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ABSTRACT 

Disconnection of the axon from the soma of spinal motoneurons (MNs) leads either 

to a retrograde degenerative process or to a regenerative reaction, depending on 

the severity and the proximity to the soma of the axonal lesion. The endoplasmic 

reticulum (ER) is a continuous membranous network that extends from the 

nucleus to the entire cytoplasm of the neuronal soma, axon and dendrites. We 

investigated whether axonal injury is sensed by the ER and triggers the activation 

of protective mechanisms, such as the unfolded protein response (UPR) and 

autophagy. We found early (at 3 days) accumulation of beclin1, LC3II and Lamp-

1, hallmarks of autophagy, in both degenerating MNs after spinal root avulsion 

and in non-degenerating MNs after distal nerve section, although Lamp-1 

disappeared by 5 days only in the former. In contrast, only degenerating MNs 

presented early activation of IRE1α, revealed by an increase of the spliced isoform 

of Xbp1 and accumulation of ATF4 in their nucleus, two branches of the UPR, and 

late BiP downregulation in association with cytoskeletal and organelle 

disorganization. We conclude that BiP-decrease is a signature of the degenerating 

process since its overexpression led to an increase in MN survival after root 

avulsion. Besides, Bcl2 is strongly implicated in the survival pathway activated by 

BiP overexpression.  
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 4

 

INTRODUCTION 

The mechanisms involved in degeneration and regeneration of adult spinal motoneurons 

(MNs) following axotomy and target deprivation are still poorly understood. Peripheral 

nerve injuries produce the disconnection and subsequent degeneration of the distal axon 

from the body of damaged neurons. The soma of axotomized neurons undergoes a 

series of phenotypic changes termed ‘chromatolysis’, which arise from dispersal of 

large Nissl bodies due to disintegration of stacked rough endoplasmic reticulum. 1 The 

accompanying metabolic changes are necessary for axonal regeneration, but the 

mechanisms involved in the neuronal reaction remain partially unknown. 2 However, in 

some instances the neuron is unable to survive the axotomy, particularly when the 

lesion is produced at sites near to the neuronal soma. Thus, after distal axotomy a non-

significant loss of motoneurons has been found, 3 whereas lesions at the spinal root, due 

to traction or avulsion, in the adult lead to progressive and marked loss of the 

axotomized MNs. 4,5 There exist controversial studies about the processes that lead to 

this MN degeneration; some authors claimed that it is mainly an apoptotic process 4 

whereas others pointed to a rather necrotic death. 6, 7 Axotomy produces an initial 

rupture of the plasma membrane which leads to calcium influx 8  and disassembly of the 

cytoskeleton, triggering long lasting electrophysiological disturbances involving the 

entire neuron. 9 Besides, axotomy interrupts retrograde axonal transport of target-

derived trophic factors to the neuronal perikarya. The lack of these trophic factors in 

turn initiates the cell responses of neurons and surrounding glia after axotomy. 10 

The endoplasmic reticulum (ER) is a dynamic network of interconnected membrane 

tubules that essentially reaches every part of the cell, including dendrites 11 and axons 12 

in neurons. ER is associated with microtubules 13 and largely contributes to local 
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calcium homeostasis and signalling, and protein and lipid biosynthesis. Thus, the ER 

may be one of the main organelles that sense the rupture of the axon and react sending 

back information to the soma. Disturbances in calcium homeostasis may lead to ER 

stress that produces accumulation of unfolded or misfolded proteins in the ER lumen, 14 

that takes place in several neurodegenerative events. 15,16 ER stress leads to the 

activation of self-protective mechanisms that include the ER-associated protein 

degradation (ERAD) pathway, 17 the unfolded protein response (UPR), and autophagy 

to avoid cell damage, although under conditions of severe ER stress it may activate cell 

death programs as well. 18 The UPR is triggered by BiP, a reticulum-resident chaperone, 

when unbound from three major effectors: 19 the RNA-activated protein kinase-like ER 

kinase (PERK), inositol-requiring protein-1 alpha (IRE1α), and activating transcription 

factor-6 alpha (ATF6α) . 20 In addition, ER stress could also induce macroautophagy 

(referred hereafter as autophagy) activation. 21-23 Autophagy is a non-stop life-sustaining 

renewal process that is active under normal conditions and is further enhanced in 

response to tissue injury. It involves the formation of double membrane cisternae, which 

engulf cytoplasmic materials or whole organelles to become vacuoles called 

autophagosomes that fuse with lysosomes for degrading its content. 24 During the 

formation of autophagosomal membranes, cytosolic microtubule-associated protein 

light chain 3 (LC3I) is conjugated to phosphatidylethanolamine, 25 to convert to a 

membrane bound protein, LC3-II, becoming a structural component of the double-

membrane cisterns or autophagosomes. Beclin-1 is required for autophagy initiation of 

cytoplasmic proteins under starvation conditions. Both Beclin-1 and LC3II are 

considered hallmarks of autophagy initiation and propagation.26 BiP is also required for 

stress-induced autophagy.27 In cells in which BiP expression is knocked down, despite 
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spontaneous activation of UPR pathways and LC3 conversion, autophagy is blocked 

and the ER is massively expanded and disorganized. 27 

In the present work, we aimed to investigate whether ER stress and autophagy are 

involved in the degeneration of MNs after spinal root avulsion, and compared this 

lesion with a distal nerve injury that does not produce MN degeneration. 
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RESULTS 

Degenerating motoneurons accumulate ATF4 early after root avulsion  

We investigated the presence of ER stress markers in degenerating MNs after root 

avulsion by analyzing which of the three branches of the UPR were activated. One 

branch is mediated by ATF6α (90KDa), a ER resident protein that, when unbound to 

BiP due to ER stress, is cleaved in the Golgi apparatus and shed a 50 kDa fragment.19 

We did not detect any cleavage of ATF6α in the ventral horns of the L4-L5 segments in 

the avulsed or the axotomized spinal cords at any time tested (Fig. 1). A second branch 

of the UPR is mediated by PERK, whose activation inhibits the translation initiation 

factor eIF2α by phosphorylation, thereby reducing protein synthesis. 19 One exception is 

the transcription factor ATF4 that escapes from the global shut-down translation 

promoted by eIF2α phosphorylation. 20 Although we did not observe the presence of 

phosphorylated eIF2α at any time after lesion (Fig. 1), we found an increase in ATF4 

immunoreactivity in MNs at both sides of the ventral horn from 3 dpo and with 

maximal expression at 5 dpo after root avusion (Fig. 1, bottom). In contrast, such 

increase was not observed after distal sciatic nerve lesion (Fig. 1). To further 

characterize this pathway, we looked for the presence of the pro-apoptotic factor CHOP, 

whose coding gene is a main target of ATF4. No significant differences were detected 

regarding the transcript or protein levels of Chop in the avulsed ventral horns from 3 

dpo, by quantitative real time PCR, western blot and immunohistochemistry (Fig. 2). 

Besides, we did not find signs of apoptotic activation, neither caspase 12 or caspase 3 

activation nor TUNEL positive staining in MNs (Fig. 2), in spite that at 7 days post 

avulsion there is loss of more than 25% of the MNs. 5 
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In summary, these results showed that ATF4 protein levels differentially rose in the 

nucleus of degenerating versus non-degenerating MNs after axotomy. However, this 

increase did not correlate with CHOP protein accumulation and was not accompanied 

by signs of apoptosis in the degenerating MNs. 

 

IRE1α-XBP1 pathway is differentially activated in avulsed vs axotomized MNs 

The third branch of the UPR is mediated through the activation of the ribonuclease 

activity of IRE1α that generates a non-conventional processing of the transcript of Xbp1 

in the cytoplasm. Once processed, the open reading frame of Xbp1 changes and is 

translated to an active form of a transcription factor (XBP1s, 50KDa), which can bind to 

several UPR response elements. 20 The non-processed form (XBP1u) can act as a 

negative regulator of XBP1s. 31 We found an increase of XBP1s after root avulsion but 

an increase of XBP1u after distal nerve lesion, producing that the ratio XBP1s/XBP1u 

increased significantly in the root avulsed ventral horn at 3 dpo in comparison to the 

nerve distal axotomy model (Fig. 3, top). The immunohistochemical analysis performed 

with an anti-panXBP1 revealed that the factor was localized into the nucleus of MNs at 

the ipsilateral ventral horn of the spinal cord in both models from 3 dpo and thus 

independently of the isoform up-regulated (Fig. 3, bottom). 

These results suggested that root avulsion produces an activation of the ribonuclease 

activity of IRE1α, leading to an increase of XBP1s. In contrast, although XBP1u levels 

increase following distal axotomy/reconnection and nuclearized in MNs, there was not 

activation of IRE1α in non-degenerating MNs. 

 

BiP levels are distinctly reduced in degenerating versus non-degenerating 

motoneurons 
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We analyzed BiP levels by Western blot, since they are crucial to activate the self-

protecting mechanisms of UPR and autophagy. 27 BiP levels BiP levels remained 

statistically unchanged after root avulsion (Fig. 4a). In contrast, in the distally 

axotomized spinal cords, BiP protein levels increased with a maximum at 5 dpo in both 

sides of the ventral horn (3.4 ± 0.2 fold) (Fig. 4a). By immunohistochemical analysis, 

we observed that in degenerating MNs, BiP presented the normal ER localization until 5 

dpo, and later on it progressively disappeared as shown in figure 4B. In contrast, in non-

degenerating MNs of the distal axotomy model, BiP presented a normal localization at 

all time-points analyzed (Fig. 4b). Therefore, it seems that there is a marked and 

specific difference between degenerating and non-degenerating MNs regarding BiP 

downregulation around 5-7 days postlesion which is hardly detected by western blot 

probably due to its sustained expression in glial cells. 

In addition to BiP, we analyzed the Bcl-2 family of proteins that are considered critical 

in the regulation of ER functions as well as in the transmission of the apoptotic signal 

from the ER to the mitochondria during ER stress. 32 We found that Bcl-2 was 

transiently reduced in non-degenerating MNs around 5 dpo, but permanently reduced in 

degenerating MNs after root avulsion (Fig. 4b).  

 

Degenerating MNs have disordered organelles and microtubule disassembly  

Since labelling of BiP and caspase 12, two ER proteins, disappeared by 5-7 dpo, we 

analyzed the organelles of the secretory pathway in degenerating MNs using structural 

markers. Using the H69 antibody that labels an structural glycoprotein of the ER 

membrane 33 we observed a progressive decrease in the MNs to be absent by 7 dpo (Fig. 

5). Similarly, we found that the Golgi apparatus labeled with either the anti-58-K-Golgi 

or the α-giantin antibody, presented a fragmented appearance by the same time (Fig. 5). 
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In contrast, no obvious alterations were detected in MNs after distal axotomy at the 

same time-points. Contralateral MNs after both lesions maintained the normal 

immunoreacitivty for these markers (data not shown). 

Considering that organization and movement of organelles are maintained by direct 

linkage to microtubules, 34 we investigated whether there was any abnormality on the 

microtubule network. As expected, microtubule-associated protein 2A/B (MAP2A/B) 

staining disappeared progressively, being more evident in the soma of the MNs from 7 

dpo onwards after root avulsion (Fig. 5 and data not shown). In contrast, the 

immunostaining of MAP2 maintained its normal aspect after distal nerve lesion. On the 

other hand, β-tubulin-III staining was unaltered in both models (Fig. 5). 

These results showed that there is a disorganization of the endomembrane system and 

microtubule network in root avulsed MNs, whereas distally axotomized MNs do not 

show any organelle alteration.  

 

Autophagy is activated in avulsed and axotomized MNs  

In light of these alterations in organelles and cytoskeleton and since autophagy is 

activated upon ER stress as a defensive mechanism for survival, 35 we investigated 

whether autophagy might be implicated. For that purpose, we analysed three markers of 

autophagy in spinal cord sections of control and lesioned animals: LC3, Beclin and 

Lamp-1. The increase and redistribution of conjugated LC3-II was analysed by Western 

Blot and we observed a significant increase in the conversion from LC3-I to LC3-II by 

3 dpo in both ipsilateral (6.9 ±1.8 fold and 11.7 ± 5.6) and contralateral (4.7 ± 0.6 and 

10 ± 5.3 fold) sides of the ventral horn, after root avulsion and distal axotomy, 

respectively (Fig. 6a). Thereafter, the protein levels returned to basal levels in both 

types of injury. At the same time-point, 3 dpo, Beclin-1 levels reached a statistically 
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significant increase to 4.4 ±0.1 fold in ipsilateral ventral horn after root avulsion, and to 

4.1 ± 1.3 and 4.7 ± 1.3 fold in the ipsilateral and the contralateral ventral horns after 

distal axtomy (Fig. 6a). Confocal analysis showed that Beclin-1 presented a speckled 

autophagosome-like pattern of distribution in the MNs after both types of injury by 3-5 

dpo (Fig. 6b).  

Formed autophagosomes develop into mature degradative vacuoles by progressive 

fusion with late endosomes and lysosomes. Therefore, we analyzed by 

immunohistochemistry the distribution of a 110 kDa lysosomal membrane glycoprotein 

(Lamp-1) which has been reported to be essential for the correct fusion with the 

autophagosome. 36 Control animals revealed a weak immunostaining for Lamp-1, 

indicating basal lysosomal traffic (Fig. 7). At 3 days after root avulsion, the Lamp-1 

immunostaining increased substantially in MNs after both types of injury. However, 

from 5 days onwards the lysosomal marker completely disappeared only in root avulsed 

MNs (Fig. 7). Contralateral MNs maintained the Lamp-1 staining observed at 3 dpo at 

all time points analyzed (data not shown). In contrast, in MNs after distal axotomy, 

Lamp-1 immunoreactivity maintained the same earlier profile with sustained high 

staining from 3 dpo till 7 dpo when it returned to to basal levels (Fig. 7 and data not 

shown). In this model, contralateral MNs had also an increased immunoreactivity for 

Lamp-1 at all time points analyzed. We discarded anomalies in lysosomal content by 

analysing cathepsin b expression, which confirmed a normal distribution in avulsed 

MNs at 7 dpo (Fig. 7).  

These results indicated that autophagy is initiated following nerve injury independently 

of the distance and severity of the lesion. However, the normal autophagy outflow 

might be compromised in degenerating MNs in comparison to non-degenerating ones.  
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BiP overexpression protect root avulsed MNs 

Considering that BiP is a key chaperone involved in the regulation of autophagy and 

because of the different dynamic regulation observed in degenerating vs non-

degenerating MNs, we promoted its overexpression using adenoviral vectors. 

Intratechal injection of the virus at the lumbar region resulted in infection of all neural 

cell types (supplemental Fig. 1), including MNs. We delivered the virus immediately 

after root avulsion, and followed up the animals for three weeks. The histological 

assessment showed a significant increase in the number of surviving MNs, from 37.7 ± 

2.4 % in the untreated to 54.7 ± 5.6 % per section in the root avulsed rats treated with 

AdCMVBiP (Fig. 8a). We analyzed molecular changes related to neuroprotection in 

samples taken at 7 dpo, when the most obvious changes in the root avulsed MNs were 

observed. The expression of Bcl-2 in the avulsed MNs was restored in the BiP-

overexpressing rats compared to their respective controls (Fig. 8b). However, the 

expression of Beclin-1, Lamp-1 and MAP2A did not show differences between control 

and BiP-treated rats after root avulsion (data not shown). Thus, we analyzed treated and 

untreated rats at 3 dpo when obvious upregulation of LC3II was observed in injured 

animals. In avulsed rats treated with AdCMVBiP there was a inversion in the LC3 

bands with reduced formation of LC3II (Fig. 8c) suggesting either lack of autophagy or 

a rapid dissipation due to increased autophagic flow that prevent LC3II accumulation. 

We also checked the corresponding increase in BiP levels. We observed higher levels 

although without statistical significance in part due to the normal increase produced at 3 

dpo after root avulsion, as observed in samples from rats treated with AdCMVβgal. 

These findings suggested that overexpression of BiP promotes survival of root avulsed 

MNs and that neuroprotection may be operating through an specific action on the 

autophagic flow as well as the activation of Bcl-2 pro-survival factor. 
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DISCUSSION 

We aimed to determine the molecular and cellular changes that contribute to the 

degeneration of MNs following spinal root avulsion. We found that root avulsion 

caused ER stress, revealed by an early activation of the IRE1α/Xbp1 and ATF4-

mediated branches of the UPR, and initiation of autophagy, with concomitant 

disorganization of the cytoskeleton and organelles from the secretory pathway. In 

contrast, the regenerative MN reaction following distal axotomy and reconnection did 

not induce ER stress and it triggered only autophagy. The GRP78/BiP protein level 

reduction found specifically in MNs around 7 dpo after root avulsion seems to be one of 

the key events in the degenerative process, since its overexpression led to a significant 

increase in MN survival. 

The MN reaction after axotomy is produced by retrograde signals that convey 

information of axon damage from the periphery to the cell body. At the very beginning, 

calcium homeostasis disturbances 9 and trophic factor withdrawal, 10 occurs after 

axotomy and participate in this neuronal response. Both events had already been linked 

to ER stress in vitro. 37 Therefore, it was of interest to investigate the presence of ER 

stress after axotomy and its relationship with MN death in vivo. To cope with ER stress, 

the cell may respond activating UPR and autophagic events. We have found that 

following root avulsion, degenerating MNs initially suffer ER stress and respond 

increasing the ribonuclease activity of IRE1α and raising ATF4 levels. These molecular 

events are distinctive from MNs that do not degenerate after distal nerve lesion and are 

allowed to regenerate. Considering the influence of trophic factor withdrawal from 

proximal nerve stump for axotomized MN survival, it is possible that this might trigger 

UPR activation as a protective self-defense mechanism. In fact, it has been proposed 

that ATF4 accumulation allows the cell to survive for a longer period following a 
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process of slow program death in contrast to a faster apoptotic program. 38 This slow 

process culminates with severe Golgi and ER fragmentation together with cytoskeletal 

abnormalities in the microtubule network which were not apparent in non-degenerating 

MNs. Considering that prolonged UPR leads to cell death via apoptosis, we expected to 

find any sign in this respect but we failed what was in agreement with previous reports 

suggesting rather a necrosis process implicated in the MN death. 6,7 Thus, considering 

that ER stress can trigger autophagy and continued autophagy is detrimental to cell 

survival as a consequence of excess organelle and macromolecular catabolism, we 

investigate the presence of that event. Autophagy may be triggered by a PERK-

independent ATF4 accumulation that induces LC3II formation. 38 IRE1/Xbp1 has been 

also implicated in the initiation of autophagy. 21 In the root avulsed model, ATF4 

accumulation and IRE1/Xbp1 activation in MNs was found coincident with early LC3 

II and Beclin-1 accumulation and it persisted thereafter. It was surprising to find early 

detection of these events also in non-degenerating MNs, in which UPR was not 

triggered. These results suggested that although in gross, autophagy was early activated 

in both cases, substantial differences make MNs to render vulnerable to cell death or 

not. Autophagy might be initiated likely due to the rapid activation of several calcium-

dependent kinases, such as calmodulin kinase II, due to axonal membrane rupture and 

massive calcium influx. 39 Thus, autophagy may be activated as a self-defense 

mechanism in response to the insult. In damaged MNs, this activation may supply 

energy while the cell re-programs its mode to initiate axonal regeneration. 5 However, 

the autophagy process may be different depending on concomitant activation of other 

mechanisms, such as the UPR, to be detrimental or to become protective in regenerating 

MNs. We have found two molecular signatures that mark these differences: vanishing 

of Lamp-1 staining from 5 days postlesion, and a distinctive decrease of BiP levels 



 15

around 7 dpo. The total absence of Lamp-1 is unusual and we cannot discard that may 

be an artefact due to changes in cell phenotype that affect antigen presentation in the 

immunohistochemical analysis, but it seems to be specific for Lamp-1 since cathepsin B 

was well present. Lamp-1 is essential for the last steps in the autophagic flow and its 

reduction may affect also the resolution of the protective mechanism. On the other hand, 

we have found that BiP level is a key event in the survival of MNs following root 

avulsion. It is well known that BiP has essential roles in orchestrating ER stress and 

managing misfolded proteins through interactions with proteasome and autophagic 

initiation. 17, 27 In light of ours results, it seems that raising the levels of BiP early after 

lesion modifies the outcome of the autophagic flow leading to promotion of survival 

pathways with Bcl-2 upregulation. Both events might be linked since Bcl-2 can regulate 

autophagy by sequestrating Beclin-1 and thus, inhibiting the promotion of autophagy 40, 

41, 42 Therefore, the increase of Bcl-2, promoted by BiP overexpression, may decrease 

caspase-independent cell death 42 after root avulsion. Although we have not seen 

changes in Beclin-1 after Bcl-2 overexpression, further analyses of Bcl-2 on the 

autophagic flux should be performed in order to shed light into these mechanisms. It is 

out of the scope of the present work to decipher the detailed nature of these interactions 

in the context of MN degeneration, but we think that BiP-Bcl2 connection and the 

autophagic process deserve further study in relation to neuronal degeneration and 

survival after axonal damage. It may also lead to therapeutical pespectives in spinal cord 

trauma and MN diseases, since the root avulsion model has been proposed as non-

genetic model for some neurodegenerative diseases. 4 In this regard, gene therapy 

promoting overexpression of BiP seems a promising strategy. 
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MATERIALS AND METHODS 

Surgical procedures 

Sprague-Dawley female rats aged 12 weeks were kept under standard conditions of light 

and temperature and fed with food and water ad libitum. Surgical procedures were done 

under sodium pentobarbital (40 mg/kg, i.p.) anesthesia. For spinal root injury, an 

extravertebral avulsion of L4 and L5 roots was done as previously described. 5 Briefly, 

after a midline skin incision, the right sciatic nerve was identified and the L4-L5 spinal 

nerves were separated. A moderate traction was applied away from the intervertebral 

foramina, delivering the mixed spinal nerves that contained the motor and sensory roots 

and dorsal root ganglia. The left roots were kept intact. To produce distal axotomy, the 

right sciatic nerve was exposed at midthigh and freed from surrounding tissues; then, 

the nerve was transected and immediately repaired by fascicular suture (10–0, 

Ethicon).3 After both types of lesions, the wound was sutured by planes, disinfected 

with povidone iodine and the animals allowed recovering in a warm environment. 

Groups of rats (n=4-5) with root avulsion or nerve lesion and unoperated controls were 

used at different time intervals (1, 3, 5, 7, 10 and 21 days post operation (dpo)). All 

procedures involving animals were approved by the Ethics Committee of our institution, 

and followed the European Community Council Directive 86/609/EEC. 

 

Construction, purification and infection with recombinant adenoviruses  

cDNA encoding grp78 (ATCC, LGC Promochem) was cloned into the pAC.CMV 

shuttle vector. Recombinant adenoviruses were constructed by homologous 

recombination in HEK293 cells as described earlier, 28 and were replication deficient 

and included the cytomegalovirus (CMV) promoter. A control adenovirus expressing 

bacterial β-galactosidase (AdCMVβgal) was a kind gift of C.B. Newgard (Duke 
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University, Durham, NC). Viruses were purified using the Vivapure AdenoPackTM 20 

kit according to the instructions of the manufacturer (Sartorius, Goettingen, Germany). 

For viral infection, immediately after root avulsion the animals were injected with 14 μl 

of either AdCMVgrp78 or AdCMVβgal viruses (108 pfu/ml) by means of a 30-gauge 

needle into the thecal space at the lumbar site. One minute post-infusion, the needle was 

removed and the incision closed. Untreated animals with root avulsion were also used 

as controls. 

 

Histology and Immunohistochemistry 

Control and lesioned animals were deeply anesthetized with sodium pentobarbital (60 

mg/kg, i.p.) and perfused with 4% paraformaldehyde in phosphate-buffered saline 

(PBS) at 3, 5, 7 and 10 dpo (n=4 at each time post-lesion). The L4 and L5 segments (5 

mm total length) of the spinal cord were removed, post-fixed in the same fixative for 

24h and cryopreserved in 30% sucrose. Transverse sections (20 μm thick) were cut with 

a cryotome (Leica). The sections were distributed in 50 series of 5 sections each, and 

each series was prepared for immunohistochemical analysis by blocking with 10% 

bovine serum in Tris-buffered saline (TBS) for 2 days at 4ºC with different primary 

antibodies (Table 1). After washes, sections were incubated for 1 day at 4ºC with 

biotynilated secondary antibodies (Vector, Burlingame, CA, USA, 1:200) with Cy-2 or 

Cy-3 conjugated donkey anti-rabbit antibodies (Jackson Immunoresearch, West Grove, 

PA, USA, 1:200). Slides were counterstained with DAPI (Sigma, 1:1000), dehydrated 

and mounted with DPX (Fluka, Buchs, Switzerland). Sections from different time 

points of injured and control animals were processed in parallel for 

immunohistochemistry. Images of the ventral area of the spinal cord were taken under 

the same exposure time, sensibility and resolution for each marker analyzed, with the 
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aid of a digital camera (Olympus DP50) attached to the microscope (Olympus BX51). 

Confocal microscope examinations were performed with a Leica TCS SP2 AOBS laser 

scanning confocal system (Leica, Heidelberg, Germany). Images were collected with a 

1.4 numerical aperture oil-immersion 63X objective. Confocal images were obtained 

using two separate photomultiplier channels, either concurrently or in separate runs, and 

were separately projected and merged using a pseudocolor display showing green for 

Cy2, red for Cy3 and yellow for colocalization. 

Spinal cords obtained from animals at 21 dpo were cut at 40 μm thickness. One series of 

five sections (separated by 200 μm) of each mm for each spinal cord was stained with 

cresyl violet for MN counting as previously described 5. Only cells localized in the 

lateral ventral horn, with diameters ranging 30-70 µm, with a prominent nucleolus and 

polygonal in shape were accepted to selectively count the population of α-MNs.  

Spinal cord sections from animals receiving the injection of AdCMVβgal virus were 

incubated in 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-gal, 1 mg/ml final 

concentration from a 20 m/ml stock solution in N,N-dimethyl formamide) and buffer 

100 mM sodium phosphate, 1.3 mM MgCl , 3 mM K3Fe(CN)6, 3 mM K4Fe(CN)6 at 

pH7.3 for 3 h at 37ºC and mounted on slides as previously described. 29 

For Terminal dUTP Nick End Labeling (TUNEL) staining, tissue sections were rinsed 

in Tris buffer (10 mM, pH 8) and EDTA (5 mM) and then immersed in the same buffer 

plus proteinase K (20 g/mL) for 15 min at room temperature. After washes with EDTA, 

sections were incubated for 10 min in TdT buffer (Tris 30 mM, 140 mM sodium 

cacodilate, 1 mM cobalt chloride, pH 7.7) and then in TdT buffer plus 0.161 U/L TdT 

enzyme (Terminal Transferase, 3333566 Roche, Manheim, Germany) and 0.0161 

nmol/L biotin-16-dUTP (1093070, Roche, Manheim, Germany) for 30 min at 37°C. The 

reaction was stopped with citrate buffer (300 mM sodium chloride, 30 mM sodium 
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citrate, 5 mM EDTA). After washes, sections were incubated with HRP-conjugated 

streptavidin (1:400, SA5004, Vector Laboratories) and the peroxidase reaction product 

was visualized in a solution containing 0.02% DAB, 2.4% nickel ammonium, 0.04% 

chloride ammonium, 0.2% glucose D+, and 0.0027% glucose oxidase in 0.1 M acetate 

buffer (pH 6.0). The positive controls used for TUNEL and caspase-3 immunostaining 

were kindly provided by Dr. Bernardo Castellano and Dra. Berta Gonzalez from a well-

characterized in vivo model of excitotoxicity in postnatal rats. 30 

 

Protein extraction and western blot 

Rats were anesthetised and decapitated at 3, 5, 7 and 9 days for sample preparation (n=3 

per time point). The L4-L5 spinal cord segments were removed and divided into 

quarters to isolate the ventral part of each side. For protein extraction, the ipsilateral and 

contralateral ventral parts of L4-L5 cord segments were separately homogenized in 

RIPA modified buffer (50 mM Tris-HCl ph 7.5, 1% Triton X-100, 0.5% DOC Na, 0.2% 

SDS, 100 mM NaCl, 1 mM EDTA) with 10 μl/ml of a Protease Inhibitor Cocktail 

(Sigma, St. Louis, MO, USA). After clearance, protein concentration was measured by 

the BCA method assay (BCA Protein Assay kit, Pierce). Twenty micrograms of protein 

were loaded from each sample in 12% SDS-polyacrylamide gels. The transfer buffer 

was 25 mM trizma-base, 192 mM glycine, 20% (v/v) methanol, pH 8.4. The primary 

antibodies used are summarized in Table 1. The membrane was visualized by enhanced 

chemiluminiscence method, and the images analyzed with Gene Snap and Gene Tools 

softwares, and Gene Genome apparatus (Syngene). The positive controls for ATF6, 

phosporylated and total eIF2α, CHOP and caspase 12 are thoracic 8 (T8) samples of 

animals submitted to spinal cord injury (c+) 28 
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Statistical analysis 

All values are presented as mean ± SEM. Statistical comparisons between means were 

made by one-way ANOVA followed by Dunnett´s multiple comparison tests. A 

probability of 95% was taken to indicate significant differences. 
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FIGURE LEGENDS 

Figure 1 Top. Western blots reveal the presence of the full length 90KDa fragment of 

ATF6α but absence of its cleaved product and lack of phosphorylated eIF2α referred to 

actin levels or total quantity of eIF2α respectively, in the ventral horns of the L4-L5 

spinal cord segments either at the ipsilateral (i) and the contralateral (co) sides at 3, 5, 7 

and 9 days after root avulsion. Note that we added a positive control from samples of 

animals submitted to spinal cord injury (c+) 28 Bottom Microphotographs of the ventral 

horn spinal cord (highlighted in the left picture) from a immunohistochemical analysis 

of ATF4 distribution in the spinal MNs of the ipsilateral side from control animals (c), 

and animals that were submitted to root avulsion (R.A) or to distal axotomy by nerve 

section (D.A) at 5 and 7 dpo. Note the increased immunoreactivity in the R.A model. 

Bar = 100 μm. 

 

Figure 2 (a) Histogram of mean values obtained by quantitative Real-time PCR for 

Chop mRNA referred to Gapdh levels in the ventral horn of the spinal cord of control 

rats and in the ipsilateral and contralateral sides of root avulsed rats. Samples were 

significantly different according to one-way ANOVA (*p<0.05), however post-hoc 

analysis did not show up differences between ipsilateral and contralateral or control 

sides. (b) Western blot analysis of CHOP protein levels and full-length (50 kDa) or 

cleaved fragment (25 kDa) of caspase 12 at different time points in the ipsilateral (i) and 

contralateral (co) ventral horns of the spinal cord of root avulsed animals. Note that we 

added a positive control from samples of animals submitted to spinal cord injury (c+) 28. 

(c) Microphotographs of control and avulsed ventral horns immunostained for caspase 

12 (A, B), and cleaved caspase 3 (red) (D, F) alone (D) or versus Choline acetyl 

transferase (ChAT, green) (F) at different times post-injury in control positive animals 
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(D) or root avulsed ones (E,F). Note that Caspase12 completely disappears from 7 dpo 

in the MNs and there is no co-localization between ChAT and cleaved caspase 3 

immunostaining. Tunel staining (black) was also performed in a positive control section 

of brain tissue from an excitotoxic rat model52(C), and in the root avulsed model (E) 

colabeled for ChAT (brown). Bar = 100 μm. 

 

Figure 3 Top. Analysis of the presence of the spliced (XBP1s) or uncut (XBP1u) 

isoform of XBP1 by western blot. Histograms show the mean ratio for each isoform and 

referred to actin levels in ventral horns of control intact rats (c, empty bars), and of 

contralateral (grey bars) and ipsilateral (black bars) ventral horns of rats after root 

avulsion or after distal nerve axotomy. *p<0.05 Bottom. Microphotographs of transverse 

sections of the spinal cord of control and axotomized showing the MNs at the ventral 

horns immunostained with anti-pan-XBP1 co-localizing with neuronal specific 

immunostaining for NeuN in both models at different time-points. Dotted lines separate 

white and grey matter at the ventral side of the spinal cord. Bar = 200 μm. 

 

Figure 4 (a) Western blots and histogram showing the analysis of BiP protein levels in 

control animals (c), root avulsed (R.A) and distal axotomized (D.A) ventral horns 

ipsilateral (i) and contralateral (co) to the lesion. (b) Microphotographs showing 

immunostaining for BiP versus neurofilament (SMI32) and for Bcl2 versus ChAT in 

both injury models at different time-points. Bar= 200 μm. 

 

Figure 5 Microphotographs of control, root avulsed (R.A) and axotomized (D.A) MNs 

immunostained for an ER structural protein with the antibody H69(red) versus GFAP 

positive astrocytes (green); for a Golgi apparatus structural protein with the antibody 



 27

58K (red) versus ChAT (green) and cytoskeletal proteins such as Map2 a/b (green) 

versus β-Tubulin III (red) at different time-points. Another marker (α-giantin) was used 

to better illustrate the fragmentation of the Golgi apparatus in the root avulsed MNs at 

different time points. Bar = 100 μm for all microphotographs except for α-giantin in 

which bar = 40 μm. Arrows indicate where MNs are located. 

 

Figure 6 (a) Western blots of LC3I (superior arrow), LC3II (inferior arrow) and Beclin-

1 from L4-L5 ventral spinal cords segments of control and lesioned animals at different 

days post-operation (dpo), referred to actin levels in control (c), contralateral (co) and 

ipsilateral (i) sides. *p<0.05. (b) Confocal images of the distribution of Beclin-1 in the 

MNs from control rats (c), the root avulsed (RA) and the distal axotomy (DA) models. 

Bar = 100 μm. 

 

Figure 7 Immunohistochemical analysis of Lamp-1 lysosomal distribution versus 

ChAT immunostaining in MNs from root avulsion and nerve section models at different 

time-points. The presence of another lysosomal marker Cathepsin B was also analysed 

at 5 dpo. Bar = 40 μm. 

 

Figure 8 (a) Representative pictures of cresyl-violet stained ipsilateral ventral horns of 

untreated (U) root avulsed rats showing the reduction of MNs at 21 dpo, and the injured 

rats treated with either the AdCMVbGal or the AdCMVBiP viral vectors. The 

histogram represents the mean percentage of surviving MNs in the ipsilateral with 

respect to contralateral side. *p<0.05. (b) Immunohistochemical analysis of the 

expression of Bcl2 in MNs labeled with anti-ChAT at 7dpo in root avulsed rats treated 

with the different vectors. Bar= 100 μm. (c) Representative membranes of western blots 



 28

for LC3I (top band), LC3II (bottom band) and BiP from L4-L5 ventral spinal cord 

segments of injured rats treated with either AdCMVbGal or AdCMVBiP viral vectors. 

Bar graph representations (bottom) of band densitometry respective to actin levels 

(n=4). C stands for contralateral and I for ipsilateral. 

 

Supplemental figure 1 Top. Representative picture of transverse sections of spinal cord 

from root avulsed rats treated with AdCMVβgal and stained for the presence of β 

galactosidase at 3 dpo showing staining in MNs and other cells. Bottom. 

Microphotographs resulted for the immunostaining with anti-ChAT, with anti-APC to 

reveal oligodendrocytes, with anti- GFAP to reveal astrocytes and with Iba4 to reveal 

microglia to analyze BiP expression in root avulsed rats after the treatment with either 

AdCMVβgal or AdCMVBiP. Note overexpression in all cells in the latter case. Bar = 

100 μm. 
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Table 1. List of antibodies used for Immunohistochemistry (IHC) and/or Western blot 
(WB). 
 
Name Host  Dilution 

for IHC  
Dilution 
for WB 

Cleaved casp 3 
(Asp175)  

Polyclonal Cell Signalling Technologies, 

Danvers, USA 

1/20  

GRP78/BiP  Polyclonal Stressgen Biotechnologies, 

Victoria, BC, Canada, 

1/200 1/10000 

CREB2/ATF4 Polyclonalt Santa Cruz Biotechnologies, 

Santa Cruz, CA, USA 

1/50 1/200 

H69  Polyclonal Developmental Studies 

Hybridoma Bank, Iowa, USA 

1/100  

NeuN  Monoclonal Chemicon, Temecula, CA, 

USA  

1/100  

α-giantin Monoclonal kindly provided by Enrique 

Claro 

1/1000  

58K-Golgi prot. Polyclonal Abcam, Cambridge, UK 1/1000  

Casp 12 Polyclonal Sigma  1/350  

Beclin-1 Polyclonal Abcam 1/200 1/500 

Lamp-1 Polyclonal Developmental Studies 

Hybridoma Bank 

1/200  

ChAT Polyclonal Chemicon 1/75  

GFAP Polyclonal Dako 1/1000  

SMI32  Monoclonal Stenberger Monoclonals, 

Baltimore, MD, USA 

1/2500  

MAP2 Mouse Sigma 1/500  

β-III-tubulin Mouse Covance, Berkeley, CA, 

USA 

1/100  

CC1/APC  Mouse Abcam, Cambridge, UK 1/400  

IB4 Polyclonal Vector, Burlingame, CA, 

USA 

1/1000  

Bcl-2  Polyclonal BD Biosciences 1/200  
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