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Abstract. A general approach to the design of accurate classical potentials for protein folding is
described. It includes the introduction of a meaningful statistical measure of the differences between
approximations of the same potential energy, the definition of a set of Systematic and Approximately
Separable and Modular Internal Coordinates (SASMIC), much convenient for the simulation of
general branched molecules, and the imposition of constraints on the most rapidly oscillating
degrees of freedom. All these tools are used to study the effects of constraints in the Conformational
Equilibrium Distribution (CED) of the model dipeptide HCO-L-Ala-NH2. We use ab initio Quantum
Mechanics calculations including electron correlation at the MP2 level to describe the system, and
we measure the conformational dependence of the correcting terms to the naive CED based in the
Potential Energy Surface (PES) without any simplifying assumption. These terms are related to
mass-metric tensors determinants and also occur in the Fixman’s compensating potential. We show
that some of the corrections are non-negligible if one is interested in the whole Ramachandran
space. On the other hand, if only the energetically lower region, containing the principal secondary
structure elements, is assumed to be relevant, then, all correcting terms may be neglected up to
peptides of considerable length. This is the first time, as far as we know, that the analysis of the
conformational dependence of these correcting terms is performed in a relevant biomolecule with a
realistic potential energy function.
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INTRODUCTION

Proteins are long chains comprised of twenty different amino acidic monomers and
they are central elements in the biological machinery of all known living beings. They
perform most of the catalytic tasks that are vital in the many coupled chains of chemical
reactions occurring in the cells, they are found as structural building blocks in the
cytoskeleton or in organelles, such as the ribosome, and they also play a very important
role as membrane receptors. Their absence or malfunctioning is related to many diseases
such as Creutzfeldt-Jakob’s or Cancer [1, 2] and the proteins involved in the biology of
pathogens are often the preferred target of newly designed drugs (see the talks by E.
Freire and C. Cavasotto in this meeting).

Despite their complexity and the many opposing forces that determine their behaviour,
these molecules swiftly acquire a unique three-dimensional native structure in the phys-
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iological milieu. Some details of this process are still not clear (see the talk by J. M.
Sánchez-Ruiz), such as the relative proportion of the naturally occurring proteins that
fold co- or post-translationally (i.e., during or after biosynthesis at the ribosome) [3],
or the role played by molecular chaperones such as GroEL (see M. Karplus’ talk), the
Prolyl-peptidyl-isomerase, or the Protein disulfide isomerase, among others. However,
since the pioneering work of Anfinsen [4], it is known that a large number of water-
soluble globular proteins are capable of reaching their native structure in vitro after be-
ing unfolded by changes in their environment, such as a raise of the temperature, the
addition of denaturing agents or a change in the pH. It is the prediction of the native
structure in these cases (only from the amino acid sequence and the laws of physics) that
has become paradigmatic and receives the name of protein folding problem.

In 2005, in a special section of the Science magazine entitled “What don’t we know?”
[5], a selection of the hundred most interesting yet unanswered scientific questions
was presented. What indicates the importance of the protein folding problem is not the
inclusion of the question Can we predict how proteins will fold?, which was a must, but
the large number of other questions which were related to or even dependent on it, such
as Why do humans have so few genes?, How much can human life span be extended?,
What is the structure of water?, How does a single somatic cell become a whole plant?,
How many proteins are there in humans?, How do proteins find their partners?, How
do prion diseases work?, How will big pictures emerge from a sea of biological data?,
How far can we push chemical self-assembly? or Is an effective HIV vaccine feasible?,
to quote just a few of them.

Some authors [6] divide the problem in two parts: the prediction of the three-
dimensional, biologically functional, native state of a protein and the description of the
actual folding process that takes the protein there from the unfolded state. The first part,
which is more pressing and more technologically oriented, is included in the second part
and it is, therefore, easier to tackle, as the relative success of knowledge-based meth-
ods suggests [7, 8]. However, we believe that, not only much theoretical insight may be
gained from a solution of the more general second part of the problem, but also much en-
gineering and design power, as well as new comprehension about so distinct topics as the
ones quoted in the preceding paragraph. This is why our approach is one of bottom-top
and ab initio flavor.

POTENTIAL ENERGY FUNCTIONS

The fundamental theory of matter that is nowadays accepted as correct by the scientific
community is Quantum Mechanics. For the study of the conformational behaviour of a
molecule consisting of n atoms, with atomic numbers Zα and masses Mα , α = 1, . . . ,n,
one typically assumes that relativistic effects are negligible1 and that, according to
the Born-Oppenheimer scheme [9], the great differences in mass between electrons
and nuclei allows to consider that the former are described by a Hamiltonian which

1 Which, in organic molecules, is approximately correct for all the particles involved, except, maybe, for
some core electrons in the heaviest atoms.



is adiabatically decoupled from the nuclear one and that depends only parametrically
on the positions of the nuclei. Hence, the behaviour of the system in vacuum may be
extracted from the non-relativistic time-independent nuclear Schrödinger equation:
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where E 0
e (~R) denotes the effective potential due to the electronic cloud in the funda-

mental energy state2 and R is shorthand for ~R1, . . . ,~Rn.
Despite the exponential growth in computing power that has been taking place in the

last decades (see, for example, the talks by A. Perczel and I. Campos), a precise descrip-
tion of the behaviour of any biologically interesting system derived from the solution of
(1) remains far from being even imaginable. Not to mention the huge complications that
arise when the unavoidable inclusion of solvent is considered. This is why, omitting a
myriad of possible intermediate descriptions, the most popular choice for the in silico
prediction of the protein folding process has become the use of the so-called force fields
[10–13], in which one assumes that the behaviour of the macromolecule (omitting again
the solvent, to compare with (1)) is classical and may be described via a very simple
potential energy function which, typically, has the form
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where rα are bond lengths, θα are bond angles, φα are dihedral angles3 and Rαβ
denotes the interatomic distances. Finally, all the parameters entering (2) (which may
amount to thousands) are customarily fitted to reproduce thermodynamical measure-
ments or taken from quantum mechanical calculations.

While it is true that these empirical potentials may be detailed enough to deal with
simple conformational transitions in already folded proteins (see the talk by J. Luque) or
with collective motions of systems of many proteins (see M. Karplus’ talk), and that
they may also be used as scoring functions for protein design (as in the talk by A.
Jaramillo), all these applications require only that the energetics of the native structure
and its surroundings be correctly described. As A. Tramontano told us in her talk, the
usefulness of these simple potentials for de novo structural prediction (assessed via the
CASP contest4) remains much limited.

2 This additional assumption that the electrons are in the fundamental state prevents us from describing
the catalytic behaviour of most enzymes, however, the only interest here is to describe the folding process.
3 For the sake of simplicity, no harmonic terms have been assumed for out-of-plane angles or for hard
dihedrals, such as the peptide bond angle ω
4 See http://predictioncenter.org



We believe that one of the reasons of this failure is the lack of accuracy of the
potential energy functions used, since, even if the parameters fit is properly carried out,
the choice of the very particular dependencies, for example those in (2), constitutes a
heavy restriction in the space of functions. Accordingly, one of our aims is the design of
classical potentials which are as similar as possible to the effective Born-Oppenheimer
one in (1). To do this, one must calculate the electronic energy E 0

e (R) using the powerful
tools of Quantum Chemistry (see the talks by A. Perczel, J. J. Dannenberg and M.
Amzel) and devise numerically efficient approximations to it.

In any case, in order to walk the long path connecting Quantum Mechanics and a
classical description amenable to nowadays computers, one must have a meaningful
way of comparing different approximations of the potential energy of a system. Much in
the spirit of the talk by M. Wall, and using the fact that the complex nature of biological
molecules suggests the convenience of statistical analyses, we have designed in [14] a
distance, denoted by d12, between any two different potential energy functions, V1 and
V2, that, from a working set of conformations, measures the typical error that one makes
in the energy differences if V2 is used instead of the more accurate V1, admitting a linear
rescaling and a shift in the energy reference.

This distance, which has energy units, presents better properties than other quantities
customarily used to perform these comparisons, such as the energy RMSD, the average
energy error, etc. It may be related to the Pearson’s correlation coefficient by

d12 =
√

2σ2(1− r2
12)

1/2 . (3)

Finally, due to its physical meaning, it has been argued in [14] that, if the distance
between two different approximations of the energy of the same system is less than RT ,
one may safely substitute one by the other without altering the relevant dynamical or
thermodynamical behaviour.

EFFECTS OF CONSTRAINTS

Another reason underlying the difficulties faced in the computational study of the protein
folding problem is that the large number of degrees of freedom brings up the necessity
to sample an astronomically large conformational space [15]. In addition, the typical
timescales of the different movements are in a wide range and, therefore, demandingly
small timesteps must be used in Molecular Dynamics simulations in order to properly
account for the fastest modes [16], which lie in the femtosecond range; whereas the
folding of a large protein may take seconds. In order to deal with these problems, one
may naturally consider the reduction of the number of degrees of freedom describing
macromolecules via the imposition of constraints.

To manage this situation, we have made progresses in two directions. First, we have
devised [17] a set of internal coordinates called SASMIC (standing for Systematic and
Approximately Separable and Modular Internal Coordinates), which are much conve-
nient to describe branched molecules and, specially, polypeptides, without having to
rewrite the whole Z-matrix upon addition of new residues to the chain, and also allow to



maximally separate the soft and hard movements5.
Second, we have used these coordinates, the distance discussed before and the factor-

ization of the external variables in the mass-metric determinants that we describe in [18],
to study the possibility of neglecting the conformational dependence of the correcting
terms that appear in the equilibrium distribution of organic molecules [19].

Constraining the hard coordinates qI to be specific functions f I(qi) of the soft ones
(which defines a hypersurface Σ in the whole conformational space) produces two clas-
sical constrained models which are known to be conceptually [20, 21] and practically
[22, 23] inequivalent: they are called stiff and rigid. In the classical rigid model, the
constraints are assumed to be exact and all the velocities that are orthogonal to the hy-
persurface defined by them vanish. In the classical stiff model, on the other hand, the
constraints are assumed to be approximate and they are implemented by a steep poten-
tial that drives the system to the constrained hypersurface. In this case, the orthogonal
velocities are activated and may act as ‘heat containers’.

The conformational equilibrium of the system, according to these models, is described
by the following probability densities [19]:
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where β := 1/RT , VΣ is the potential energy in Σ (the Potential Energy Surface (PES)
frequently used in Quantum Chemistry), and G, g and H denote, respectively, the
whole-space mass-metric tensor, the reduced mass-metric tensor in Σ and the Hessian of
the constraining part of the potential.

The different terms that correct the PES VΣ in (4) are regarded (and denoted) as en-
tropies because they are linear in the temperature T and come from the averaging out of
certain degrees of freedom (sometimes coordinates, sometimes momenta). Accordingly,
the effective potentials occurring in the exponent of the equilibrium probabilities are
regarded (and denoted) as free energies.

Now, if Monte Carlo simulations in the coordinate space are to be performed [24, 25]
and the probability densities that correspond to any of these two models sampled, the
correcting entropies in (4) should be included or, otherwise, showed to be negligible.

On the other hand, if rigid Molecular Dynamics simulations are performed with the
intention of sampling from the stiff equilibrium probability Ps [26–28], then, the so-

5 An automatic Perl script that generates the SASMIC Z-matrix, in the format of typical Quantum
Chemistry packages, such as GAMESS or Gaussian03, from the sequence of amino acids, may be found
at http://neptuno.unizar.es/files/public/gen_sasmic/



FIGURE 1. a) Model dipeptide HCO-L-Ala-NH2 numbered according to the SASMIC [17] scheme.
b) Potential Energy Surface. c) Conformational dependence of the correcting terms. All energies are given
in kcal/mol.

called Fixman’s compensating potential [29],

VF(qu) := T Sk
r (qu)−TSc

s(qi)−TSk
s (qu) =
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ln
[

detG(qu)

detH (qi)detg(qu)

]

, (5)

must be added to the PES VΣ.
The conformational dependence of most of the determinants appearing in (4) and (5)

is frequently assumed to be negligible in the literature and they are consequently dropped
from the calculations [30–33]. Also, subtly entangled to the assumptions underlying
these simplifications, a second type of approximation is made that consists of assuming
that the equilibrium values of the hard coordinates do not depend on the soft coordinates
[31–34]. This has been argued to be only approximate even in the case of classical force
fields [35–37].

In [19], we have eliminated all simplifying assumptions and measured the conforma-
tional dependence on the Ramachandran angles φ and ψ (the soft coordinates) of all cor-
recting terms and of the Fixman’s compensating potential in the model dipeptide HCO-
L-Ala-NH2. The potential energy function used was the effective Born-Oppenheimer
potential for the nuclei (see (1)) derived from ab initio quantum mechanical calculations
including electron correlation at the MP2/6-31++G(d,p) level of the theory.

In table 1, the main results of our work are presented. The importance of all the
correcting terms is assessed by comparing (with the statistical distance d12 described in
the previous section) the effective potential V1, containing the term, with the approximate
one V2, lacking it. Moreover, if one assumes that the effective energies compared will
be used to construct a polypeptide potential, the number Nres of residues up to which
one may go keeping the distance between the two approximations of the the N-residue
potential below RT is (see eq. (23) in [14]):



TABLE 1. Quantitative assessment of the importance of the different
correcting terms involved in the study of the constrained equilibrium
of the protected dipeptide HCO-L-Ala-NH2 (see [19]).

Corr.∗ V1
† V2

∗∗ d12
‡ Nres§ b12

¶ r12
‖

−T Sk
s −TSc

s Fs VΣ 0.74 RT 1.82 0.98 0.9967
−TSc

s Fs VΣ −TSk
s 0.74 RT 1.83 0.98 0.9967

−TSk
s Fs VΣ −TSc

s 0.11 RT 80.45 1.00 0.9999

−TSk
r Fr VΣ 0.29 RT 11.62 1.01 0.9995

VF Fs Fr 0.67 RT 2.24 0.97 0.9972

∗ Correcting term whose importance is measured in the corresponding row
† ‘Correct’ potential energy; the one containing the correcting term
∗∗ ‘Approximate’ potential energy; the one lacking the correcting term
‡ Statistical distance between V1 and V2 (see [14])
§ Number of residues in a polypeptide potential up to which the correcting
term may be omitted
¶ Slope of the linear rescaling between V1 and V2
‖ Pearson’s correlation coefficient

Nres =

(

RT
d12

)2
. (6)

In the table, one can see that, in the stiff model, the Hessian-related correcting term
should be included in Monte Carlo simulations for peptides as short as two residues,
while the one that depends on G may be neglected up to chains which are ∼ 80 residues
long. The only correcting term occurring in the rigid model, in turn, may be dropped up
to ∼ 12 residues. Finally, the Fixman potential, containing all determinants, should be
included in MD rigid simulations of peptides with more than two residues6.

These results are related to a working set of conformations consisting of 144 points
regularly distributed in the whole Ramanchandran space. In a second part of the work,
we have repeated all the comparisons for a working set consisting of six secondary
structure elements. The results suggest that, if one is interested only in this energetically
lower region, the distances d12 are roughly divided by two and, accordingly, the values
of Nres are four times larger.

We have also repeated the calculations, with the same basis set (6-31++G(d,p)) and at
the Hartree-Fock level of the theory in order to investigate if this less demanding method
without electron correlation may be used in further studies. We have found that, indeed,
this can be done, obtaining very similar results at a tenth of the computational effort.

As far as we are aware, this is the first time that this type of study is performed in a
relevant biomolecule with a realistic potential energy function.

6 One should note that the distance between the PES VΣ at MP2/6-31++G(d,p) and the one computed at
HF/6-31++G(d,p) is d12 ' 1.2 RT . A value slightly larger but of the order of the ones obtained when the
most important correcting terms are dropped.
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