octopus digestive tract and gills are unusual sites infected by the coccidia 

(Pascual et al., 2006; Mladineo and Bočina, 2007). However, gills represent the main 

interface between aquatic organisms and surround environment. Therefore, in molluscs, 

gills are valuable not only for oxygenation; they are also an important defence against 

bacterial infection (Park et al., 2008) and thus, immune related genes can be found also 

expressed in octopus gills. 
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Fig. 8. Fold change in gene expression analysis by RT-qPCR. Tissue expression profiles of 

immune genes in O. vulgaris. β-acting gene was used as control transcript. Results are 

mean ± standard deviation. 
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4. Conclusion 

 The present study applied Illumina technology to provide the first sequencing 

study of Octopus vulgaris transcriptome. The successful result allowed identifying several 

genes related to metabolic, functional and cellular components, but also transcripts of 

genes involved in the octopus immune response are herein provided for the first time. 

Highly important pathways for pathogen recognition and cellular homeostasis like 

complement, TLR and apoptosis were identified. Particularly, a high number of TLR 

pathway members were found, which indicates such pathway is also well-conserved in 

cephalopods like in other molluscs.  

 

 The inventory of O. vulgaris genes involved in the octopus immunity evidenced 

that coccidiosis by A. octopiana induces differential expression profiles. High intensity of 

infection induces over-expression on important PRRs like C-type lectins in hemocytes, but 

also apoptotic effectors molecules like caspase-3. Q-PCR assays complement and confirm 

the expression trend obtained from massive-sequence. Furthermore, here is demonstrated 

that all gene tested showed a noticeably over-expression in sick octopus caecum, which is 

the target organ of A. octopiana. 

 

 Altogether these results suggest a complex innate immune system in O. vulgaris. 

Thus, the first insights of the effect of A. octopiana infection at transcriptomic level, 

promoting the over-expression of some immune genes is herein provided. Moreover, the 

first molecular basis of the octopus resistance/tolerance to coccidiosis is herein 

established. The following efforts will be directed to characterize immune-relevant genes 

with a particular focus on those involved in octopus resistance, providing a better 

understanding of the octopus defense mechanisms.  
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Abstract  

One of the most important pathogens affecting Octopus vulgaris is the gastrointestinal parasite 

Aggregata octopiana. Despite its economic relevance and potential as an aquaculture species, 

the knowledge that exists about the defence mechanisms of this mollusc is limited. In this 

study, we used a proteomic approach to analyze the octopus immune response against the 

infection by the coccidia A. octopiana. A comparative proteomic analysis of the hemolymph of 

octopus with high and low parasite loads, corresponding to sick and healthy individuals, 

respectively, showed differences in relative abundance (p<0.05) in samples from hemocytes 

and plasma. As the octopus proteome is poorly represented in public databases, most of the 

proteins were identified from octopus’ hemocytes RNA-seq database. The identities of 36 

proteins from hemocytes and 5 proteins from plasma were determined by ESI-FTICR and 

MALDI-TOF-TOF. These proteins revealed changes in metabolism, cytoskeleton and 

antioxidant functions in hemocytes from high infected octopuses. Additionally, principal 

component analysis was used to select 7 proteins that were the major contributors to the 

overall difference between levels of infection and so could be considered as potential 

biomarkers. From these proteins, filamin, fascin and peroxiredoxin are highlighted because of 

their implication in octopus immune defense activity. From the octopus plasma proteome, the 

most abundant protein was identified as hemocyanin. The present results allow a description 

of the general protein profile for the common octopus hemolymph and suggest that infection 

by the parasite influences the activation of the O. vulgaris immune defense system. Moreover, 

the study supports the utility of proteomics in analyzing changes in the octopus proteome, 

and so contributes to understanding the basis of octopus tolerance-resistance to A. octopiana.  
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1. Introduction 

 The common octopus (Octopus vulgaris Cuvier, 1797) is the most significant 

cephalopod species in aquaculture worldwide. In particular, the autonomous community of 

Galicia in NW Spain has for long been the primary location for successfully rearing the 

common octopus in cages suspended in the sea until they reach the appropriate weight for 

selling (García-García et al., 2004). One of the main challenges of such aquaculture is to 

produce healthy animals with optimal growth rates. Nevertheless, the relative crowding of the 

animals in farmed environments also favors stress, which in turn promotes disease (Berthe, 

2005).  

 One of the most important pathogens infecting cephalopod molluscs is the 

gastrointestinal parasite of the genus Aggregata spp. (Hochberg, 1990). This eimeriorin 

coccidian infects the digestive tract of cephalopods (Pascual et al., 1996). This coccidian is 

transmitted through the food-web and its merogonic (asexual) development takes place in 

crustaceans which are the intermediate host for a wide range of Aggregata species. The 

gamogonic and sporogonic stages (sexual stages) development of Aggregata octopiana occur 

in their final host, O. vulgaris (Hochberg, 1990). Because of this, development of gametes and 

oocysts of A.octopiana leads to hypertrophy and detachment of digestive epithelial cells in O. 

vulgaris. In heavily infected octopuses, this results in mucosal folds of caecum and ulceration 

of the gut (Gestal et al., 2002a). Moreover, chronic A. octopiana infection also causes 

malabsorption syndrome. The syndrome can be recognized by the malfunction of digestive 

enzymes, preventing correct nutrient absorption, which results in an abnormally low octopus 

weight (Gestal et al., 2002b). Furthermore, this chronic infection reduces the protein plasma 

and the DNA/RNA and RNA/ protein ratios in muscular tissue depending on the intensity of 

infection (Gestal et al., 2007b).  

 Disease outbreaks provoke serious reductions in production with potentially severe 

economic losses. For this reason, knowledge of the immune defense system of cultured 

species is required in order to develop disease prevention and eradication strategies (Roch, 

1999). Currently, knowledge of immune mechanisms in invertebrates, and especially in 

cephalopods is limited. Despite they have an effective innate immune system, they lack an 

adaptive response. Thus, as with other molluscs, the internal defenses of cephalopods rely on 

their immune system composed of two factors: cellular (hemocytes) and humoral (Malham 
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and Runham, 1998). In the first case, phagocytosis results in reactive oxygen and nitrogen 

species production (ROS and RNS, respectively), which are the main defense mechanisms 

executed by hemocytes against pathogens (Cheng, 1975). In the second case, humoral 

components such as agglutinins, lysozymes, opsonins and lectins are diluted into the plasma. 

These humoral components are complementary to cellular defense and maintain the 

organism free of infections (Rögener et al., 1985; Ford, 1992; Alpuche et al., 2010). 

 Innate immunity is no longer seen as a series of simple signaling pathways activated 

by a pathogen binding to a receptor. Neither is the immune response considered only a 

function of the host as it is also regulated by the virulence of the pathogen (Gardy et al., 2009). 

Expressed sequence tags (ESTs) obtained by suppression subtractive hybridization (SSH) 

have been valuable in discovering host-defense genes and for screening differences in gene 

transcription against natural pathogens in different molluscs, including bivalves and 

gastropods (Gueguen et al., 2003; Perrigault et al., 2009; Prado-Álvarez et al., 2009a; Wang et 

al., 2009;Travers et al., 2010). Nowadays, the study of the host-parasite interaction is 

performed through specific fields of research that emerged with the arrival of high-

throughput methodologies and it provides a wide range of information relative to genes 

(genomics), transcripts (transcriptomics), proteins (proteomics) and other molecules and 

their interactions (e.g., metabolomics and pharmacogenomics), even including non model 

species (Gardy et al., 2009). 

 The link between genes and their expression is the field covered by proteomics, which 

focuses on the proteins expressed by the genome of an organism, the proteome (López, 2007). 

Because the proteome is more dynamic than the genome, proteomics brings advantages such 

as analysis of the variation in gene expression, which allows visualizing protein expression 

under the influence of biological perturbations as potential parasites. Additionally proteomics 

enables quantitative and qualitative analysis of the protein pattern expressed by the host, 

tissue or cell and allows the study of protein interactions, their function and even post-

translational modifications. Since several studies have reported a low correspondence (on 

average) between mRNA and protein levels due to post-transcriptional and post-translational 

modifications (PTM), it is not generally possible to predict the number of proteins, their 

abundance or function based on the DNA sequences and for this reason, proteomics provides 

valuable information complementary to genomics and transcriptomics (López, 2007; Diz et 

al., 2012). 
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In parasitology, the study of the proteome of host and parasites allows the identification of 

proteins that might be targets for new drugs (Biron et al., 2005b), the investigation of drug 

resistance dynamics (Barret et al., 2000), the description of manipulative mechanisms used by 

the parasite (Lefevre et al. 2007; Lutz et al., 2011), and the characterization of those proteins 

differentially expressed by the host against an infection (Biron et al., 2005a; Vergote et al., 

2005). In cephalopods, proteins involved in the immune defense have been identified in the 

light organ exudate of the squid Euprymna scolopes containing the symbiotic bacteria Vibrio 

ficheri (Doino et al., 2000; Schleicher and Nyholm 2011). Recently, several proteins related to 

the host innate immunity were identified in the squid’s circulating hemocytes (Collins et al., 

2012). From these analyses, close coordination between host and symbiont systems for 

allowing the establishment of the Euprymna /Vibrio association was revealed. 

 In this particular study, a proteomic approach was used in the O. vulgaris hemolymph 

for the first time and it provides the identification of proteins expressed by octopus 

hemocytes using mass spectrometry analysis. In addition, the proteome of both the hemocytes 

and the plasma of O. vulgaris was analyzed in order to obtain the protein expression profile 

involved in octopus immune response to A. octopiana infection and so identifying possible 

candidate biomarkers. We compared the protein expression maps of octopuses with high and 

low parasitic load, corresponding to sick and healthy individuals, respectively, in order to 

explore the immune status of both conditions and to test whether significant changes 

attributed to the level of infection can be identified in the proteome profile. The present study 

represents the first step in understanding the immune defense mechanisms triggered by O. 

vulgaris against this protozoan parasite. 

  

2. Materials and Methods 

2.1 Specimens collection and hemolymph extraction 

 Specimens of O. vulgaris (n=11) were collected by traditional traps, artisanal fishing 

gear used by local fishermen from the Ria of Vigo (24˚ 14.09’N, 8˚ 47.18’W), Spain. The 

octopuses were maintained in filtered sea water tanks at 15 °C during 24 h. Before 

hemolymph extraction, each octopus was anaesthetized using 7.5% magnesium chloride 

(MgCl2) according to (Messenger et al., 1985) and following ethical procedure 



Proteomics of the O. vulgaris hemolymph 

 

 131 

(Moltschaniwskyj et al., 2007). A dorsal incision was made through the skin and mantle 

muscle behind the head and, with a disposable syringe (1 ml) directly inserted into the 

cephalic aorta, hemolymph was withdrawn. One milliliter of hemolymph from each octopus 

was centrifuged at 12000 × g, 4 °C for 5 min. The plasma and hemocyte samples were stored 

separately at –80 °C until the analysis stage began. 

 

2.2 Isolation and counting of the coccidian Aggregata octopiana 

 The digestive tract from each octopus was dissected and homogenized in 10 ml of 

filter sea water (FSW) 1% Tween80 using an electric tissue grinder (IKA-Ultra Turrax T-25). 

In order to remove tissue fragments, the homogenates were filtered twice with a nylon mesh 

of 100 and 41 µm respectively. The filtrate was then centrifuged 1000 × g, 4 °C, 5 min in a 

centrifuge Beckman GS-15R. Finally, the number of sporocyst was counted in a Neubauer 

chamber. The sporocyst number is measured as the number of parasites infecting a unit gram 

of octopus digestive tract (spor/g) in order to evaluate the parasite infection degree.  

 

 A total of 11 octopuses were caught and the extracted plasma and hemocyte samples 

were divided into two groups: the first showing a high parasite load (4 × 106 to 2 × 107 spor/g; 

hereafter termed the high infection group) and the second having a low parasite load (0 to 5 × 

104 spor/g; hereafter termed the low infection group) (Gestal et al., 2002b). The intensity of 

infection was confirmed through observation of caecum sections processed by standard 

histological methods (Humason, 1979). Samples from octopuses in the low infection group 

were considered as being from healthy animals and were grouped together. The other group 

with samples from octopuses with high infection and important caecum damage were 

considered as being from sick animals. The validity of both groups of infection were 

confirmed using a Student’s t-test analysis (p<0.05) over the sporocyst number data, 

performed in Statistica 6.0 software.  

 

 

 



Proteomics of the O. vulgaris hemolymph 

 

 132 

2.3. Protein extraction 

 Protein from hemocytes and plasma were extracted in lysis buffer [7 M urea, 2 M 

thiourea, 4% CHAPS, 1% DTT, 1% Bio-Lyte 5-8 ampholytes (Bio-Rad) for hemocytes and 2% 

Bio-Lyte 5-8 ampholytes (Bio-Rad) for plasma]. Samples were disrupted by sonication 

(Branson Digital Sonifier 250, Danbury, CT, USA) using 6 blasts of 10% amplitude, 5 s pulse on 

and 5 s pulse off keeping the samples on ice to avoid protein burning. Then, a centrifugation at 

14000 rpm, 14 °C, 30 min was carried out. The supernatant was collected and protein 

concentration measured according to Bradford modified method (Ramagli et al., 1985). 

 Due to the well known problems of getting a well resolved protein spot pattern by 2-

DE analysis when working with plasma (Pernemalm et al., 2009), we first tested different 

sample pretreatments before deciding the best way of proceeding with this type of sample. 

Trichloroacetic acid (TCA) and Amicon Ultra-4, 3K (Millipore) filters were used. However, the 

improvement in the resolution of the protein spot pattern came from using Nanosep 100K 

(PALL Life Sciences) devices. In this way, after plasma sonication, the protein concentration 

was standardized at 1.5 µg/ml in lysis buffer and filtered using Nanosep 100K (PALL Life 

Sciences) devices by centrifugation at 14,000 rpm, 15 °C, 10 min. The filtered fraction less 

than 100 kDa was recovered and the protein concentration was measured again as previously 

mentioned. 

 

2.4 Two-dimensional electrophoresis (2-DE) 

 A total of 11 biological replicates from hemocytes and plasma, i.e. 5 with high infection 

(4 × 106 to 2 × 107 spor/g) and 6 with low (0 to 5 × 104 spor/g) infection individuals were 

analyzed by 2-DE in batches of six gels/samples per run according to a block design in order 

to control the described run-to-run variation (Diz et al., 2007). Four of these samples were 

technically replicated in order to assess the experimental noise in the samples. For analytical 

gels (hemocyte and plasma), 100 µg of total protein were used. Preparative gels (for protein 

identification by mass spectrometry) were performed using 300 µg of total protein 

(hemocytes and plasma). 

 The proteins were separated according to their isoelectric point through IEF, 

performed on immobilized pH gradient strips (pH 5–8/17cm, Bio-Rad Hercules, CA, USA) with 
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a horizontal electrophoresis apparatus Protean IEF System (BioRad) according to the 

manufacturer’s instructions and including an active strip rehydration step (50V). After IEF, 

two steps of strip equilibration (2 × 15’) were performed, one adding DTT and the other, IAA. 

Subsequently, the second dimension of protein separation was undertaken on 12.5% 

polyacrylamide gels (22 × 27 × 0.1cm3) with an Ettan Daltsix electrophoresis system (GE 

Healthcare, Little Chalfont, UK) that allows loading a batch of six gels/samples per run. 

Electrophoresis was carried out at 20 °C, at 15W/gel ~ 6 h until the point at which the 

bromophenol blue front reached the bottom of the gel. Protein spots were visualized by the 

silver nitrate staining method compatible with mass spectrometry analysis (Shevchenko et al., 

1996). Co-migrating broad-range standards (BioRad) were used in the second dimension to 

allow the estimation of molecular masses. 

 

2.5 Image acquisition and analysis 

 Analytical gels were digitized with a calibrated densitometer (GS-800, BioRad) and the 

images were saved as TIFF files. The SameSpots v3.3 software (Nonlinear Dynamics Ltd, 

Newcastle upon Tyne, UK) was used to undertake semi-automatic alignment of gels, spot 

detection and volume measurements. All spots automatically detected by the software were 

exhaustively checked by manual verification of individual spots in order to discard those 

showing clear anomalies or artifacts such as specks as well as those saturated spots. Up to 

70% of the initial spot detections were discarded for further analysis. The absolute spot 

volumes were normalized for each gel and transformed to logarithmic scale. Coefficients of 

variation (CV) and determination (R2) were calculated using the whole protein spot dataset 

from technical replicates according to (Diz et al., 2011) for assessing the experimental 

reproducibility. One- way ANOVA was carried out using the normalized and logarithmic 

transformed volume of each protein spot (the dependent variable) to test for differences in 

the protein expression pattern previous verification of normality (Kolmogorov-Smirnov) and 

homocedasticity (Levene test). Principal Component Analysis (PCA) is a multivariate 

statistical method that allows the identification of the smallest group of principal components 

(PCs) capable of explaining the maximum variance from the original data. Therefore, 

significant spots from both tissue samples (hemocytes and plasma) were analyzed by PCA to 

assess whether or not these candidate spots might represent a confidence protein expression 

signature for discerning the level of infection (low vs. high) in this type of sample. In order to 
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reduce the number of false positive spots (Diz et al., 2011), a multitest correction SGoF+ 

(Carvajal-Rodríguez and de Uña-Álvarez, 2011) was applied to the p-values obtained from a 

priori tests (p<0.05). Calculations were carried out in SGoF+ v7.0 software (Carvajal-

Rodríguez and Uña-Álvarez, 2011). SGoF+ is a new multiple test adjustment based on a 

sequential goodness of fit test (SGoF) (for more details consult Carvajal-Rodríguez and Uña-

Álvarez, 2011; Carvajal-Rodríguez et al., 2009). Additionally, the fold change (FC) in the 

expression level between sample groups of both infection conditions was calculated for every 

protein spot of plasma and hemocytes. In order to test if an additional biological factor (sex) 

could have an effect on the expression levels observed in each protein spot (the dependent 

variable), a two-way ANOVA including infection and sex (both as independent variables) were 

performed. All the former statistical analyses were carried out in SPSS package (v14.0).  

 

2.6 Mass spectrometry analysis for protein identification 

 The spots of interest were cut out from gels, destained using 15 mM potassium 

ferricyanide/50 mM sodium thiosulfate and washed sequentially with ammonium 

bicarbonate 25 mM and 50% ACN/ammonium bicarbonate 25 mM, in an ultrasonic bath. 

Then, proteins were reduced by treatment with 10 mM DTT for 1 h at 56 ºC and alkylated 

with 55 mM IAA for 30 min at room temperature. The trypsin digestion was accomplished 

with 15 µl (0.2 µg/µl) of trypsin (Promega) in 25 mM ammonium bicarbonate per spot at 37 

ºC overnight. Tryptic peptides were extracted from the gel matrix in two steps with 0.1% 

(v/v) TFA and 100% (v/v) ACN, dried and re-dissolved in 2 μL TFA 0.5%/ACN 33% (v/v). The 

analysis of tryptic peptides was carried out by matrix-assisted laser desorption/ionization 

time of flight tandem mass spectrometry (MALDI-TOF/TOF MS) with an Autoflex III 

smartbeam (Bruker Daltonics). Typically, 1 µL were mixed with the same volume of CHCA 

matrix solution (3 mg/mL, Bruker) in acetone 50%/ethanol 50% (v/v) onto a disposable 

AnchorchipTM MTP-sized MALDI target. The data was acquired and analyzed using the 

flexControl v3.0 and flexAnalysis 3.0 software (Bruker Daltonics), respectively. The higher 

peaks obtained by MALDI-TOF were selected to be further characterized by TOF/TOF 

analyses. Data were generated in PKL file format, and were submitted for database searching 

by BioTools v3.2 software (Bruker Daltonics) through the version 2.3.0 of the MASCOT search 

engine (Matrix Sciences). Three searches were conducted; the first one against SwissProt 

2012_05 (536029 sequences; 190235160 residues) and the second against NCBInr 20121216 
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(22069917 sequences; 7576678142 residues) databases. Search parameters were set as 

follows: taxonomy Metazoa; enzyme trypsin; allowance of one missed cleavage site; 

carbamidomethyl of cystein as fixed modification; oxidation of methionine as variable 

modification; monoisotopic mass values; 100 ppm of mass tolerance for precursor ions; 0.5 

Da of mass tolerance for fragment ions and protein mass unrestricted. Protein hits were 

considered significant when scoring above the p<0.05 threshold. A third search was 

performed against an O. vulgaris protein sequence database generated from transcriptomic 

data (RNA-seq) of hemocytes from highly and lowly infected specimens and this aspect of the 

analysis will be the subject of a separate manuscript (in prep.). Search parameters were the 

same as mentioned, with taxonomy ignored.  

 Protein spots that showed significant differences (p<0.05) between infection groups 

were also analyzed by nano-electrospray ionization MS/MS (ESI-MS/MS) with a FTICR Apex-

Qe (Bruker Daltonics). LC separations were performed using an Ultimate 3000 HPLC system 

(Dionex), operated at a flow rate of 250 nL/min onto a 75 mm x 15 cm, 3 micron particle size 

C18 reversed phase column (Acclaim PepMap 100 from Dionex). Peptides were eluted using a 

linear gradient starting at 98 % A (0.1 % formic acid in water) and ending at 50 % B (0.1 % 

formic acid in ACN) during 60 minutes. Mass measurements were taken from m/z 200 to 

2000 and data-dependent MS/MS was performed on multiple charged precursors. A cell fill 

time of 0.5 s was used for MS measurements and 1 s for MS/MS. Data was acquired using the 

ApexControl v1.1 software (Bruker Daltonics). Data files were processed using the software 

Data Analysis v4.0 SP 2 (Bruker Daltonics) generating a Mascot generic file (mgf). The mgf 

files were submitted for database searching against the NCBInr 20121021 (21165401 

sequences; 7253190834 residues) database using the MASCOT v2.3.0 search engine (Matrix 

science). All the parameters for database search were kept as described before, differing in 7 

ppm of mass tolerance for precursor ions and 0.01 Da of mass tolerance for fragment ions.  

 

 

 

 



Proteomics of the O. vulgaris hemolymph 

 

 136 

3. Results 

3.1 Two-Dimensional protein profile of O. vulgaris hemocytes 

 The protein spots from hemocytes were regularly distributed over the 2-DE gel map, 

and following a quick visual inspection, showed a similar pattern in samples from both groups 

of infection. More than 1000 spots per gel were observed but, after filtering, only 524 were 

retained for analysis. The one-way ANOVA over the normalized and logarithmic transformed 

spot volumes resulted in 42 significant (p<0.05) spots between high and low infection 

samples (Fig.1). After performing the SGoF+ correction a total of 20 spots remained 

significant which confirms these spots as candidate genes for further studies. Concerning the 

PCA carried out using the hemocytes dataset, the information from significant spots (p<0.05, 

before SGoF+ correction) was reduced to two components that described the 62% of variation 

observed in this proteomic data (Fig. 2). It can be observed that the information of this set of 

significant spots provides a proteomic signature capable of displaying samples in the PCA 

graph separately in two different groups according to their level of infection. From the two-

way ANOVA, none of the spots was found significant (p<0.05) either for sex or for interaction 

between infection and sex. Thus, there is no evidence that the sex of octopuses has an effect 

over the proteome variation analyzed in this study and so discards any kind of bias in our 

result due to this factor. The coefficient of variation (CV) was computed for every spot 

between technical replicates and finally averaged for all spots and technical replicates. An 

average CV of 25% was obtained, which is lower than the 42% of biological variation found in 

our samples and the 30% quoted by (Molloy et al., 2003). The calculation of the coefficient of 

determination (R2) is another good way to measure the technical error between replicates. It 

was calculated by comparing all normalized spot volumes in every pair of technical replicates 

analyzed. These values (R2) ranged from 0.63 to 0.85, which is in agreement with those 

reported by (Diz and Skibinski, 2007).  
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Fig. 1. Protein pattern spots of Octopus vulgaris hemocytes. Identified significant spots (before 

SGoF correction) are showed in white circle. Identified no significant spots are showed in 

black circle. 
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Fig. 2. Plot obtained after PCA of the 42 significant protein spots. Two groups corresponding 

to High (solid line) and Low (broken line) infection can be differentiated. 

 
 

3.2 Two-Dimensional protein profile of O. vulgaris plasma 

 In line with hemocytes 2-DE proteome maps, the protein spot pattern observed was 

similar in plasma samples from both groups of infection. The 2-DE gel image analysis showed 

a total of 600 spots per gel. However, after manual verification, this number was reduced to 

126 well-resolved spots (Fig. 3). One-way ANOVA analyses on these protein spots resulted in 

only 6 significant (p<0.05) spots between both groups of infection. After applying SGoF+ 

correction any spot remained significant. The average coefficient of variation (CV) across 

spots from technical replicates resulted in 47%. This high technical variation is due to the 

sample fractionation procedure, a necessary step in order to get an acceptable and well-

resolved protein spot pattern after 2-DE. This high technical variation shows that despite the 

method used in the protein extraction (see m&m) to improve the resolution of the 2-DE 

protein map, compared to others methods, it performs quite poor enhancement in terms of 

reproducibility. This fact, makes difficult to detect any significant differences in protein 

expression between samples from both groups of infection through ANOVA analyses due to 

(on average) high noise-to-signal ratio. PCA analysis did not produce any meaningful result 
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(data not shown) unlike to hemocyte data. Therefore, quantitative results from plasma 

samples should be interpreted with great cautious.  

 

Fig. 3. Protein pattern of Octopus vulgaris plasma. Identified not significant spots are showed 

in black circle. Protein spots in rectangle were not identified but favorable spectra obtained. 

In white rectangle is showed a significant spot (before SGoF correction). 

 

3.3. Identification of protein spots 

 Protein spots that showed significant differences (p<0.05) between infection groups, 

and few others representing the most intense spots, were subjected to in-gel trypsin digestion 

and mass spectrometry (MS) analysis for protein identification. Table 1 summarizes the data 

from 39 spots corresponding to 36 proteins from hemocytes. Only five spots (1749, 2013, 

2815, 3125, and 4285) were successfully identified in public databases. In contrast, a total of 

34 proteins were successfully obtained through the O. vulgaris’ hemocytes transcriptome 

database (Table 1). Among the total spots identified, actin isoforms (spots 1749, 2013), 

peroxiredoxin (spot 3125), glutamate DH (spot 1572), fascin (spot 1566), isocitrate DH (spot 
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2051), filamin (spot 4248), Rho GDP (spot 3024) and peptidase c1-like protein (spot 2379) 

dissociation inhibitor were found. Most were significant protein spots and were found up-

regulated in octopuses with high infection except actin, peroxiredoxin and 6-

phosphogluconolacton (spot 2916), which were found down-regulated in octopuses highly 

infected by A. octopiana (Table 1).  

 In plasma samples, 23 spots were excised and 5 spots (825, 909, 1001, 1082, 947) 

were positively identified as the respiratory protein hemocyanin. Despite some other spots 

from hemocytes and plasma showed good spectra, they were not properly identified mainly 

due to the scarce representation of mollusc sequences in public databases and the absence of 

an assembled cephalopod genome.  
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4. Discussion 

 O. vulgaris is a valuable species for industrial aquaculture (Vaz-Pires et al., 2004). 

For many aquaculture species, diseases are the primary constraint. Octopuses like other 

molluscs present a powerful innate immune defence mechanism. However, they lack 

immune memory and it is therefore not possible to use vaccines for preventing diseases. 

Likewise drugs cannot be used, since octopuses are reared in suspended cages in the sea 

(García-García et al., 2004; Gestal et al., 2008). To date, functional and molecular 

mechanisms of cephalopod immune response are poorly studied. For this reason, better 

knowledge of octopus immune defense mechanisms will be valuable in managing diseases 

related to culture facilities and in identifying potential biomarkers of disease resistance 

that in turn will allow the selection of resistant traits for developing breeding programs. 

 Proteome changes have been found either in plasma or hemocytes of Biomphalaria 

glabrata (Bouchut et al., 2006), oyster Ostrea edulis (Cao et al., 2009), ascidian Halacynthia 

roretzi (Cha et al., 2011) and zebra mussel Dreissena polymorpha (Riva et al., 2011) after a 

period of exposure to pathogens or toxic chemicals. In cephalopods, a proteomic overview 

of the symbiotic relationship between the sepiolid E. scolopes and V. fischeri showed that 

bacteria induces differential expression of distinct protein spots once colonized the light 

organ (Doino and McFall-Ngai, 2000). Host and symbiont express proteins that allow only 

V. fischery colonizing the host. At the same time, the host expresses proteins to protect 

itself against cytotoxic damage triggered for avoiding the establishment of non-symbiotic 

bacteria (Schleicher and Nyholm, 2011;Collins et al., 2012). 

 In the present work, a proteomic approach was followed for the first time in the O. 

vulgaris hemolymph. In this way, the proteome expression signature of the octopus 

hemolymph (hemocytes and plasma) is presented. Additionally, the hemolymph protein 

pattern differentially expressed against the parasite A. octopiana is reported, providing 

evidence for the influence of the parasite over the octopus immune response. A 

comparative study was conducted in circulating hemocytes and plasma from octopuses 

with high and low parasite infection degree, corresponding to sick and healthy animals 

respectively, in order to detect changes in the protein expression and to identify those 

proteins potentially involved in the octopus immune defense. 

 The proteome of hemocytes and plasma presented in this study showed significant 

differences between groups of infection. All the octopuses analysed were sampled at the 

same locality, exposed to the same environmental conditions, showing similar length 

(DML: dorsal mantle length), weights and gonadic development (corresponding to 
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maturing or mature stages as reported by (Otero et al, 2007) to the same area). The only 

observed difference was the A. octopiana infection degree. Therefore, the changes 

observed in the expression of proteins between groups should be due to the effect of the 

parasite.  

 The PCA carried out using the normalized volume of 42 significant hemocyte spots 

gave rise to two main components that explained the 62% of variance. This result 

indicates that variances brought about the alteration of the significant spots volumes are 

attained to the A. octopiana infection. The separation of the groups by the PC1 was of 51%. 

Among the proteins identified with more contribution to PC1 were sodium channel, fascin, 

glutamate DH, 6-phosphogluconolacton, peroxiredoxin, filamin and ATP synthase. 

Therefore, such proteins are suitable to study as potential biomarkers involved in the 

octopus immune response against A. octopiana. Furthermore, significant differences (1-

way ANOVA, p<0.05) in the protein expression pattern according to the low or high 

infection by A. octopiana reinforce the observed results. Our analyses rule out that these 

results are sex biased as no significant differences were found for this factor (2-way 

ANOVA, p>0.05).  

 Despite the fact that protein databases of cephalopods and specifically of O. 

vulgaris are scarce, metabolic (carbonic anhydrase), energetic (ATP synthase) and 

antioxidant (peroxiredoxin) proteins were successfully identified by homology-search to 

all sequence data available in public databases (Table 1). The identification of these 

proteins was confirmed by repeating the search against an unpublished protein database 

(RNA-seq database translation to 6-reading frames) of O. vulgaris hemocytes which is the 

subject of a separate manuscript (in prep.). Moreover, this latter approach allowed the 

additional identification of 34 protein spots, providing information related to proteins that 

regulate cell functions (protein kinase), cytoskeleton component (filamin) and proteins 

with a role in metabolic process like glycolysis (phosphoglycerate kinase) and 

tricarboxylic cycle (isocitrate dehydrogenase) (Table 1) not yet reported in octopus 

hemocytes. It was not possible to identify these proteins by the former approach which 

highlights the need to develop the cephalopod’s genomic field in order to make an 

inventory of protein-coding and non coding genes available (Albertin et al, 2012). Finally, 

among the 39 hemocyte protein spots selected for identification by MS/MS, a total of 36 

proteins were successfully identified. Of these, a total of four spots (1566, 1749, 2013, 

4248) corresponded to actin isoforms and cytoskeletal proteins, two spots (2815 and 

4285) were proteins related to cellular energy (ATP synthase and carbonic anhydrase), 
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while most of the spots were proteins involved in different metabolic process, and one of 

these (3125) corresponded to the antioxidant protein, peroxiredoxin (Table 1). 

 Actin is involved in cytoskeletal structure and is valuable for numerous cellular 

processes such as cell division, cell organization and motility, and because of this, it is 

commonly found in proteomic studies (Riva et al., 2011; Goodson and Hawse, 2002; 

Martínez-Fernández et al., 2008). Additional cytoskeletal proteins filamin (spot 4248) and 

fascin (spot 1566) were identified in O. vulgaris hemocytes. As a structural protein, filamin 

is related to cell functions as motility or maintenance of shape. The filamin gene was found 

over-expressed in Ostrea edulis hemocytes challenged with live Bonamia ostrea. After the 

hemocyte-parasite contact, the phagosome is formed resulting in an increase of 

cytoskeleton polymerization which internalizes and destroys the parasite (Morga et al., 

2011). Filamin is recognized as a structural protein, though it can also play an important 

role as an interface in protein-protein interactions, usually interacting with membrane 

receptors for cell signaling molecules. This protein takes an active role in signaling 

pathways through the activation of NF-ĸB with a key function in regulating the immune 

response to infections (Vasselon and Detmers, 2002; Feng and Walsh, 2004). In relation to 

the cell structure, fascins represent a family of actin-bundling proteins responsible for 

membrane protrusions and formation of actin bundles present in filopodia. Because of 

this, fascins participate in extending membranes for cell motility and phagocytic defense 

(Yamashiro et al., 1998). Filamin and fascin were identified up-regulated in the proteome 

of highly infected octopuses, suggesting that they could be related to the host immune 

response and phagocytic process during the infection by A. octopiana. ATP synthase was 

also found in the proteome of the octopus hemocytes. ATP synthase is an integral 

membrane enzyme. It catalyzes ATP hydrolysis and supplies energy in order to maintain 

the electrochemical gradient, the regulation of cell volume, the synthesis of 

macromolecules, ion transport and ionic integrity, which also activates the immune 

defense carrying out defense actions as phagocytosis (Buttgereit et al., 2000; Huang et al., 

2011; Coyne, 2011). 

 The antioxidant protein peroxiredoxin (spot 3125) was down-regulated (0.53 fold 

change) in octopuses highly infected by A. octopiana. Thus, a faint spot or completely 

absent was seen in this octopus group, while a strong spot was observed in octopuses with 

low infection. Similar to their mollusc relatives, octopuses depend on their innate immune 

defense to protect themselves against invaders (Ford, 1992). The hemocytes play a crucial 

role in the host's immune functions. They are involved in cytotoxic reactions when the 

organism is attacked by pathogens, which induce release of high levels of reactive oxygen 
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species (ROS) and consequently, oxidative stress (Chu, 2000). However, the host cells can 

also be damaged by ROS in membrane properties like ion transport, protein cross-linking, 

DNA strand scission, protein oxidation and lipid peroxidation (Bandyopadhyay et al., 

1999). Therefore, an antioxidative system is needed to protect against oxidative stress. 

Such is the case of peroxiredoxins, antioxidant proteins present in prokaryotes and 

eukaryotes with a major common function of enzymatic degradation of hydrogen peroxide 

(Immenschuh and Baumgart-Vogt, 2005). In Drosophila melanogaster, detoxification by 

peroxiredoxin is the key to protecting the epithelia gut against the oxidative stress after 

bacterial infection (Ahn et al., 2012). Likewise, peroxiredoxin protein has been identified 

in E. scolopes light organ, where the symbiont (V. fischeri) must overcome an oxidative 

microenvironment to colonize the host (Schleicher and Nyholm, 2011), however, the 

precise role of peroxiredoxin in this symbiotic relationship has not yet been clarified.  

 The differences in peroxiredoxin expression level observed in our results suggest 

different ability of individuals to deal with ROS. The intense spot clearly observed in 

octopuses with low infection allude to their ability in attacking pathogens through 

cytotoxic response. In this case, consequences derived from oxidative stress can be 

handled by cells and this does not seem to occur in highly infected octopuses. According to 

functional assays, we have observed an inverse relationship among the octopus immune 

response and the infection intensity by A. octopiana. Nitric oxide (NO) and ROS showed a 

weak, but not significant decrease in highly (up to 3.6 x 106) infected octopuses 

(Castellanos-Martínez and Gestal, in press.). A noticeable but not significant decrease of 

ROS was also detected in Crassostrea virginica hemocytes exposed to 3.7 x106 Perkinsus 

marinus cells, unless the infection reached at least to 7.5 x 106 cells, in which case the ROS 

decreased significantly (Volety and Chu, 1995).  

 The inhibition or suppression of ROS is a mechanism commonly employed by 

parasites like P. marinus and B. ostreae to enter the host cells without triggering the 

respiratory burst (Morga et al., 2011; Volety and Chu, 1995). In case of A. octopiana, the 

parasite infects the octopus digestive tract which in turn, causes malfunction of digestive 

enzymes (Gestal et al., 2002b). However, a heavy A. octopiana infection also causes a 

decrease in the number of circulating hemocytes; this result indicates an effect of 

parasitosis on the octopus immune system (Gestal et al., 2007b). The absence of 

peroxiredoxin in circulating hemocytes from octopuses heavily infected could therefore be 

a suppressive mechanism of ROS. On the other hand, a second hypothesis may be stated: 

once A. octopiana is established in the caecum it starts a chronic infection. Typically, 

hemocytic infiltration and fibrotic reaction is observed in the tissue infected (Gestal et al., 
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2002a). Hemocytes enclose parasites and become susceptible to nitrogen and oxygen 

radicals. After that, production of NO and ROS is continuously produced by infiltrated 

hemocytes to the point where oxidative stress is high enough to reach equilibrium despite 

not inducing irreversible cell damage (Novo and Parola, 2008). Because of this, 

peroxiredoxins may be almost inactive. Considering the expression differences in 

octopuses with low and high infection, gene encoding peroxiredoxin shows activation in 

the former group. In this case, the protein abundance and presumably differential 

transcription according to the infection remains to be elucidated. 

 Additional proteins that showed significant differences in expression between 

levels of infection were identified as glutamate DH, isocitrate DH, sodium channel and 

phosphogluconolactonase; the former three proteins were up-regulated in high infected 

octopuses, while phosphogluconolactonase was down-regulated in the same group, 

suggesting that cellular processes are differentially affected by the level of infection. 

Consequently, these proteins require further study in order to reveal their specific role 

during coccidiosis and to assess the validity of those proteins that, according to PCA, are 

potential biomarkers. Proteins such as enolase, ubiquitin and mitochondrial malate DH, 

highly conserved proteins with roles in metabolism and cellular functions, did not show 

significant differences in expression in high compared to low infected samples (Table 1).  

 Complementary to cellular factors, the octopus immune defense is carried out by 

molecules dissolved in the plasma, collectively named humoral factors (Malham and 

Runham, 1998). Some of these molecules are potentially useful biomarkers of infection, of 

disease resistance, or possible targets to combat parasites (Barret et al., 2000). Therefore, 

an attempt to search for differential expression of proteins present in the O. vulgaris 

humoral factors was undertaken. Nevertheless we encountered problems in obtaining a 

well-resolved proteome map by 2-DE. Plasma is a challenging biological material due to 

the high dynamic range of protein concentration, and is usually dominated by few highly 

abundant proteins that make good resolution difficult  after protein separation by 2-DE. 

For this reason, a common approach is to reduce the high range of concentrations by 

fractionation, typically based on antibody affinity (Pernemalm et al., 2009) to eliminate 

those few highly abundant proteins. Nevertheless, no specific method has yet been 

developed for octopus plasma. Thus, pretreatment of samples using filters Amicon® Ultra-

4, 3K (Millipore) and protein precipitation by TCA were assayed in the present study. 

However differences in the proteome obtained with both methods were observed, since a 

limited representation of proteins was obtained mainly using TCA. Therefore, 

pretreatment of octopus plasma was assessed using Nanosep devices 100K (PALL 
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Corporation). The major protein contained in the octopus plasma, hemocyanin (Rögener 

et al., 1985; Van-Holde and Miller, 1995) was partially retained, which help to observe 

those less abundant proteins in the 2-DE protein map. Certainly any golden standard 

method exists in plasma proteomics due to every method has its own limitations 

(Pernemalm et al., 2009), but in order to find those proteins poorly represented in the 

octopus proteome and putatively involved in the cephalopod immune response, a trade-off 

between improved sample quality and complete protein representation was carefully 

considered. Derived from the method followed to research differential expression of the O. 

vulgaris humoral factors, 23 spots including 6 significant (before multitest correction 

SGoF+) and others from the most intense spots were selected for identification. From 

these, only 5 spots were positively identified as hemocyanin, the main protein freely 

dissolved in the octopus hemolymph and responsible of oxygen transportation (Rögener 

et al., 1985; Van-Holde and Miller, 1995). Two additional spots (3658, 2126) with good 

spectra could not be identified because the lack of sequences in public databases. Further 

studies will be performed to clarify the identity of such unknown proteins and to 

determinate whether they are involved in the octopus humoral defense system. 
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5. Concluding remarks 

 The proteomic approach applied in this study revealed, for the first time, the 

protein composition of hemocytes and plasma of O. vulgaris and allowed the study of the 

relationship between O. vulgaris and its parasite A. octopiana. The proteome of the O. 

vulgaris hemocytes and plasma were successfully obtained from individuals with different 

levels of A. octopiana infection. Moreover, important proteins showed different levels of 

expression in response to the infection by A. octopiana allowing the discovery of a protein 

expression signature. A total of 36 proteins were identified from hemocytes, and seven of 

them are suggested as candidates for biomarkers by PCA. The proteins filamin, fascin and 

peroxiredoxin are highlighted because of their implication with defense activity. Despite 

the little available information concerning the role of hemocytes in the octopus immune 

response and its susceptibility or resistance to infection, the results stated here showed 

that octopus hemocytes are capable of fighting against pathogens activating several 

proteins. Moreover, the up- and down- regulated proteins identified in this study may 

establish the initial basis for the octopus susceptibility/resistance research in a natural 

host-parasite relationship, and are suitable for study as potential biomarkers for pathogen 

resistance. Future molecular characterization and functional studies should be aimed at 

determining the precise role of the proteins identified here in the coccidiosis and in the 

octopus immune defense. 
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II. RESUMEN 

II.1. Introducción 

 Octopus vulgaris Cuvier, 1797 es una de las especies de cefalópodos más importantes tanto en 

pesquerías mundiales como en acuicultura. Galicia es la Comunidad Autónoma pionera en cultivo de 

pulpo el cual, es ya uno de los recursos alternativos más importantes para diversificar la acuicultura. 

Para obtener una buena producción acuícola también es importante mantener buenas prácticas 

sanitarias, lo que implica erradicar y prevenir enfermedades de los organismos en cultivo. Para ello, el 

primer paso es identificar los patógenos para poder combatirlos, y en segundo lugar es de gran 

importancia conocer cómo actúa la respuesta inmune del pulpo ante patógenos. De esta manera, se 

podrán elaborar estrategias enfocadas a mantener una adecuada sanidad acuícola, y  se establecerán las 

bases moleculares para identificar y seleccionar pulpos resistentes a la infección. Uno de los patógenos 

mas importantes que afectan al pulpo O. vulgaris es el protozoo gastrotintestinal Aggregata octopiana. 

Por ello, en la presente tesis se abordó el estudio de la respuesta inmune celular del pulpo común frente 

a la infección por A. octopiana, analizando la interacción hospedador-patógeno tanto a nivel funcional, 

como transcriptómico y proteómico.  

 

 El presente resumen está enfocado en resaltar los resultados más relevantes de la tesis 

doctoral. Con el objetivo de facilitar la comprensión de los mismos, éstos serán descritos 

individualmente por capítulos. 
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II.2. Capítulo 1. Análisis filogenético molecular de los coccidios 

parásitos de cefalópodos Aggregata octopiana y Aggregata eberthi 

(Apicomplexa: Aggregatidae) del Atlántico NE usando secuencias del 

gen 18S rARN 

 En Europa hay tres especies reconocidas de coccidios: Aggregata octopiana es el 

coccidio que infecta a Octopus vulgaris; Aggregata eberthi es el coccidio que infecta a Sepia 

officinalis (Gestal et al., 1999); y Aggregata sagittata, que infecta a la pota Todarodes sagittatus 

(Gestal et al., 2000). Al igual que otros coccidios, las tres especies especies se identifican con 

base en caracteres morfológicos tales como diámetro del esporoquiste, estructura de la pared 

del mismo, el número de esporozoítos dentro de cada esporoquiste, así como la especie de 

cefalópodo que infectan, ya que los coccidios son altamente específicos de sus hospedadores 

definitivos (Hochberg, 1990; Gestal et al., 1999). El objetivo de este capítulo fue realizar la 

caracterización molecular de A. octopiana y A. eberthi, ya que ambos parásitos infectan a los 

cefalópodos con mayor importancia económica en la región. De esta manera, se complementa 

la descripción morfológica existente con información molecular del gen 18S rARN y a su vez, 

se confirma la afiliación taxonómica de ambos coccidios mediante un estudio filogenético.  

 Hasta ahora, las únicas secuencias disponibles en GenBank de ambos parásitos son las 

depositadas por Kopečná et al. (2006) usando el gen 18S rARN. Los parásitos fueron aislados 

del tracto digestivo de O. vulgaris y S. officinalis del Mar Adriático (Croacia) e identificados 

como A. octopiana y A. eberthi, respectivamente. Ambas secuencias se utilizaron como 

referencia para comparar con las especies de coccidios secuenciadas de la Ría de Vigo. Así, se 

determinó la afinidad filogenética de los coccidios de la Ría de Vigo y su similitud con las 

especies del Mar Adriático.  

 Los caracteres morfológicos observados mediante histología, microscopía óptica y 

microscopía electrónica de barrido (MEB) de A. octopiana y A. eberthi de la Ría de Vigo fueron 

consistentes con la información previamente descrita de ambas especies en el Atlántico NE 

(Dobell, 1925; Gestal et al., 1999b).  

 

 En el análisis filogenético, los coccidios de la Ría de Vigo formaron un grupo 

monofilético con los coccidios de Croacia, respaldado por un bootstrap del 100%. Los 

coccidios de la familia Aggregatidae formaron un clado con las especies del género Klossia, 
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Hepatozoon y Adeleorina sp. (bootstrap 100%). De éstas, los coccidios del género Adelina 

mostraron una posición basal, coincidiendo con los resultados obtenidos por Kopečná et al. 

(2006). De esta manera, los parásitos Adeleorinidos se ubican como los miembros más 

antiguos del grupo de los Eucoccidiorida, tal como lo establece Levine (1985), compartiendo 

con los aggregatidos algunas características como son la formación de esporoquistes y la 

presencia de una sutura longitudinal (Gestal et al., 1999b; Kopečná et al., 2006). Cabe 

mencionar que en el presente estudio, al igual que los resultados obtenidos por Kopečná et al. 

(2006), no fue posible discriminar con exactitud la posición y relación filogenética del género 

Aggregata debido a las escasas secuencias disponibles. Por tanto, se requiere aumentar el 

número de secuencias disponibles de diversos coccidios, así como encontrar nuevos 

marcadores genéticos que permitan resolver la relación filogenética entre estos parásitos 

(Barta et al., 2012). 

 Por otra parte, se observó una divergencia genética del 15.9% entre la especie A. 

octopiana de la Ría de Vigo y A. octopiana de Mar Adriático. Mientras que la divergencia 

genética fue de tan sólo 2.4% entre A. eberthi de la Ría de Vigo y A. eberthi del Mar Adriático. 

La divergencia genética entre especies de A. eberthi indica una divergencia conespecífica 

(diferencias entre poblaciones de la misma especie). En cambio, la divergencia genética entre 

especies de A. octopiana sugiere que éstas corresponden a especies distintas. Los escasos 

registros de coccidios que infectan a O. vulgaris en el Mar Adriático son confusos, por lo cual 

no permiten precisar la especie de la que se trata. Los registros disponibles del Mar Adriático 

indican que el diámetro de los esporoquistes de A. octopiana es similar al registrado para A. 

octopiana en el Atlántico NE. Sin embargo, las características más conspicuas de la especie 

como son la pared espinosa y 8 esporozoítos dentro de cada esporoquiste no coinciden. Una 

posible explicación es que el pulpo O. vulgaris en el Mar Adriático corresponda a una 

población distinta a la que habita en el Atlántico NE. De hecho, aún no está definido si O. 

vulgaris corresponde a una sola especie cosmopolita o es un “complejo de especies” formado 

por especies crípticas (Guerra et al., 2010). Por tanto, se considera que existen distintas 

poblaciones con diferencias en las estructuras reproductivas y parásitos específicos (Mangold, 

1998; Guerra com. pers.). Debido a que los coccidios son altamente específicos de sus 

hospedadores definitivos, las diferencias que muestran los coccidios del Mar Adriático 

(Mladineo y Jozić, 2005; Mladineo y Bočina, 2007) sugieren que las distintas poblaciones de 

pulpo albergan distintas especies de parásitos del género Aggregata. 
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 Por tanto, tomando en cuenta la evidencia morfológica previa (Gestal et al., 1999b; 

Gestal y Pascual, 2002; Gestal et al., 2002c), la especificidad hospedadora y la nueva evidencia 

molecular, se concluye que la especie A. octopiana que parasita a O. vulgaris en la Ría de Vigo 

(NW España, Atlántico NE) es la especie válida. Además se confirma que A. eberthi es la 

especie que infecta a S. officinalis en la misma localidad. Asimismo, los datos moleculares 

validan los caracteres morfológicos como herramientas útiles para identificar correctamente 

ambas especies de coccidios. 

 

II.3. Capítulo 2. Caracterización morfológica, citométrica y funcional 

de los hemocitos del pulpo común (Octopus vulgaris) 

 Los hemocitos son células presentes en la hemolinfa circulante de los moluscos y están 

involucradas en funciones tales como reparación de tejido dañado, transporte de nutrientes, 

pero también tienen un papel importante en la defensa interna del organismo (Cheng, 1975; 

Chu, 2000). Hasta ahora, en cefalópodos, usando técnicas de microscopía óptica y electrónica, 

se reconoce sólo un tipo de hemocito de aspecto redondeado, con numerosos gránulos en el 

citoplasma y un núcleo en forma de U, que los asemeja a monocitos de mamíferos (Cowden y 

Curtis, 1981; Malham y Runham, 1998). El presente estudio es el primero en introducir la 

citometría de flujo para caracterizar los hemocitos del pulpo y medir la actividad fagocítica y 

producción de radicales de oxígeno en dichas células. Conjuntamente, se midió la producción 

de óxido nítrico en hemocitos ante distintos estímulos. El estudio se complementó con el 

análisis de los hemocitos mediante microscopía óptica, microscopía electrónica de barrido 

(MEB) y de transmisión (MET) combinadas con técnicas citoquímicas. La citometría de flujo 

separa las células en función del tamaño y la complejidad de las mismas, determinada por la 

cantidad de gránulos presentes en el citoplasma. 

 En el caso de la hemolinfa del pulpo, mediante la observación de células por 

microscopía óptica y electrónica (MEB y MET) se observaron dos tipos celulares. El primero 

de ellos es de tamaño grande (Tabla I), presenta el núcleo en forma de U, con numerosos 

gránulos en el citoplasma y se ha denominado granulocito grande. El segundo tipo celular fue 

denominado granulocito pequeño,  presenta el núcleo redondeado u ovalado, poco citoplasma 

e incluso algunas células tienen una fina capa de citoplasma apenas visible, presentan pocos 

gránulos o bien pueden estar totalmente ausentes. Estas células son pequeñas aunque con una 

gran variabilidad de tamaños (Tabla 1). Una vez teñidas, se confirmaron las características 



Resumen en español 

 

 159 

celulares antes mencionadas. Se distinguieron gránulos basófilos en el citoplasma de las 

células (Tabla 1). Ambos tipos celulares se observaron también mediante MEB. Los 

granulocitos grandes observados (11 µm) mostraron gran capacidad para adherirse a la 

superficie. Particularmente, los granulocitos grandes observados mediante MET presentaron 

numerosos gránulos electron-densos y gránulos electron-claros redondeados,  y 

ocasionalmente se observaron algunos gránulos en forma de bastón. Entre los gránulos 

observados se distinguieron algunos depósitos de glicógeno y lysosomas. Por su parte, 

mediante MEB los granulocitos pequeños mostraron una superficie celular irregular y 

presentan pseudópodos mas finos que en el caso de los granulocitos grandes extendidos sobre 

la superficie. Sin embargo, no fue posible observar granulocitos pequeños mediante MET 

debido a que aparecen en menor proporción que los granulocitos grandes. 

 

Tabla 1. Diámetro de al menos 200 hemocitos medidos en distintas muestras y técnicas 

(media ± DS). 

Tipo de hemocito Células en 
suspensión 

Células teñidas 
Células aisladas 

por Sortin 

Granulocito 
Grande 

10.57 µm ± 0.41 
(10-12.57) 

12.5 µm ±1.10 
(10.23-14.97) 

11.6 µm ± 1.2 
(9.32–15.56) 

Granulocito pequeño 
9.27 µm ± 0.68 

(5.55-9.98) 
9.12 µm ± 0.71 

(7.98 – 9.9) 
8.12 µm ± 0.74 

(6.69 – 9.99) 

 

 

 Mediante citometría de flujo se confirmó la presencia de dos poblaciones celulares con 

distintas características de tamaño y complejidad denominadas R1 y R2. De acuerdo con la 

citometría, la principal población de células (R1) conforma el 82% de la hemolinfa del pulpo, 

son células de tamaño grande y presentan numerosos gránulos, por lo cual tienen mayor 

complejidad. En cambio, las células de la segunda población (R2) conforman el 18% restante 

de la hemolinfa; son de menor tamaño que las células de R1 y presentan pocos gránulos. Por 

tanto tienen menor complejidad. Ambas poblaciones celulares se aislaron mediante sortin. De 

esta manera, se observó que el diámetro de los hemocitos de R1 (Tabla 1), el núcleo en forma 

de U, cantidad de citoplasma y granularidad es consistente con las características observadas 

en los granulocitos grandes. Por su parte, las células aisladas de R2 mostraron una amplia 
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variación de diámetros (Tabla 1), el núcleo es ovoide o circular y presentan pocos o ningún 

gránulo en el citoplasma. Por tanto, tales características los clasifican como granulocitos 

pequeños. 

 En cefalópodos, el órgano leucopoyetico se denomina cuerpo blanco y se localiza 

detrás de los ojos. Una vez que los hemocitos han completado su desarrollo son vertidos a la 

hemolinfa (Cowden, 1972). En el cuerpo blanco de O. vulgaris se observaron células en dos 

fases de desarrollo distintas. La primera de ellas concuerda con las características de un 

leucoblasto secundario. Éste se caracteriza por presentar cromatina condensada en todo el 

núcleo, pocas inclusiones citoplasmáticas y una delgada capa de material denso bordeando la 

célula. El segundo tipo celular corresponde a un hemocito en etapa intermedia entre 

leucoblasto primario y un hemocito maduro. La característica de esta fase de transición es un 

núcleo compacto, de forma irregular con poca cromatina condensada, y numerosas 

inclusiones electron-densas y electron-claras en el citoplasma. 

 Para determinar la capacidad fagocítica de los hemocitos, se verificó mediante 

microscopía óptica que los hemocitos de O. vulgaris podían fagocitar zimosán y fluoroesferas. 

La cuantificación de la capacidad fagocítica de los hemocitos se midió mediante citometría de 

flujo y utilizando únicamente fluoroesferas. Ésta se registró como un incremento en el nivel de 

fluorescencia en el canal FL1-H. En ambos tipos celulares (granulocitos grandes y granulocitos 

pequeños) se observaron amplias variaciones en el porcentaje de fagocitosis. No obstante, la 

fagocitosis media fue mayor en la región R1, correspondiente a los granulocitos grandes 

(13%), que alcanzaron hasta un 56% de fagocitosis. En cambio, el porcentaje medio de 

fagocitosis fue menor (3%) en la región R2, correspondiente a los granulocitos pequeños, que 

alcanzaron un máximo de 9% después de 2 h de incubación.  

 La producción de especies reactivas de oxígeno (ROS), también denominado estallido 

respiratorio, medida mediante la oxidación del compuesto DFCH al compuesto altamente 

fluorescente DCF, resultó significativamente (p<0.05) mayor en los las muestras estimuladas 

con zimosán que en los controles. Los granulocitos grandes mostraron, en promedio, mayor 

fluorescencia 12 A.U. que los granulocitos pequeños 5 A.U. En ambos casos, se observó que la 

producción de radicales de oxígeno era inhibida por el SOD, lo que indica que la sonda es 

oxidada por el radical peróxido de hidrógeno. Por el contrario, no ocurrió inhibición cuando 

se añadió el NMMA, lo que indica que los radicales de nitrógeno no son responsables de oxidar 

el compuesto DFCH (Possel et al., 1997; Buggé et al., 2007; Lesser, 2005). 
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 De los resultados obtenidos, se comprobó que los hemocitos de O. vulgaris tienen la 

capacidad de fagocitar zimosán, tal como se ha registrado con anterioridad (Novoa al., 2002; 

Rodríguez-Domínguez et al., 2006). Sin embargo, se demostró mediante citometría de flujo 

que las células también tienen capacidad de fagocitar fluoroesferas. Ambos tipos celulares 

presentaron actividad, sin embargo, los granulocitos grandes mostraron mayor fagocitosis 

comparado con los granulocitos pequeños. En otros moluscos, los granulocitos suelen ser las 

células con mayor actividad fagocítica, aunque se ha demostrado que los hialinocitos también 

pueden fagocitar fluoroesferas o zimosan (García-García et al., 2008; Travers et al., 2008; 

Donaghy et al., 2009; 2010). El porcentaje de células fagocíticas registradas en este estudio en 

la hemolinfa de O. vulgaris mostró una alta variación que posiblemente sea debida a 

fluctuaciones naturales. Sin embargo, el porcentaje promedio es similar al registrado 

previamente en O. vulgaris utilizando zimosan (Novoa et al., 2002; Rodríguez-Domínguez et 

al., 2006) y a otros moluscos como Haliotis discus discus (Donaghy et al., 2010) Haliotis 

tuberculata (Travers et al., 2008) y Ruditapes decussatus (Prado-Alvarez et al., 2012). Puesto 

que los granulocitos grandes mostraron mayor fagocitosis, es consistente que éstos también 

produjeran un estallido respiratorio mayor. Por tanto, éstas células podrían tener mayor 

capacidad de fagocitar y eliminar patógenos (Hégaret et al., 2003; Goedken et al., 2004).  

 Por otra parte, la producción óxido nítrico (NO) resultó significativamente (p<0.05) 

más alta en hemocitos estimulados con zimosán que en los controles. Además, se comprobó 

que el PMA y LPS también estimulan la producción de este radical (p>0.05). El zimosán se ha 

utilizado exitosamente para estimular la producción de NO en otros moluscos (Tafalla et al., 

2003; García-García et al., 2008) y también resulta efectivo (p<0.05) en O. vulgaris (Novoa et 

al., 2002), donde mantiene una producción elevada durante las primeras 3 h de incubación. 

No obstante, utilizando PMA también muestran mayor producción de NO a las 3 h, sugiriendo 

que la reacción es lenta, pero intensa. Un estudio previo sugiere que el LPS induce una débil 

producción de NO en hemocitos de O. vulgaris (Novoa et al., 2002). Sin embargo, los 

resultados obtenidos muestran que induce una reacción intensa después de 30 min y hasta 6 

h de incubación. Estudios posteriores permitirán averiguar si las cascadas activadas por el 

zimosán, PMA y LPS son similares a las descritas para Lymnaea stagnalis (Wright et al., 2006) 

o Mytilus galloprovincialis (García-García et al., 2008).  

 En conclusión, los resultados obtenidos en el capítulo 2 de esta tesis doctoral 

demuestran por primera vez que la hemolinfa del pulpo común está constituida por dos tipos 
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de células: granulocitos grandes y granulocitos pequeños. Ambas células presentan capacidad 

de fagocitar fluoroesferas y producir radicales de oxígeno. Sin embargo, dichas actividades 

son mayores en los granulocitos grandes. Los datos aportados en el presente estudio 

establecen las bases para que en estudios posteriores i) se determine la capacidad de los 

hemocitos de O. vulgaris para luchar contra infecciones, y ii) cómo influyen los patógenos en la 

respuesta inmune celular. Además, se requieren estudios que empleen anticuerpos 

fluorescentes para mejorar la clasificación de los hemocitos y comprender las funciones 

inmunes particulares de cada tipo celular. 

 

II.4. Capítulo 3. Parámetros inmunes en el pulpo común (Octopus 

vulgaris Cuvier, 1797) infectado naturalmente por el protozoo 

gastrointestinal Aggregata octopiana 

 En este capítulo se estudio el efecto de la infección de A. octopiana sobre la respuesta 

inmune celular de O. vulgaris. Para ello, se midió el porcentaje de fagocitosis, el estallido 

respiratorio y la producción de NO en los hemocitos de pulpos clasificados como: sanos, con 

poca o nula infección (0 a 5 × 105 esporoquistes/gramo de tejido digestivo [spor/g]) y sin 

daño histopatológico; y enfermos, con alta infección [5 × 105 a 2 × 107 spor/g] y daño 

histopatológico severo. También se calculó de índice de Hayashi, de acuerdo con Guerra 

(1975) para determinar la fase de madurez de los pulpos. La respuesta inmune celular se 

midió a través de la fagocitosis de los hemocitos y la producción de radicales de oxígeno y 

nitrógeno. A su vez, los resultados obtenidos se estandarizaron de la siguiente manera: valor 

de fagocitosis, ROS o NO / número de hemocitos circulantes (de cada individuo) por ml. Para 

determinar el efecto de la infección de A. octopiana sobre los parámetros inmunes 

estandarizados, se realizó un análisis de regresión lineal usando la infección total e infección 

por grupos (sano-enfermo) como variables independientes. Además, se incluyeron en el 

análisis factores biómetricos del pulpo (talla, peso, sexo y fase de madurez), estación del año y 

origen (salvaje o cultivado en batea). Se aplicó el Criterio de Akaike (AIC) para seleccionar el 

modelo final empleado así como las variables de mayor relevancia. Las variables con menor 

relevancia para explicar la variación en la fagocitosis y la producción de ROS y NO de los 

hemocitos presentaron menor AIC y por tanto, fueron eliminadas del modelo final. Asimismo, 

se aplicó un análisis de regresión múltiple para estudiar la relación entre la infección y la 

respuesta inmune celular. 
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 La prevalencia de infección fue del 99%, mientras que la intensidad de infección varió 

entre 0 y 2 × 107 spor/g. La capacidad fagocítica de los hemocitos se vio estimulada por el 

incremento de la infección total. La estación del año y el sexo de los pulpos también resultaron 

ser variables importantes para explicar la variación en la capacidad fagocítica de los 

hemocitos y por tanto, se mantuvieron en el modelo final. Sin embargo, la variable sexo no 

resultó significativa (p=0.1082), mientras que la fagocitosis se incrementó significativamente 

en otoño (p=0.0015). Por lo tanto, el grupo de variables infección total, sexo y estación del año 

explicaron el 24.35% de la variación observada en la fagocitosis de los hemocitos. Al mismo 

tiempo, el aumento de la infección total provocó la disminución del estallido respiratorio 

(ROS) (p=0.0082) y la producción de NO (p=0.2697). En el caso del estallido respiratorio, 

además de la infección, la variable origen también fue incluida en el modelo. Se observó que la 

producción de ROS fue menor en los pulpos salvajes que en los de batea. Por tanto, el grupo de 

variables infección total y origen de los pulpos (salvajes) explicaron el 24.35% de la variación 

observada en el estallido respiratorio. Por su parte, la producción de NO disminuyó 

significativamente en pulpos sanos (p=0.0043) y en los de mayor peso corporal. Comparando 

entre individuos salvajes y de batea, la producción de NO resultó significativamente 

(p=0.00228) menor en los primeros. De esta manera, las variables: infección total, infección 

por grupo (sanos), peso de los pulpos y origen (salvaje) explicaron el 17.25% de la variación 

en la producción de NO. 

 Los resultados obtenidos muestran evidencia complementaria a los estudios 

previamente desarrollados por Gestal et al. (2002a,b). En estos estudios se evidencia que en 

los pulpos enfermos (con alta infección) el epitelio del tracto digestivo se encuentra 

severamente deteriorado por el crecimiento y liberación de los parásitos, lo cual causa la 

ruptura del tejido. Además, la acidificación del lumen digestivo impide la correcta absorción 

de nutrientes. Los hemocitos de cefalópodos son capaces de desplazarse para reparar el tejido 

dañado, o bien formar un “tapón” para evitar la pérdida de hemolinfa (Cowden and Curtis, 

1981; Féral, 1988). A causa de ello, se observó una importante infiltración hemocitaria en el 

ciego de pulpos enfermos.  

 En relación a las actividades inmunes medidas, se observó que la capacidad fagocítica 

de los hemocitos se incrementó conforme lo hace la infección. Puesto que la coccidiosis es una 

infección auto-limitante, ésta no parece limitar la capacidad de fagocitosis de los hemocitos 

aún cuando la infección se incrementa. Otra variable con una importante influencia en la 
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fagocitosis de los hemocitos fue la estación del año, particularmente otoño. De acuerdo con 

Gestal (2000) la intensidad de infección por el coccidio en la Ría de Vigo ocurre de otoño a 

primavera, debido a la alta disponibilidad del hospedador intermediario de A. octopiana que 

es, presumiblemente, el camarón Palaemon serratus. Por su parte, la reducción del estallido 

respiratorio sugiere que el coccidio podría restringir la capacidad de los hemocitos para 

producir radicales de oxígeno. Puesto que la supresión del estallido respiratorio es una 

estrategia habitual en parásitos como Perkinsus marinus (Volety y Chu, 1995) es posible que el 

mismo patrón sea reflejado en la coccidiosis producida por A. octopiana. Por otro lado, la 

respuesta citotóxica de NO también disminuyó con el incremento de la infección. Asi, la 

producción de NO sólo resultó significativa en pulpos sanos, lo cual sugiere que éste grupo de 

individuos es capaz de producir NO adecuadamente, pero el incremento en la coccidiosis 

reduce paulatinamente su producción. Asimismo, la reducción en la producción de NO fue 

notable en los pulpos de mayor peso. Puesto que A. octopiana es transmitido a través del 

alimento ingerido, el presente resultado indica que los individuos de mayor peso (y mayor 

talla) presentan mayor acumulación de parásitos. En consecuencia, la disminución en la 

producción del radical NO podría estar asociada a una fuerte coccidiosis. 

 Finalmente, el análisis de la respuesta inmune celular entre individuos salvajes y 

pulpos engordados en batea, mostraron un patrón similar. En ambos casos, la capacidad 

fagocítica de los hemocitos se incrementó, mientras que el estallido respiratorio y la 

producción de NO disminuyó. Sin embargo, la respuesta citotóxica marca una diferencia entre 

los pulpos de ambas procedencias. En pulpos salvajes se observó una notable disminución en 

la producción de ROS con respecto a los pulpos de batea. Igualmente, la producción de NO fue 

significativamente baja en pulpos salvajes.  

 Por tanto, es claro que además del daño mecánico y en la absorción de nutrientes 

causado por la coccidiosis, la infección también altera el correcto desempeño de la respuesta 

inmune celular. Además, las diferencias observadas entre individuos salvajes y de batea, 

sugieren que el estrés generado por las condiciones de cultivo favorece el impacto negativo 

que A. octopiana causa a los pulpos engordados en batea. 
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II.5. Capítulo 4. Análisis transcriptómico de los hemocitos de Octopus 

vulgaris en respuesta a la infección por Aggregata octopiana 

 El estudio molecular de la respuesta inmune de organismos de interés en acuicultura 

permite identificar numerosos genes claves en distintos procesos biológicos. Establecer las 

bases moleculares de la respuesta inmune del pulpo implica un importante avance que 

permitirá conocer cómo éstos moluscos hacen frente a numerosos patógenos, lo cual 

redundará en útiles aplicaciones de los datos obtenidos para seleccionar individuos 

resistentes a infecciones; y por ende, en mayor producción acuícola de productos de calidad.  

 En el presente estudio se elaboró una librería de genes expresados en los hemocitos 

de O. vulgaris con diferentes grados de infección (alta y baja) por A. octopiana, usando la 

tecnología de secuenciación masiva de Illumina. A partir de la secuenciación y ensamblaje de 

los transcritos obtenidos de los hemocitos, se generaron 254,506 contigs de 669 bp en 

promedio. Así, el transcriptoma teórico calculado para O. vulgaris es de 170.24Mb. Utilizando 

como valor de límite de corte 10-3, el 18.95% de los contigs presentaron homología con alguna 

de las secuencias depositadas en la base de datos pública BLASTx. En contraste, el 81.05% de 

las secuencias (contigs) no presentaron homología, posiblemente debido a la escasez de datos 

moleculares de cefalópodos disponibles en las bases de datos públicas como GenBank. Por lo 

tanto, esto sugiere que en la librería de O. vulgaris generada en este estudio existe una gran 

cantidad de genes identificados por primera vez en cefalópodos. De las proteínas 

identificadas, en la categoría de componentes celulares, el 38% y 32% se clasificaron como 

pertenecientes a las categorías “célula” y ”orgánulo” respectivamente. Dentro del grupo 

función molecular, las proteínas relacionadas con adhesión y actividad catalítica conformaron 

el 57% y 29%, respectivamente. En la categoría de procesos biológicos, el 17% de las 

proteínas correspondió a procesos celulares, el 15% a procesos metabólicos, 12% a procesos 

biológicos y 8% a estímulos biológicos.  

 A partir de la comparación del transcriptoma de los hemocitos de O. vulgaris y las 

secuencias disponibles en NCBI se observó que éste comparte el 0.85% (301 secuencias) de 

similitud con las secuencias de E. scolopes. El transcriptoma generado en este estudio 

presentó un 20% (6402 secuencias) de coincidencia con las secuencias de O. vulgaris 

disponibles en NCBI; mientras que sólo se observó un 0.06% de secuencias compartidas con C. 

gigas (135), 0.40% con M. galloprovincialis (79) y 3.80% con R. philippinarum (900 

secuencias). Si bien, los resultados muestran un bajo porcentaje de transcritos coincidentes 
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entre las especies de moluscos comparados, también sugieren que existen numerosos genes 

novedosos aportados por el presente estudio. Cabe resaltar que muchas de las secuencias 

disponibles en las bases de datos públicas han sido obtenidas de diferentes tejidos, pero pocas 

de ellas provienen de hemocitos. Tal es el caso de los cefalópodos. Las secuencias disponibles 

de E. scolopes provienen, en su mayoría, del órgano luminoso; mientras que en el caso de O. 

vulgaris, provienen fundamentalmente del músculo y del tejido nervioso. Por su parte, 

considerando la disponibilidad de secuencias correspondientes a hemocitos de bivalvos y el 

porcentaje de secuencias compartidas entre el transcriptoma de O. vulgaris (de este estudio) y 

R. philippinarum, sugiere que existen numerosos genes altamente conservados entre el pulpo 

y dicho bivalvo. Sin embargo, se requieren más estudios que permitan comparan 

apropiadamente entre especies de moluscos y entre tejidos, tal como los hemocitos. 

 Del total de proteínas identificadas, 3% de éstas presentaron homología con genes de 

posible función inmune. Este es un resultado bajo, sin embargo, refleja la carencia de datos 

moleculares concernientes a cefalópodos en las bases de datos públicas. Al mismo tiempo, 

indica que el presente estudio aporta una gran cantidad de genes novedosos aún no descritos 

en cefalópodos.  

 Entre los genes identificados y de implicación en la respuesta inmune del pulpo se 

encontraron proteínas relacionadas con importantes cascadas implicadas en inflamación 

(NF B), reconocimiento de patógenos (cascada del complemento, Toll-Like Receptor (TLR)) e 

incluso apoptosis, lo cual indica que existen mecanismos de respuesta inmune similares entre 

cefalópodos y otros moluscos.  

 Además del análisis transcriptómico general, se realizó un análisis comparativo del 

transcriptoma de pulpos con alta y baja infección por A. octopiana, en el cual se encontraron 

539 genes diferencialmente expresados entre ambos niveles de infección. De ellos, se 

identificaron un total de 312 genes relacionados con la estructura celular, implicados en 

procesos metabólicos así como en la respuesta inmune celular. Considerando tanto los genes 

expresados diferencialmente como aquellos obtenidos en el patrón transcriptómico general, 

se seleccionaron determinados genes en función de su expresión significativa en pulpos 

enfermos, pero en algún caso también en función a su implicación en la interacción 

hospedador-patógeno (es decir, independientemente de la significación obtenida en el análisis 

bioinformático). Por tanto, se seleccionaron genes relacionados con reconocimiento de 

patógenos (galectina, PGRP, C1q, TLR), inhibidores de proteasas (SERPIN), respuesta 
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inflamatoria (LITAF), antioxidantes (PRDX-2) y apoptosis (Caspase-3), para estudiar su 

expresión mediante q-PCR. El patrón de expresión observado en los genes con expresión 

significativa fue concordante con la tendencia de expresión que mostraron en el estudio de 

transcriptómica. Por lo tanto, confirman los resultados obtenidos en la secuenciación masiva y 

avalan su fiabilidad. Por otra parte, el análisis de estos genes mediante q-PCR aporta un 

panorama general acerca de la expresión de los mismos en los tejidos utilizados: hemocitos, 

por ser las células responsables de la defensa celular; ciego, por ser el órgano diana de la 

infección por A. octopiana; y branquia, las cuales están continuamente en contacto con el 

ambiente y por lo tanto, con potenciales patógenos. 

 De todos los genes estudiados, la galectina y TLR se observaron sobre-expresados en 

hemocitos de pulpos con alta infección. Puesto que ambas proteínas participan en el 

reconocimiento de una amplia variedad de patógenos, es posible que la expresión observada 

en estos genes indique un intenso estímulo de los hemocitos circulantes en actividades de 

defensa celular como fagocitosis. La mayor expresión de los genes estudiados se observó en el 

ciego. Al ser el órgano diana de la infección es evidente una alta expresión de genes 

relacionados con el reconocimiento de patógenos (TLR, PGRP, Galectina), inflamación (LITAF) 

e inhibidores de proteasas (SERPIN) en pulpos con alta infección. A raíz del incremento en el 

número de parásitos que infectan el ciego, las células epiteliales parecen expresar inhibidores 

de proteasas y de inflamación como estrategia para eliminar o aislar a los parásitos y así 

evitar que infecten más tejido. La respuesta inflamatoria en el órgano diana es evidente a nivel 

histopatológico y con los datos presentados en este trabajo, también es evidente a nivel 

molecular. Los mecanismos citotóxicos parecen asimismo ser desencadenados, y por tanto, se 

observa una alta expresión de la proteína antioxidante peroxiredoxina (PRDX-2) para 

combatir el exceso de radicales de oxigeno que pueden afectar a las células del hospedador. 

Del mismo modo, se observó una alta expresión de la caspasa 3, la cual es una caspasa de tipo 

efectora implicada en llevar a cabo la eliminación de células. En el caso del tejido del ciego, la 

alta expresión de la caspasa-3 sugiere que ésta podría actuar para eliminar el tejido dañado, 

aunque no es claro si tiene alguna implicación en eliminar células ya infectadas por el 

coccidio. 

 Por su parte, en la branquia, la expresión más alta observada fue de C1qbp, seguido 

por PRDX-2 y SERPIN. Puesto que estos genes tienen implicación en distintos procesos de la 

defensa inmune, sugieren que en pulpos altamente infectados por el coccidio, el tejido de la 
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branquia también podría ser más vulnerable a infecciones secundarias. Por tanto, el C1qbp 

podría indicar la activación del sistema del complemento debido a la presencia y 

reconocimiento de patógenos, la proteína antioxidante podría indicar un intenso estallido 

respiratorio mientras que, la proteína inhibidora de proteasas, podría actuar en contener 

infecciones adicionales a las que ya pudiera haber en la branquia. 

 En conclusión, el estudio de transcriptómica desarrollado en los hemocitos de O. 

vulgaris aporta la identificación de una gran cantidad de genes relacionados con distintos 

procesos biológicos, y que son descritos por primera vez en cefalópodos. Además, aporta 

evidencia de que la infección por A. octopiana induce la expresión diferencial de genes 

implicados en la respuesta inmune celular del pulpo. El papel específico de dichos genes ante 

la coccidiosis aún requiere estudios posteriores. Sin embargo, los resultados obtenidos 

establecen las primeras bases moleculares para estudiar la resistencia/tolerancia de O. 

vulgaris a la coccidiosis por A. octopiana.  

 

II.6. Capítulo 5. Caracterización del proteoma de la hemolinfa de 

Octopus vulgaris infectado por el protozoo parásito Aggregata 

octopiana 

 La proteómica se enfoca en el estudio de todas las proteínas expresadas por el genoma 

de un organismo o tejido, es decir, el proteoma (López, 2007). Debido a que el proteoma es 

muy dinámico permite estudiar las variaciones en la expresión de genes bajo la influencia de 

perturbaciones biológicas como son los parásitos. Si bien la expresión de genes es posible 

estudiarla también a nivel transcriptómico, existe poca concordancia entre el número de 

transcritos de ARNm y las proteínas identificadas. Esto se debe a la presencia de 

modificaciones post-transcripcionales y post-traduccionales que impiden predecir el número 

de proteínas, su abundancia o función, sólo con base en secuencias de ADN. Por lo tanto, la 

proteómica aporta información valiosa acerca de los genes que están de hecho expresados. De 

ahí que sea una herramienta complementaria a la genómica y transcriptómica (Diz et al., 

2012). 

 En este capítulo el objetivo fue describir el proteoma de los hemocitos y plasma que 

conforman la hemolinfa de O. vulgaris e identificar las proteínas mediante espectrometría de 

masas. Además, se comparó el proteoma de hemocitos y plasma obtenido de pulpos con alta y 
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baja infección por el coccidio A. octopiana con el fin de detectar cambios atribuidos a la 

infección y tratar de identificar potenciales biomarcadores de resistencia la infección. 

 Para establecer el nivel de infección en cada individuo se realizó el recuento en cámara 

de Neubauer de los esporoquistes. Además, se realizaron cortes histológicos del tejido 

infectado de los individuos para verificar que el daño histopatológico fuera acorde con el 

número de esporoquistes contados. Para evaluar el nivel de infección, el número de 

esporoquistes se ha referido al peso en gramos del tracto digestivo del pulpo (spor/g). 

Considerando tanto el daño histopatológico como el número de esporoquistes, los pulpos se 

dividieron en dos grupos. Aquellos individuos con alta infección (4 × 106 a 2 × 107 spor/g) y 

considerable daño en el tejido se denominaron “enfermos”. En tanto que, los pulpos con baja o 

nula infección (0 a 5 × 104 spor/g) y leve daño al tejido digestivo se denominaron “sanos”. De 

todos los pulpos se registraron los datos morfométricos (talla, peso) así como el sexo. Este 

último factor, se analizó mediante una ANOVA-2 vías para determinar su posible efecto sobre 

la expresión de las proteínas.  

 En el proteoma de los hemocitos se obtuvieron 524 spots totales. El volumen 

normalizado de cada spot se transformó logarítmicamente para realizar una ANOVA de una 

vía, en la cual 42 spots resultaron significativamente (p<0.05) diferentes entre individuos 

sanos y enfermos. Con el fin de reducir el número de falsos positivos, se aplicó el método de 

corrección multitest SGoF+. De acuerdo con el resultado, sólo 20 spot se confirmaron como 

genes candidatos para su estudio subsecuente y determinar si podrían ser válidos como 

biomarcadores. Además, se realizó un análisis de componentes principales (PCA) usando 

únicamente los datos de los spots significativos a partir del ANOVA. Se obtuvieron dos 

componentes que describen el 62% de la variación observada, lo cual indica que el conjunto 

de spots significativos presenta una firma proteica capaz de separarlos de acuerdo a su grupo 

de infección. También se estudió mediante una ANOVA de 2-vías si el sexo de los individuos 

pudiera tener alguna influencia sobre el proteoma en ambos grupos de infección. Sin 

embargo, el sexo no resultó una variable significativa (p>0.05), y tampoco mostró ninguna 

interacción con la infección. Para evaluar la eficacia del método se calculó el coeficiente de 

variación entre réplicas técnicas. Éste resultó ser de un 25%, manteniéndose por debajo del 

42% de la variación biológica de las muestras, lo que significa que la variación observada en el 

proteoma de individuos sanos y enfermos es debido a las propias muestras y no a la técnica. 
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 En el plasma se detectaron 126 spots bien definidos. Sólo 6 de éstos resultaron 

significativos (ANOVA p<0.05), sin embargo, al aplicar la corrección multitest SGoF+ ninguno 

de éstos resultó significativo (p>0.05). Se obtuvo un alto coeficiente de variación (47%). No 

obstante, dicho resultado se atribuye al uso de filtros empleados con el fin mejorar la 

resolución del mapa proteico. Si bien el uso de filtros supone una desventaja en términos de 

reproducibilidad, también es necesario para eliminar las proteínas más abundantes de la 

muestra (como es en este caso la hemocianina) que impiden la resolución de las proteínas 

minoritarias. Por su parte, el PCA no arrojó resultados significativos. Por todo lo expresado, 

los resultados de las muestras de plasma se deben interpretar con cautela. 

 Para realizar la identificación de los spots mediante espectrometría de masas se 

seleccionaron aquellos spots que mostraron diferencias significativas entre grupos de 

infección y algunos otros que se observaron más intensos. Así, de un total de 39 spots se 

lograron identificar 36 proteínas en muestras de hemocitos. Sin embargo, sólo 5 de éstos se 

pudieron identificar en bases de datos públicas. Por el contrario, los 34 spots restantes se 

identificaron en la base de datos del transcriptoma del pulpo generada en el capítulo 4, 

después de realizar la traducción de cada una de las secuencias obtenidas a los 6 posibles 

marcos de lectura que podrían codificar para proteínas. Algunas de las proteínas identificadas 

son actina, peroxiredoxina, glutamato DH, filamina, isocitrato DH entre otras. Entre el total de 

proteínas, se observó que las identificadas como: canal de sodio, fascina, glutamato DH, 6-

fosfogluconolacton, filamina, peroxiredoxina y ATP sintasa presentaron mayor contribución a 

la componente 1 del PCA, distinguiendo ambos grupos de infección en un 51%. Por tanto, 

estas proteínas representan potenciales biomarcadores involucrados en la respuesta inmune 

del pulpo ante la infección por A. octopiana. 

 Las proteínas del citoesqueleto filamina y fascina se observaron sobre-expresadas en 

hemocitos de pulpos enfermos. Ambas proteínas son importantes para la motilidad y 

mantenimiento de la forma celular. Otros estudios muestran que el gen de la filamina también 

se observa sobre-expresado en hemocitos de Ostrea edulis infectados in vitro con células de 

Bonamia ostrea vivas. Debido a que los hemocitos necesitan formar el fagosoma para ingerir 

al parásito, se incrementa la polimerización del citoesqueleto, con lo cual, hay un incremento 

de filamina (Morga et al., 2009). Es posible que algo similar ocurra en los hemocitos de pulpos 

enfermos. Sin embargo, la filamina también podría interactuar con receptores de membrana y 

participar en la activación de cascadas como la de NF-ĸB con una función clave en la 



Resumen en español 

 

 171 

regulación de la respuesta inmune a las infecciones (Vasselon y Detmers, 2002; Feng y Walsh, 

2004). Por su parte, la proteína fascina participa en la formación de pseudópodos y por 

consiguiente, en la extensión de la membrana celular, ya sea para desplazamiento o para 

fagocitar partículas (Yamashiro et al., 19998). La sobre-expresión de fascina y filamina en 

hemocitos de pulpos enfermos sugiere que ambas proteínas podrían estar relacionadas con el 

proceso de fagocitosis durante la infección por A. octopiana. Otra de las proteínas 

identificadas con una importante función es la peroxiredoxina. Esta proteína se observó sub-

expresada en pulpos enfermos. La peroxiredoxina es una proteína antioxidante. Cuando los 

hemocitos producen radicales de oxigeno para eliminar patógenos, los mismos radicales 

pueden ser nocivos también para el hospedador (Chu, 2000). Por tanto, la peroxiredoxina es 

necesaria para reducir los radicales de oxigeno a niveles basales y así evitar el daño generado 

por el estallido respiratorio (Immenschuh y Baumgart-Vogt, 2005). Ante la escasa expresión 

de peroxiredoxina en pulpos enfermos, es probable que el coccidio estuviera inhibiendo el 

estallido respiratorio en los hemocitos de estos pulpos. La inhibición de la respuesta 

citotóxica también se ha registrado en hemocitos de Crassostrea virginica expuestos a 3.7 x106 

células de Perkinsus marinus (Volety y Chu, 1995). Sin embargo, esta hipótesis requiere ser 

contrastada. 

 Cabe mencionar que otras proteínas como glutamato DH, isocitrato DH, canal de sodio 

y fosfogluconolactonasa también resultaron interesantes. Las tres primeras proteínas se 

observaron sobre-expresadas en pulpos enfermos. En cambio, la fosfogluconolactonasa se 

observó sub-expresada en los mismos individuos. Sin embargo, las cuatro proteínas 

contribuyen significativamente con la componente 1 del PCA y por lo tanto son potenciales 

biomarcadores. Aunque no es claro el papel que desarrollan, la diferencia de expresión 

sugiere que hay procesos celulares afectados diferencialmente por el nivel de infección. 

Consecuentemente, se necesita realizar estudios posteriores para determinar el papel de estas 

proteínas durante la coccidiosis y evaluar su validez como potenciales biomarcadores. 

 En cuanto al plasma, se seleccionaron 23 spots para su identificación incluyendo los 6 

spots significativos (ANOVA p<0.05) y otros que se observaron intensos y definidos. Sin 

embargo, sólo 5 spots se identificaron positivamente como hemocianina, la proteína más 

abundante en la hemolinfa del pulpo y encargada de transportar el oxígeno (Rögener et al., 

1985; Van-Holde y Miller, 1995). Dos spots en particular mostraron buenos espectros, sin 

embargo, no fue posible identificarlos debido a la carencia de secuencias de cefalópodos las 



Resumen en español 

 

 172 

bases de datos públicas. Debido a que la base de datos del transcriptoma de O. vulgaris 

(generado en el capítulo 4) se realizó a partir de hemocitos hay pocas proteínas plasmáticas 

identificadas. Por lo tanto, no fue posible identificarlas. Estudios posteriores enfocados en el 

proteoma del plasma del pulpo permitirán identificar ambos spots y determinar si pertenecen 

a proteínas implicadas en la respuesta inmune humoral. 

 En conclusión, el último capítulo de esta tesis doctoral describe por primera vez el 

proteoma de hemocitos y plasma de O. vulgaris. Además, se identificaron proteínas sub- o 

sobre-expresadas en pulpos enfermos, lo que sugiere que la infección por A. octopiana deja 

huella en la expresión proteica. Por lo tanto, aquí se establecen las bases moleculares para 

estudiar la susceptibilidad/resistencia del pulpo en una relación natural hospedador-parásito. 

Los estudios posteriores permitirán caracterizar las proteínas aquí identificadas y determinar 

su papel exacto en la defensa inmune del pulpo y su relación con la coccidiosis. 
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CONCLUSIONS 

 
1. Based on previous morphological evidence, host-specificity data and the new 

molecular phylogenetic analyses presented in this work, it is concluded that the 
Aggregata species parasitizing Octopus vulgaris in the Ria of Vigo (NE Atlantic) is 
Aggregata octopiana. This coccidian species is considered the valid A. octopiana 
species. 
 
Con base en la evidencia morfológica previa, los datos de especificidad hospedadora y 
los análisis moleculares presentados en este trabajo, se concluye que la especie de 
Aggregata que parasita a Octopus vulgaris en la Ría de Vigo (NE Atlántico) es 
Aggregata octopiana. Esta especie de coccidio es considerada la especie A. octopiana 
válida. 
 

2. The identification of A. eberthi infecting the cuttlefish Sepia officinalis in the Ria of 
Vigo (NE Atlantic) is here confirmed by molecular analysis. The phylogenetic analysis 
corroborates the classification of both species as belonging to the Aggregata genus. 
The phenotypic and genotypic characters are validated as useful diagnostic tools for 
both Aggregata species. 
 
Se confirma mediante análisis molecular la identificación de A. eberthi como el 
parásito que infecta a Sepia officinalis en la Ría de Vigo (Atlántico NE). Se corrobora 
mediante análisis filogenéticos la clasificación de ambas especies dentro del género 
Aggregata, y se validan los caracteres fenotípicos y genotípicos descritos para ambas 
especies de Aggregata como herramientas de diagnóstico útiles. 
 

3. Through the study of the O. vulgaris hemolymph using microscopic (light and 
electronic) and flow cytometry techniques, two subpopulation or types of hemocytes 
were identified: large granulocytes and small granulocytes. Large granulocytes 
constituted the 82% of octopus hemolymph cells. They have a mean diameter of 11.6 
µm, U-shaped nucleus and numerous granules in the cytoplasm. Small granulocytes 
constituted the 18% of the hemolymph cells. They showed a mean diameter of 8.12 
µm, round nucleus, and cytoplasm with few or totally absent granules. 
 
El estudio de la hemolinfa de O. vulgaris mediante microscopía (óptica y electrónica) y 
citometría de flujo permitió identificar dos subpoblaciones o tipos de hemocitos: 
granulocitos grandes y granulocitos pequeños. Los granulocitos grandes conforman el 
82% de las células presentes en la hemolinfa del pulpo, el diámetro promedio es de 
11,6 µm, presentan núcleo en forma de U y numerosos gránulos en el citoplasma. Los 
granulocitos pequeños constituyen el 18% de las células presentes en la hemolinfa del 
pulpo, el diámetro promedio es de 8,12 µm, el núcleo es redondeado, y presentan 
pocos gránulos o totalmente ausentes en el citoplasma. 
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4. Large and small granulocytes showed cellular immune response activity. Large 
granulocytes are the main effectors of phagocytosis and ROS production. In contrast, 
small granulocytes have a limited phagocytic ability, and consequently, a limited 
respiratory burst. 
 
Ambos tipos de hemocitos presentan actividad de respuesta inmune celular. Los 
granulocitos grandes son las células que presentan mayor actividad fagocítica y 
producción de ROS. En cambio, los granulocitos pequeños presentan limitada 
capacidad fagocítica y por lo tanto, limitada producción de ROS. 
 

5. The O. vulgaris hemocytes are capable to yield nitric oxide (NO) following challenge 
with zymosan, LPS and PMA. These three stimuli induced the highest NO production 
at 3h of incubation. 
 
Los hemocitos de O. vulgaris son capaces de producir óxido nítrico (NO) al ser 
estimulados con zimosán, LPS y PMA. Los tres estímulos inducen la mayor producción 
de NO a las 3h de incubación.  

6. The increase of the total amount of infection by A. octopiana influences significantly 
the increase in the phagocytic ability of hemocytes. According to Akaike information 
criterion (AIC), the season of collection (mainly autumn) and octopus sex, are also 
significant variables that contribute to explain the variation of the phagocytic ability 
of hemocytes. Thus, the group of variables total infection, octopus sex and season of 
collection explain the 27.65% of variation in the phagocytic ability of the octopus 
hemocytes. . 

 

El incremento en la infección total por A. octopiana influye significativamente en el 
incremento de la capacidad fagocítica de los hemocitos. De acuerdo con el Criterio de 
Akaike (AIC), la estación del año (principalmente otoño) y el sexo de los pulpos, 
también son variables significativas que contribuyen a explicar la variabilidad en la 
capacidad fagocítica de los hemocitos. Así, el conjunto de variables grado de infección, 
sexo y estación explican el 27.65% de la variabilidad en la capacidad de fagocitosis de 
los hemocitos del pulpo.  

 

7. ROS production decrease when A. octopiana infection increases. Comparing between 
wild and reared octopuses, ROS production was significantly decreased in wild 
octopuses than those reared in floating cages. The stressful conditions in floating 
cages favors the negative impact that A. octopiana causes to reared octopuses. Then, 
reared octopuses trigger a higher ROS production than wild ones. According to AIC, 
the variables total infection and octopus origin (wild or reared in floating cages), are 
significant variables that contribute to explain the variation in the ROS production. 
Thus, both variables explain the 24.35% of variation in the citotoxic activity of 
hemocytes. 
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La producción de ROS disminuye cuando aumenta la infección por A. octopiana. 
Comparando entre pulpos salvajes y de batea, la producción de ROS es 
significativamente menor en pulpos salvajes. Por tanto, las condiciones estresantes de 
cultivo favorecen el impacto negativo que A. octopiana causa a los pulpos de batea y 
por ello producen mayor cantidad de ROS que los pulpos salvajes. En base al AIC, el 
grado de infección y origen de los pulpos (salvajes o de batea), son variables 
significativas que contribuyen a explicar la variabilidad en la producción de ROS. Por 
tanto, ambas variables explican el 24.35% de la variabilidad en la actividad citotóxica 
de los hemocitos. 

 

8. The NO production decreases when the intensity of infection by A. octopiana 
increases. Decline in the cytotoxic response is notably significant for healthy 
octopuses and the heaviest individuals. Comparing wild and reared octopuses, NO 
production is significantly lower in wild specimens than in those reared in floating 
cages. According to AIC, the variables total infection, group of infection (healthy), 
octopus weight and origin (wild or reared in floating cages) are significant for 
explaining the variation in NO production. All these variables included in the final 
model explained the 17.25% of the variation in the NO produced by hemocytes. 

La producción de NO disminuye conforme se incrementa la intensidad de infección 
por A. octopiana. La disminución en la respuesta citotóxica es particularmente 
significativa en pulpos sanos y en los individuos de mayor peso corporal. Comparando 
entre pulpos salvajes y pulpos de batea, la producción de NO es significativamente 
menor en pulpos salvajes. De acuerdo con el resultado del AIC, el grado de infección, 
grupo de infección (sanos), peso de los pulpos y origen de los mismos (salvaje o de 
batea) son variables significativas para explicar la variabilidad en la producción de 
NO. Todas estas variables incluidas en el modelo final explican el 17.25% de la 
variación observada en la producción de NO. 
 

9. The “De novo” transcriptome of the circulating hemocytes of O. vulgaris, performed by 
Illumina high-throughput paired-end sequencing technology, yielded 75,571,280 high 
quality reads for the pool of octopuses showing high infection by A. octopiana and 
74,731,646 for the pool of octopuses showing low infection by A. octopiana. A total of 
254, 506 contigs were assembled and 18% (48,225 contigs) were successfully 
identified. Most of the immune genes identified are reported for the first time in 
cephalopods. A significant number of putative immune-related genes involved in 
several immune pathways like NFkB, TLR signaling pathway, complement and 
apoptosis pathways were identified.  

 
El transcriptoma “De novo” de los hemocitos de O. vulgaris generado mediante la 
tecnología de secuenciación masiva “paired-end” de Illumina, permitió obtener 
75.571.280 secuencias de alta calidad en pulpos con alta infección por A. octopiana y 
74.731.646 secuencias en pulpos con baja o nula infección por A. octopiana. A partir 
del ensamblaje, se obtuvieron 254.506 contigs de los cuales, 18% se identificaron con 
éxito. La mayoría de las secuencias obtenidas en este trabajo corresponden a genes 
identificados por primera vez en cefalópodos. Entre éstos, se ha identificado un 



    Conclusions 

 

 
 

176 

importante número de genes relacionados con la respuesta inmune, e involucrados en 
distintas cascadas de señalización, como NFkB, TLR, complemento y apoptosis. 
 

10. The comparative analysis of the transcriptome of healthy (low or absent A. octopiana 
infection) and sick (high A. octopiana infection) octopuses using bioinformatics tools 
allowed the identification of 539 genes differentially expressed in both conditions. 
The differential expression determined by RT-qPCR of a pool of selected genes 
involved in pathogen recognition (galectin, PGRP, C1qbp, TLR), protease inhibition 
(SERPIN), inflammatory response (LITAF), antioxidant system (PRDX-2), and 
apoptosis (Caspase-3) were consistent with the changing trends of gene expression in 
most cases, with the RNA-seq analysis, supporting the reliability of transcriptomic 
results. The expression level of the selected genes was also analyzed in the caecum 
and gills of octopuses showing high and low infection by A. octopiana.  
 
El análisis comparativo mediante herramientas bioinformáticas del transcriptoma de 
los hemocitos de pulpos sanos (poca o nula infección por A. octopiana) y enfermos 
(alta infección por A. octopiana), permitió la identificación de 539 genes expresados 
diferencialmente en ambas condiciones. La expresión diferencial determinada 
mediante RT-qPCR de un grupo de genes seleccionados por su implicación en 
reconocimiento del patógeno (galectina, PGRP, C1qbp y TLR), inhibidores de 
proteases (SERPIN), respuesta inflamatoria (LITAF), sistema antioxidante (PRDX-2) y 
apoptosis (Caspasa-3) fue consistente con la tendencia observada en el análisis de 
RNA-seq, lo cual confirma y avala la fiabilidad de los resultados obtenidos en el 
análisis transcriptómico de secuenciación masiva. La expresión de dichos genes fue 
también analizada en el ciego y en las branquias de pulpos con alta y baja infección 
por A. octopiana. 
 

11. The proteomic study of the O. vulgaris hemocytes allowed the identification of 42 
significant spots between sick and healthy octopuses. The subsequent principal 
component analysis shows 7 proteins as the major contributors to differences 
between both groups of infection and thus can be consider as candidates to potential 
resistance biomarkers against the coccidia infection. From these, fascin, filamin and 
peroxiredoxin are highlighted by their involvement in cellular response. 
 

El estudio proteómico de los hemocitos permitió la identificación de 42 spots 
significativos entre pulpos enfermos y sanos. El análisis de componentes principales 
posterior muestra que 7 de estas proteínas que contribuyen mayoritariamente a las 
diferencias entre grupos de infección y por tanto podrían ser consideradas como 
posibles biomarcadores de resistencia a la infección por el coccidio. De éstas se 
enfatizan fascina, filamina y peroxiredoxina debido a su implicación en la respuesta 
inmune celular. 

 
12. The analysis of the transcriptome of the hemocytes of O. vulgaris allowed the 

successful identification of only 18% of the total sequences assembled in the RNA-seq 
library and only 36 of the proteins obtained from the octopus proteomic analysis. 
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From these, only 5 proteins were identified from public databases. The remaining 31 
proteins were successfully identified in the transcriptome of the O. vulgaris’ 
hemocytes presented in this study. Thus, the scarcity of the cephalopod molecular 
information in public databases is here evidenced and highlights the need to increase 
researches that allow to identify additional proteins; hence, contributing to 
understand several biological processes occurring in cephalopods. 
 
El análisis del transcriptoma de los hemocitos de O. vulgaris permitió la anotación 
únicamente del 18% del total de las secuencias obtenidas en la librería de RNA-seq y 
solo 36 de las proteínas obtenidas en el análisis proteómico. De estas últimas, sólo 5 
proteínas se identificaron en bases de datos públicas. Las 31 proteínas restantes se 
identificaron en la base de datos del transcriptoma de los hemocitos de O. vulgaris que 
se presenta en este estudio. De esta manera, se evidencian los escasos datos 
moleculares de cefalópodos disponibles actualmente en las bases de datos públicas, y 
al mismo tiempo se destaca la necesidad de incrementar la investigación que permita 
identificar nuevas proteínas y por tanto, contribuir a la comprensión de numerosos 
procesos biológicos que ocurren en cefalópodos. 
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