| 1<br>2                                                                                                                                       | <u>This manuscript was accepted for publication in</u><br>Journal of Applied Polymer Science                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8                                                                                                                   | Mechanical Behavior, Microstructure and Thermooxidation<br>properties of Sequentially Crosslinked Ultra-High Molecular<br>Weight Polyethylenes                                                                                                                       |
| 9<br>10<br>11<br>12                                                                                                                          | R. Ríos <sup>1</sup> , J.A. Puértolas <sup>1,3*</sup> , V. Martínez-Nogués <sup>1</sup> , M.J. Martínez-Morlanes <sup>1</sup> , F.J. Pascual <sup>1</sup> , J. Cegoñino <sup>1,2</sup> , F.J. Medel <sup>2,3</sup> .                                                 |
| 13<br>14                                                                                                                                     | <sup>1</sup> Instituto de Investigaciones en Ingeniería de Aragón. I3A-U. 50018 Zaragoza, Spain.                                                                                                                                                                     |
| 15<br>16                                                                                                                                     | <sup>2</sup> Department of Mechanical Engineering. University of Zaragoza. 50018 Zaragoza. Spain.                                                                                                                                                                    |
| 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | <sup>3</sup> Instituto de Ciencia de Materiales de Aragón, ICMA, CSIC-Universidad de Zaragoza, 50018, Zaragoza, Spain.                                                                                                                                               |
| 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                           | *Correspondence to Prof. Francisco Javier Medel<br>Department of Mechanical Engineering,<br>Engineering and Architecture School, Universidad de Zaragoza,<br>E-50018, Zaragoza, Spain<br>Tel. : +34 976 762553<br>Fax. : +34 976 761957<br>e-mail: fjmedel@unizar.es |

## 1 ABSTRACT

2

3 The aim of this study was to explore the impact of the sequential irradiation and annealing 4 process on the microstructure, thermooxidation behaviour and mechanical properties of 5 GUR 1050 ultra-high molecular weight polyethylene (UHMWPE) with respect to the post-6 irradiation annealed material. For this purpose, the effects of a variety of irradiation and 7 annealing conditions on microstructure and mechanical properties were investigated. 8 Differential scanning calorimetry was performed to characterize melting temperature, 9 crystalline content and crystal thickness, whereas transmission electron microscopy 10 provided additional insights into crystal morphology. Thermogravimetric experiments in 11 air served to assess thermooxidation resistance and changes associated to radiation-12 induced crosslinking. Fatigue properties were studied from three different approaches, 13 namely short-term cyclic stress-strain tests, long-term fatigue experiments and crack 14 propagation behaviour. Likewise, three experimental techniques (uniaxial tensile test, 15 impact experiments, and load to fracture of compact tension specimens) allowed 16 evaluation of the fracture resistance. The present findings confirm sequentially crosslinked 17 UHMWPE exhibited improved thermooxidation resistance and thermal stability compared 18 to post-irradiation annealed UHMWPE. Also, the mechanical behaviour, including the 19 fatigue and fracture resistance, of these materials was generally comparable regardless of 20 the annealing strategy. Therefore, the sequential irradiation and annealing process might 21 provide higher oxidation resistance, but not a significant improvement in mechanical 22 properties compared to the single radiation dose and subsequent annealing procedure.

23

24

**KEYWORDS**: UHMWPE, Highly crosslinked polyethylenes, sequential annealing,
fatigue and fracture resistance, toughness.

## 1 INTRODUCTION

2

3 Nowadays, modern highly cross-linked polyethylenes (HXLPE) have replaced 4 conventional, gamma inert sterilized, ultra high molecular weight polyethylene (UHMWPE) for use in total hip arthroplasties<sup>1,2</sup>. The rationale behind the introduction of 5 6 HXLPE for orthopaedic use is a dramatically improved wear resistance, which, in turn, 7 stems from the elevated crosslink density that high gamma or electron beam radiation doses (~100 kGy) impart UHMWPE <sup>3-5</sup>. This beneficial property has made possible a 8 9 significant reduction in the incidence of revisions that historical, gamma air sterilized, and 10 conventional UHMWPE inserts experienced due to osteolytic reactions and eventual aseptic loosening triggered by UHMWPE wear debris particulate<sup>6</sup>. Despite its positive 11 12 effect on wear resistance, irradiation unavoidably generates free radicals, which have the 13 potential to initiate the oxidation cycle of HXLPE. To prevent long-term degradation in 14 the presence of oxygen, post-irradiation thermal treatments have been necessary to eliminate, or at least reduce, radiation-induced free radicals<sup>7</sup>. In general, thermal 15 16 treatments used in first generation HXLPE production can be classified as annealing or 17 remelting depending on whether or not they were conducted below the melting 18 temperature. Despite the excellent wear resistance of current HXLPE, they present some 19 drawbacks. On one hand, annealed HXLPE contain residual free radicals, and therefore in 20 vivo oxidation may result in material embrittlement, ultimately compromising the 21 mechanical performance of the insert. High radiation doses followed by remelting, on the other hand, considerably reduce the fatigue and fracture properties of UHMWPE<sup>8-12</sup>. 22 Although the clinical performance of HXLPE in total hip arthroplasty has been 23 satisfactory for the first decade of use <sup>6</sup>, there is growing evidence of high oxidation in 24 25 non-load bearing regions of retrieved annealed hip inserts <sup>13</sup>, and early crack initiation in few, case studies, remelted retrievals <sup>14,15</sup>. With regard to total knee arthroplasty, annealed 26

and remelted HXLPE are not generally recommended, since in vivo oxidation, and rapid
 cracking, respectively, might have dramatic consequences under the more demanding
 conditions of the knee joint<sup>16</sup>.

4 Second-generation highly crosslinked polyethylenes represent an attempt to simultaneously provide oxidative stability and preserved mechanical properties. Three 5 6 main strategies have been proposed, namely sequential irradiation and annealing, 7 incorporation of antioxidants (i.e. vitamin E) by blending or diffusion, and mechanical 8 annealing. Vitamin E acts as a scavenger of radiation-induced free radicals in UHMWPE 9 <sup>17-19</sup>, whereas solid-state deformation below the melting point of highly crosslinked polyethylenes provides enhanced strength and good oxidative stability <sup>20</sup>. The basis for 10 11 sequentially irradiated and annealed UHMWPE is that the annealing treatment would be 12 more effective eliminating free radicals produced by 30 kGy-irradiation steps, since chain 13 mobility is higher when crosslink density is low. Thus, three consecutive irradiation and 14 annealing cycles would provide the excellent wear resistance associated to high radiation doses (~100 kGy) as well as oxidative stability, without negatively affecting crystallinity 15 and mechanical properties <sup>21-23</sup>. Terminal gas plasma sterilization completes the 16 17 production of commercial sequentially irradiated and annealed UHMWPE. However, 18 some contradictory results appear in the literature concerning the improvement in 19 mechanical properties obtained with this new sequential irradiation and annealing process 23-25 20

In the context presented above, the current work aims at comparing several second generation, sequentially irradiated and annealed UHMWPEs with first generation, postirradiation annealed, HXLPE from mechanical and thermooxidation perspectives. The correlation between microestructural features and mechanical properties was also studied.

25

## 1 MATERIALS AND METHODS

### 2 *Materials*

3 We used GUR 1050 UHMWPE in the form of compression-molded sheets 4 (Orthoplastic Medical Ltd.; Lancashire, UK) as raw material. Crosslinking was achieved 5 by three consecutive 30 kGy gamma irradiation in air steps (Aragogamma S.A.; 6 Barcelona, Spain). Post-irradiation annealed UHMWPE was obtained performing a 7 terminal annealing treatment at 130° C for 8 hours in a vacuum oven (Weiss-Gallenkamp; 8 Loughborough, UK). Sequentially irradiated and annealed UHMWPEs were produced 9 conducting identical annealing treatments after all or some of the 30 kGy irradiation steps. 10 A final machining step was necessary to remove the outer, oxidized, layer ( $\sim 2-3$  mm) of 11 the irradiated and annealed pre-forms, thus obtaining mechanical specimens ready to test. 12 Typically, we used unirradiated UHMWPE as control material, but in some cases also 13 single-dose (90 kGy) irradiated and three-step irradiated (30-30-30) UHMWPEs without 14 further annealing, to discriminate the separate effects of irradiation and annealing. Thus, 15 the seven material groups studied will be referred to as virgin or unirradiated, G0 (30-30-16 30), G1 (30-30-30A), G2 (30-30A-30A), G3 (30A-30A-30A), G4 (30A-30-30), and G5 17 (90), where G, 30, and A stand for gamma irradiated, a single 30 kGy irradiation step, and 18 annealing, respectively. It is worth noting that G1, and G3 were obtained following 19 procedures similar to those used to produce commercially available post-irradiation 20 annealed HXLPE, and the second generation, sequentially crosslinked, HXLPE, 21 respectively.

22

23 Differential Scanning Calorimetry and Thermogravimetry

24 Differential Scanning Calorimetry (DSC) experiments were conducted in air using 25 a Dynamic Scanning Calorimeter (TA Instruments Q20). At least three samples ( $n \ge 3$ ) per

1 material group were heated from room temperature to 200 °C at a 10 °C/min rate. The 2 area below the first-heating DSC curves from 80°C to 160°C, normalized by 290 J/g as the 3 enthalpy of melting of a 100 % crystalline polyethylene, served to calculate crystallinity 4 contents. The melting transition temperature was registered as the peak temperature of the 5 melting endotherm.

6

Thermogravimetric (TG) experiments were carried out in air using a TA Instrument Q5000 thermobalance (accuracy:  $10^{-4}$  mg). 6 mg-samples (n $\geq$ 3 per material group) were heated from room temperature to 800 °C at a 10 °C/min rate. The main features in decomposition curves were documented and analyzed following recently reported guidelines <sup>26</sup>.

12

## 13 Transmission Electron Microscopy analysis

14 Transmission Electron Microscopy (TEM) was performed to observe the 15 microstructure of all the materials using a Jeol 100CX microscope operating at 100 kV. 16 Appropriate specimen preparation involving clorosulphonic staining of thin films was 17 necessary to make the samples ready for TEM, as reported elsewhere<sup>27</sup>. 20,000x and 18 60,000x magnification micrographs were taken and analysed using Digital Micrograph 19 3.3.1 (Gatan Inc., Pleasanton, CA, USA) to measure changes in lamellar thickness after 20 irradiation and annealing stabilization.

21

## 22 Uniaxial tensile tests

Uniaxial tensile tests (n  $\ge$  3) per ASTM D638 were performed in an electromechanic Instron machine on type M-I specimens, at T = 23  $\pm$  2 °C, with a displacement rate of 5 mm/min (initial nominal strain rate ~0.002 s<sup>-1</sup>). In addition to

- 1 typical parameters, such as yield stress, elastic modulus, and ultimate stress and strain,
- 2 work to fracture values were calculated from engineering stress-strain plots.
- 3

## 4 Cyclic Stress-Strain, Long-Term Fatigue and Fatigue Crack Propagation Experiments

5 The fatigue behavior was characterized by means of three experimental 6 techniques. First, cyclic stress-strain experiments were conducted on tensile specimens 7 for up to 50 cycles. A displacement rate of 15 mm/min (initial nominal strain rate 0.005 s<sup>-</sup> 8 <sup>1</sup>), and a maximum nominal stress,  $\sigma_{max}$ , of 16 MPa (stress ratio R ~ 0) were chosen to 9 conduct these experiments. At least three samples  $(n \ge 3)$  per material group were tested 10 in an Instron 5565 machine at  $24 \pm 1$  °C. These short-term cyclic experiments provided 11 information about the total plastic strain reached,  $\varepsilon(50)$ , and the secant modulus at the first cycle,  $E_s(lc)$ , which are measures of the material softening, and stiffness, respectively. 12

13 Second, long-term fatigue tests, S/N stress-life experiments, were performed on 14 dog bone specimens using a servohydraulic Instron 8032 machine and following ASTM 15 These tests ran under load control following a sine waveform E606 guidelines. 16 (frequency 1 Hz; stress ratio  $R\sim0$ ). The strain was continuously monitored employing an 17 extensometer and the testing temperature was  $23 \pm 2$  °C. The selected failure criterion was the number of cycles needed to reach a 12 % strain level, as in previous studies<sup>9</sup>. This 18 19 strain level is close to strain maxima (12-15%) registered in UHMWPE tibial 20 components, and has been connected to the appearance of fatigue-induced microscopic defects<sup>9,28,29</sup>. 21

Third, near-threshold fatigue crack propagation (FCP) experiments were performed on standard compact tension specimens per ASTM E647. All compact specimens were pre-cracked using a razor blade. A digital camera allowed crack growth monitoring and gradual crack length assessments. At least three specimens ( $n \ge 3$ ) were

- 1 tested per material group and they underwent tension cycling (frequency 5 Hz) with R =2 0.1.  $\Delta K_{inception}$  values and Paris coefficients were obtained from crack propagation curves. 3

#### 4 Toughness Characterization

| 5  | Impact Izod tests (n $\geq$ 3 per material group) were carried out at 23 $\pm$ 2 °C on     |
|----|--------------------------------------------------------------------------------------------|
| 6  | double-notched specimens following ASTM F648 guidelines. On the other hand, work to        |
| 7  | fracture values obtained as the area below the engineering stress-strain curves of tensile |
| 8  | experiments gave an estimation of toughness in a quasi-static situation. Finally, compact  |
| 9  | tension specimens with dimensions complying ASTM D6068-02 (width 20 mm, thickness          |
| 10 | 10 mm and original crack length 10 mm) were loaded to fracture in an attempt to            |
| 11 | additionally characterize the toughness behaviour. Load-displacement curves were           |
| 12 | registered and analyzed to obtain relevant data.                                           |

13

#### 14 Statistical analysis

15 Student's t-tests served to detect significant differences between the thermal, 16 thermogravimetric and mechanical properties of the studied material groups. A level of p 17 < 0.05 was selected as indicative of significance.

18

#### 19 **RESULTS and DISCUSSION**

20

#### 21 Differential Scanning Calorimetry and Thermogravimetry

22 Both post-irradiation annealing and sequential irradiation-annealing caused 23 important changes in the microstructure of UHMWPE. Thus, DSC curves revealed 24 irradiation was responsible for significant 6 °C and 12% raises in melting temperature and 25 crystallinity, respectively, as compared with virgin UHMWPE (Table 1). Both post-26 irradiation and sequential annealing treatments did not affect melting temperature of as-

1 irradiated UHMWPE, but took crystalline contents back to the level (52-54%) of the 2 unirradiated polymer. Also, materials subjected to two or more irradiation-annealing 3 cycles, G2 and G3, developed an additional endothermic peak at about the annealing 4 temperature (~126 °C; Figure 1). In contrast, post-irradiation annealed UHMWPE, G1, 5 only exhibited a small shoulder at the same temperature. Finally, no significant 6 differences (p > 0.05) were detected between the melting temperature and crystallinity of 7 both as-irradiated UHMWPE materials, G0 and G5. The present findings appear to be 8 consistent with the occurrence of radiation-induced recrystallization as proposed by Premnath and colleagues<sup>30</sup>, on one hand, and partial melting, lamellar thickening and 9 crystallization of smaller crystals during annealing<sup>31,32</sup>. Together, these phenomena would 10 11 explain the elevated melting temperature, and the appearance of an additional, smaller, 12 endothermic peak in the case of sequentially crosslinked materials. First, molecular 13 rearrangements triggered by irradiation allowed secondary recrystallization onto the 14 surface of original lamellae resulting in elevated melting temperature and crystallinity. 15 This radiation-induced crystallinity increase was lost upon 8 hours annealing at 130 °C, 16 suggesting that partial melting of lamellar crystals prevailed over lamellar thicknening 17 and crystallization of small crystals. The sequential annealing strategy, however, did not 18 imply an accumulative decrease in crystallinity, probably due to comparatively higher 19 chain mobility (i.e. lower crosslink density), which would favor lamellar thickening 20 during the annealing steps.

21

The thermooxidation behavior of UHMWPE was also clearly affected by crosslinking and annealing processes. All thermogravimetric decomposition curves showed a very small but detectable mass increase associated with thermooxidation of the polymer followed by an abrupt weight loss due to thermal degradation (Figure 2A-B). The onset of the thermooxidation process, denoted T<sub>B</sub>, reflects the susceptibility to oxidation,

as reported previously <sup>26</sup>. In this study, both as-irradiated polyethylenes, G0 and G5, 1 2 exhibited the lowest T<sub>B</sub> values (p<0.05), and a significant decrease in T<sub>B</sub> was also 3 observed for post-irradiation annealed UHMWPE, G1, and for crosslinked materials subjected to one or two sequential irradiation-annealing steps, G2 and G4 (T<sub>B</sub> ~ 141-144 4 5 °C;  $p \le 0.003$ ; Table 1). Overall, these data suggest that the former annealing treatments 6 did not succeed in quenching radiation-induced free radicals and, therefore, in providing 7 complete oxidative stability. This was probably because they were not able to eliminate 8 free radicals trapped in crystalline regions, yielding materials with high susceptibility to 9 oxidation. Three irradiation-annealing steps, however, did not result in a  $T_B$  decrease, but in a significant shift towards higher temperatures as registered for G3 specimens ( $T_B \sim 167$ 10 °C; p < 0.0001; Figure 3B). Although thermooxidation could not be completely avoided 11 12 in sequentially crosslinked materials, the significantly delayed weight gain might be 13 indicative of comparatively higher oxidation resistance. In regard to results corresponding to temperatures at maximum weight,  $T_0$ , they followed a trend similar to that of  $T_B$  data 14 15 (Table 1).

16

17 The beginning of the thermal degradation, indicated by  $T_I$  (Figure 2A), was also 18 significantly affected by crosslinking and stabilization processes. They provoked a 19 gradual increase from about 375 °C to almost 400 °C for unirradiated UHMWPE and 20 sequentially crosslinked UHMWPEs, G3, respectively (p < 0.0002). Irradiation processes 21 without further annealing steps also resulted in increased thermal stability ( $T_1 \sim 390$  °C), 22 which was slightly higher in the case of the single-step irradiated UHMWPE (G5). The 23 present thermogravimetric results are coherent with crosslink density data trends reported in the literature<sup>5,9</sup>. Previous studies have reported that sequentially annealed UHMWPE 24 exhibits higher crosslink density than post-irradiation annealed UHMWPE<sup>23</sup>. Crosslinks 25 26 between polymeric chains are, in turn, responsible for a concomitant molecular weight increase, and thermal degradation typically begins at increasingly higher temperatures as the molecular weight of the polymer grows <sup>33</sup>. In this sense, researchers have confirmed higher thermal stability, that is higher  $T_1$ , of irradiated polyethylenes <sup>34</sup>. Although admittedly the lack of crosslink density assessments in this study impedes to draw definite conclusions, there appears to be a connection between elevated crosslinked density and enhanced thermal stability in orthopaedic UHMWPEs.

7

## 8 Transmission Electron Microscopy analysis

9 TEM micrographs of unirradiated UHMWPE showed the typical features of a 10 semicrystalline polymer with randomly oriented crystal lamellae immersed in the 11 amorphous region, which appeared as a dark grey region (Figures 3A-E). The average 12 lamellar thickness of virgin UHMWPE was 29±3 nm, and upon irradiation crystal 13 thickness experienced a small, but statistically significant, increase up to  $32\pm3$  nm (p < 14 0.0001). In contrast, the combination of crosslinking and stabilization processes generally 15 resulted in a significant decrease of this property. Sequentially crosslinked, G3, materials 16 were the only exception as they presented crystal thicknesses similar ( $30\pm3$  nm; p>0.42) 17 to that of unirradiated specimens. The more restricted chain mobility in post-irradiation 18 annealed, G1, and G2 UHMWPEs could inhibit crystal thickening during annealing, 19 yielding thinner lamellae  $(27\pm2)$ , and  $26\pm3$  nm, respectively; p<0.0001 with respect to 20 unirradiated, G0 and G3 UHMWPEs). Lamellar thickening mechanisms, in contrast, 21 would be favored during annealing in sequentially crosslinked materials, G3, due to 22 higher chain mobility.

23

## 24 Uniaxial tensile results

Irradiation and stabilization treatments caused considerable changes in mechanical
 parameters. Both post-irradiation annealed and sequentially crosslinked UHMWPEs

experienced a strong decrease (~50%) in ductility as reflected by strain to fracture results (p<0.0001; Table 2 and Figure 4). The fracture stress also decreased after crosslinking and stabilization (p≤0.02 with respect to unirradiated UHMWPE), but this parameter was almost identical for the three sequentially crosslinked UHMWPEs, G1, G2 and G3 (p>0.54). As-irradiated materials, G0 and G5, exhibited slightly higher yield stresses, fracture stresses, and ultimate strains than sequentially crosslinked materials.

7 8

## Cyclic Stress-Strain, Long-Term Fatigue and Crack Propagation Behavior

9 Cyclic stress-strain experiments confirmed a significant decrease in material 10 softening,  $\varepsilon(50)$ , upon irradiation (8.3 ± 0.9 and 4.3 ± 0.2 for virgin and as-irradiated, G0, 11 UHMWPEs, respectively; p<0.0001). However, this positive decrease was lost when 12 irradiation and annealing processes were combined. Thus, material softening went down to 13  $7.6\pm0.8$ ,  $9.0\pm1.4$  and  $8.5\pm1.6$  for post-irradiation, G1, and sequentially annealed, G2 and 14 G3, materials, respectively (p≤0.0008 with respect to G0 UHMWPE). Likewise, 15 irradiation turned UHMWPE into a stiffer material based on secant modulus results, but, 16 again, the combination of irradiation and annealing processes reverted this change even 17 below the levels of uncrosslinked UHMWPE (Table 2).

18 The combined effects of irradiation and annealing processes caused substantial 19 deterioration of the fatigue strength of unirradiated UHMWPE, regardless of the 20 annealing strategy as shown in the present stress-life, S-N,  $(S = A \log(N) + B; A, and B)$ 21 fitting parameters) experiments (Figure 5). In particular, the introduction of annealing 22 treatments between the second and third irradiation steps (i.e., G2 material) did not imply 23 an improvement in long-term fatigue properties, but further reduction in fatigue strength 24 compared to G1 and unirradiated UHMWPEs. Furthermore, each annealing step appeared 25 to decrease the slope of the S-N curve (Figure 5). Most likely, annealing treatments were 26 responsible for the main decrease in fatigue resistance, since irradiation without further

1 annealing has been demonstrated to slightly augment the fatigue strength of e-beam irradiated UHMWPEs<sup>9</sup>. Despite the registered drop in fatigue resistance upon annealing, 2 sequentially crosslinked UHMWPE, G3, appeared to have long-term fatigue performance 3 4 closer to that displayed by unirradiated UHMWPE specimens. As proposed elsewhere, 5 there seems to be a direct relation between mechanical behavior and microstructure for highly crosslinked UHMWPEs<sup>8,9,35</sup>. Thus, irradiation results in crystal thickening, 6 7 which, in turn, is responsible for an improvement of the fatigue life in long-term 8 experiments. Also, a two hours annealing has been reported to imply a decrease in 9 lamellar thickness compared to as-irradiated UHMWPE, and, coherently, to demonstrate a reduced fatigue strength <sup>9</sup>. The negative impact on fatigue behavior of longer annealing 10 11 steps (8 hours) found in this study appear to be compensated to some extent introducing 12 the sequential irradiation-annealing strategy.

13

14 The microstructural changes induced by irradiation caused substantial reductions 15 in crack propagation resistance behavior, regardless of the stabilization strategy. Fatigue 16 crack propagation results showed two different regions in the log-log plots of crack growth rate, (da/dN), versus stress intensity factor range  $(\Delta K)$  (Figure 6). The first region 17 18 matched the slow crack growth regime, whereas the second one represented the intermediate crack growth or Paris equation regime  $(da/dN = C (\Delta K)^m; C \text{ and } m \text{ are})$ 19 20 constants). A fatigue crack inception stress intensity range ( $\Delta k_{inception}$ ) could be defined as 21 the intersection of the first regime, nearly vertical, curve with the x-axis, at a value of  $da/dN = 10^{-6}$  m/cycle. This approach gave the stress intensity threshold that must be 22 23 overcome to initiate the propagation of a static crack and permitted comparison between 24 materials. The second region fitted to a linear trend, which its slope, m, provided 25 information about how fast the crack propagate once it started to grow. Fast-fracture

1 regime was reached at the end of all the experiments. The unirradiated material presented the highest  $\Delta k$  at crack inception (2.2±0.1 MPa m<sup>1/2</sup>), whereas the corresponding  $\Delta k$  of the 2 crosslinked UHMWPEs (G1, G2 and G3) dropped to values close to 1.6 MPa m<sup>1/2</sup> (Table 3 4 3). This finding was not unexpected, as previous studies have confirmed remarkably drops in stress intensity factor at crack inception,  $\Delta k_{inception}$ , after irradiation<sup>8-11,35</sup>. Thus, the 5 greater the radiation dose, the higher crosslink density and the lower the  $\Delta k_{inception}$ . The 6 elevated crosslink density imparted by irradiation reduces the deformation modes of the 7 amorphous region, and therefore cracks grow more easily in crosslinked UHMWPEs <sup>36</sup>. 8 9 On the other hand, no significant differences (p > 0.05) were found regarding the crack 10 inception behavior among crosslinked UHMWPEs. It can be concluded that the annealing 11 strategy, terminal or sequential, scarcely affected the crack propagation resistance, 12 confirming crack inception is mainly governed by crosslink density in crosslinked 13 UHMWPEs. Finally, sequentially crosslinked materials, G2 and G3, had less steep slopes 14 (lower m coefficients) than unirradiated and post-irradiation annealed UHMWPEs (Table 15 3). This fact might indicate that lower stress levels are needed to reach similar crack 16 growth rates.

17

## 18 Toughness behavior

The radiation dose absorbed was the key parameter governing the fracture resistance of the various UHMWPE formulations. A significant decrease in impact toughness was confirmed for crosslinked UHMWPEs compared to the unirradiated polymer (p<0.0001). Thus, impact toughness dropped about a 40 % upon irradiation and a 50 % after crosslinking and stabilization processes (Table 4). As mentioned before, the elevated crosslink density limits the ductility, and also its fracture resistance, as the crosslinked network prevents the polymer from reaching high deformations<sup>35</sup>.

1 Crystallinity drops registered after performance of annealing treatments also negatively 2 affected the fracture resistance of crosslinked UHMWPEs, although to a much lesser 3 extent. However, the introduction of more than one annealing step had no further 4 influence on impact toughness, as no significant differences could be detected among 5 crosslinked and stabilized UHMWPEs regardless of the annealing strategy. Work to 6 fracture results followed a trend similar to that of impact results. Unirradiated UHMWPE 7 had the highest work to fracture (p < 0.0001), whereas crosslinked UHMWPE exhibited 8 very low values, mostly due to the loss in ductility. The energy needed to fracture 9 crosslinked materials decreased a little bit further as more annealing steps were introduced 10 (Table 4). Finally, load displacement curves to fracture corresponding to compact tension 11 specimens revealed a similar behaviour, with unirradiated UHMWPE needing high loads 12 and displacements to reach fracture, while crosslinked UHMWPEs had much lower 13 values (Figure 7). Again, no significant differences were found among crosslinked 14 UHMWPEs.

15

16 Commercially available sequentially crosslinked UHMWPE is claimed to have 17 excellent oxidation resistance (no detectable free radicals) and superior mechanical properties compared to its post-irradiation annealed predecessor <sup>23,24,37</sup>. It is worth 18 19 mentioning that the UHMWPE resins used to produce these formulations are different. 20 The manufacturer replaced the GUR 1050 UHMWPE resin employed to fabricate post-21 irradiation annealed UHMWPE with GUR 1020 resin to produce the sequentially annealed 22 formulation. The latter resin is a lower molecular weight powder, and UHMWPE 23 materials produced from this resin have been reported to exhibit improved mechanical properties than those manufactured from GUR 1050<sup>38</sup>. So, it is unclear whether the 24 improvement stems from the annealing strategy or the UHMWPE resin. Our study 25 26 suggests that oxidation resistance seems to be superior for sequentially annealed

UHMWPEs from a thermooxidation perspective. However, the mechanical improvement
 obtained after introduction of three sequential irradiation-annealing steps appears to be
 quite limited, at least when GUR 1050 resin is used as base material.

4

5 Obviously, the present study is not free of some limitations. First, thermooxidation 6 parameters might not necessarily correlate with oxidation indices measured after shelf-7 aging or *in vivo* oxidation conditions. The orthopaedic community generally relies on 8 standard accelerated aging protocols to explore the oxidative stability of alternative 9 polyethylenes and to categorize them. However, accelerated aging protocols have not 10 always provided an exact correspondence to oxidation indices and regional distribution of 11 oxidation maxima found in shelf aged implants or retrievals. Remelted polyethylenes 12 represent an interesting example as these materials performed very well after accelerated aging<sup>39</sup>, but recent evidence suggests no complete oxidation resistance was achieved<sup>40</sup>. We 13 14 chose to perform thermogravimetry since it provides a faster first screening regarding 15 oxidative stability of the molten polymer. Second, cyclic stress-strain and long-term 16 fatigue experiments are not intended to confirm the suitability of the studied polyethylene 17 materials as acetabular liners or tibial inserts, or to predict an optimal clinical 18 performance. These mechanical tests do not take into account complex load patterns 19 (biaxial or triaxial stress states), and, on the other hand, the clinical performance of the 20 artificial joint depends on a variety of patient, surgical, design and material factors.

21

## 22 CONCLUSIONS

This study provides evidence that the introduction of sequential irradiationannealing processes may improve the resistance to oxidation as compared to postirradiation annealed UHMWPEs. The microstructural characterization of sequentially

crosslinked UHMWPEs also confirmed crystal thickness and crystallinity contents similar to those of the unirradiated polymer, whereas the thermogravimetric behavior suggested this material had the highest crosslink density. The anticipated improvement in mechanical properties, however, appears to be more limited, as the mechanical, crack propagation and fracture resistance properties were generally comparable to those of post-irradiation annealed and G2 (two sequential irradiation and annealing steps) UHMWPEs.

7

## 8 ACKNOWLEDGEMENTS

9 Research funded by the Comisión Interministerial de Ciencia y Tecnología
10 (CICYT), Spain. Project: MAT 2006-12603-C02-01.

- 11
- 12

#### 1 REFERENCES

- 2 1. Kurtz, S.; Medel, F. J.; Manley, M., Current Orthopaedics 22, 392 2008. 3 2. Medel, F. J.; Kurtz, S. M.; Hozack, W. J.; Parvizi, J.; Purtill, J. J.; Sharkey, P. F.; 4 MacDonald, D.; Kraay, M. J.; Goldberg, V.; Rimnac, C. M., J Bone Joint Surg Am 91, 5 839 2009. 6 McKellop, H.; Shen, F. W.; Lu, B.; Campbell, P.; Salovey, R., J Orthop Res 17, 3. 7 157 1999. 8 4. Kurtz, S. M.; Muratoglu, O. K.; Evans, M.; Edidin, A. A., Biomaterials 20, 1659 9 1999. 10 5. Muratoglu, O. K.; Bragdon, C. R.; O'Connor, D. O.; Jasty, M.; Harris, W. H.; Gul, 11 R.; McGarry, F., Biomaterials 20, 1463 1999. Kurtz, S. M.; Medel, F. J.; MacDonald, D. W.; Parvizi, J.; Kraay, M. J.; Rimnac, 12 6. 13 C. M., J Arthroplasty 25, 67 2010. 14 Kurtz, S. M., The UHMWPE Biomaterials Handbook: Ultra-High Molecular 7. 15 Weight Polyethylene in Total Joint Replacement and Medical Devices (2nd Edition); 16 Academic Press: Burlington, MA, 2009. 17 Baker, D. A.: Bellare, A.: Pruitt, L., J Biomed Mater Res A 66, 146 2003. 8. 18 9. Medel, F. J.; Pena, P.; Cegonino, J.; Gomez-Barrena, E.; Puertolas, J. A., J Biomed 19 Mater Res B Appl Biomater 83, 380 2007. 20 10. Oral, E.; Malhi, A. S.; Muratoglu, O. K., Biomaterials 27, 917 2006. 21 Gencur, S. J.; Rimnac, C. M.; Kurtz, S. M., Biomaterials 27, 1550 2006. 11. 22 12. Puertolas, J. A.; Medel, F. J.; Cegonino, J.; Gomez-Barrena, E.; Rios, R., J Biomed 23 Mater Res B Appl Biomater 76, 346 2006.
- Kurtz, S. M.; Austin, M. S.; Azzam, K.; Sharkey, P. F.; MacDonald, D. W.; Medel, 24 13.
- 25 F. J.; Hozack, W. J., J Arthroplasty 25, 614 2010.
- 26 14. Furmanski, J.; Kraay, M. J.; Rimnac, C. M., J Arthroplasty2010.
- 27 15. Furmanski, J.; Anderson, M.; Bal, S.; Greenwald, A. S.; Halley, D.; Penenberg, B.;
- 28 Ries, M.; Pruitt, L., Biomaterials 30, 5572 2009.
- 29 Ries, M. D., J Arthroplasty 20, 59 2005. 16.
- 30 17. Oral, E.; Christensen, S. D.; Malhi, A. S.; Wannomae, K. K.; Muratoglu, O. K., J
- 31 Arthroplasty 21, 580 2006.
- 32 Oral, E.; Greenbaum, E. S.; Malhi, A. S.; Harris, W. H.; Muratoglu, O. K., 18.
- 33 Biomaterials 26, 6657 2005.
- 34 19. Oral, E.; Rowell, S. L.; Muratoglu, O. K., Biomaterials 27, 5580 2006.
- 35 20. Kurtz, S. M.; Mazzucco, D.; Rimnac, C. M.; Schroeder, D., Biomaterials 27, 24
- 2006. 36
- 37 Wang, A.; Yau, S. S.; Essner, A.; Herrera, L.; Manley, M.; Dumbleton, J., J 21.
- 38 Arthroplasty 23, 559 2008.
- 39 22. Dumbleton, J. H.; D'Antonio, J. A.; Manley, M. T.; Capello, W. N.; Wang, A., Clin
- 40 Orthop Relat Res 453, 265 2006.
- 41 23. Wang, A.; Zeng, H.; Yau, S. S.; Essner, A.; Manely, M.; Dumbleton, J., Journal of
- 42 Physics D-Applied Physics 39, 3213 2006.
- 43 24. Dumbleton, J. H.; D'Antonio, J. A.; Manley, M. T.; Capello, W. N.; Wang, A.,
- 44 Clinical Orthopaedics and Related Research, 265 2006.
- 45 25. Morrison, M. L.; Jani, S., Journal of Biomedical Materials Research Part B-
- 46 Applied Biomaterials 90B, 87 2009.
- 47 Martinez-Morlanes, M. J.; Medel, F. J.; Mariscal, M. D.; Puertolas, J. A., Polymer 26.
- 48 Testing 29, 425 2010.

- 1 27. Medel, F. J.; Garcia-Alvarez, F.; Gomez-Barrena, E.; Puertolas, J. A., Polymer
- 2 Degradation and Stability 88, 435 2005.
- 3 28. Baker, D. A.; Pruitt, L.; Bellare, A., Journal of Materials Science Letters 20, 1163
  4 2001.
- 5 29. Urries, I.; Medel, F. J.; Rios, R.; Gomez-Barrena, E.; Puertolas, J. A., J Biomed 6 Mater Res B Appl Biomater 70, 152 2004.
- 7 30. Premnath, V.; Bellare, A.; Merrill, E. W.; Jasty, M.; Harris, W. H., Polymer 40,
- 8 2215 1999.
- 9 31. Fischer, E. W., Pure Applied Chemistry 31, 19 1972.
- 10 32. Matsuda, H.; Aoike, T.; Uehara, H.; Yamanobe, T.; Komoto, T., Polymer 42, 5013
- 11 2001.
- 12 33. Poutsma, M. L., Macromolecules 36, 8931 2003.
- 13 34. Krupa, I.; Luyt, A. S., Polymer Degradation and Stability 71, 361 2001.
- 14 35. Medel, F. J.; Furmanski, J. In UHMWPE Biomaterials Handbook (Second
- 15 Edition); Steven, M. K.; Ph.D.A2 Steven M. Kurtz, P. D., Eds.; Academic Press: Boston,

16 2009.

- 17 36. Lin, L.; Argon, A. S., Journal of Materials Science 29, 294 1994.
- 18 37. Wang, A. G.; Yau, S. S.; Essner, A.; Herrera, L.; Manley, M.; Dumbleton, J.,
- 19 Journal of Arthroplasty 23, 559 2008.
- 20 38. Currier, B. H.; Currier, J. H.; Collier, J. P.; Mayor, M. B., J Biomed Mater Res 53,
- 21 143 2000.
- 22 39. Muratoglu, O. K.; Merrill, E. W.; Bragdon, C. R.; O'Connor, D.; Hoeffel, D.;
- 23 Burroughs, B.; Jasty, M.; Harris, W. H., Clin Orthop Relat Res, 253 2003.
- 24 40. Currier, B. H.; Van Citters, D. W.; Currier, J. H.; Collier, J. P., J Bone Joint Surg
- 25 Am 92, 2409 2010.
- 26
- 27

Table 1. Thermal and thermogravimetric parameters (mean ± standard deviation) obtained from DSC and TG experiments for unirradiated, postirradiation annealed, and sequentially crosslinked UHMWPEs.

|                  | DSC                             |                                |                                                                     | TG                                              |                                                       |                                              |
|------------------|---------------------------------|--------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------|
| Material         | Shoulder<br>Temperature<br>(°C) | Melting<br>Temperature<br>(°C) | Crystallinity<br>(%)                                                | $T_B$ (°C)                                      | <i>T</i> <sub>0</sub> (°C)                            | <i>T</i> <sub>1</sub> (°C)                   |
| Unirradiated     | N/A                             | $136.2 \pm 0.3^{a}$            | $51.9 \pm 0.7^{a}$                                                  | $151.9 \pm 0.6^{a}$                             | $214.9 \pm 0.6^{a}$                                   | $374.4\pm3.8^a$                              |
| G0 (30-30-30)    | N/A                             | $142.1 \pm 1.1^{b}$            | $58.7 \pm 0.5^{b}$                                                  | $140.7 \pm 0.1^{b}$                             | $219.3 \pm 0.4$                                       | $388.0 \pm 2.4^{b,c}$                        |
| G1 (30-30-30A)   | $125.5\pm1.6$                   | $141.0\pm0.6^{b}$              | $53.1 \pm 1.0^{\circ}$                                              | $142.8 \pm 3.4^{b}$                             | $212.6 \pm 0.9^{b}$                                   | $384.3 \pm 4.7^{b}$                          |
| G2 (30-30A-30A)  | $126.0\pm0.2$                   | $141.1 \pm 0.6^{b}$            | $51.6 \pm 1.1^{\circ}$                                              | $144.4 \pm 1.1^{b}$                             | $211.8 \pm 1.7^{b}$                                   | $390.7 \pm 3.6^{b}$                          |
| G3 (30A-30A-30A) | $127.5\pm0.3$                   | $141.4 \pm 0.5^{b}$            | $53.7 \pm 2.1^{\circ}$                                              | $167.6 \pm 2.5^{\circ}$                         | $233.0 \pm 0.8$ <sup>c</sup>                          | $397.6 \pm 5.0^{b,d}$                        |
| G4 (30A-30-30)   | N/A                             | $143.2 \pm 0.9^{b}$            | $58.8 \pm 0.6^{b}$                                                  | $141.2 \pm 0.8^{b}$                             | $216.2 \pm 1.9$                                       | $391.5 \pm 1.2^{b}$                          |
| G5 (90)          | N/A                             | $141.1 \pm 0.5^{b}$            | $58.8\pm0.2^{b}$                                                    | $139.9 \pm 0.4^{b}$                             | $217.8 \pm 3.5$                                       | 396.1 ± 12.2 <sup>b</sup>                    |
|                  |                                 | $p < 0.0001^{a,b}$             | $\begin{array}{c} p < 0.0001^{a,b} \\ p < 0.0001^{b,c} \end{array}$ | $p \le 0.003^{a,b};$<br>$p < 0.0001^{a,c; b,c}$ | $p \le 0.03^{a,b};$<br>p < 0.0001 <sup>a,c; b,c</sup> | $\frac{p \le 0.023^{a,b}}{p < 0.0054^{c,d}}$ |

N/A: Not applicable

Table 2. Mechanical parameters (mean  $\pm$  SD) obtained from uniaxial tension and cyclic

stress-strain experiments for unirradiated, post-irradiation annealed and sequentially

crosslinked UHMWPE materials.

|                  | Uniaxial Tension       |                                      |                         | 50 Cycles Stress-Strain Testing |                                           |
|------------------|------------------------|--------------------------------------|-------------------------|---------------------------------|-------------------------------------------|
| Material         | Yield stress<br>(MPa)  | Fracture<br>Stress (MPa)             | Fracture<br>Strain      | $E_S(lc)$ (MPa)                 | $\varepsilon_{16MPa}(50c)$                |
| Unirradiated     | $19.0\pm0.2$           | $36.3 \pm 1.8^{a}$                   | $8.7\pm0.5^a$           | $380\pm28^{a}$                  | $8.3\pm0.9^{a}$                           |
| G0 (30-30-30)    | $20.8\pm0.1^{a}$       | $36.7\pm0.3$                         | $4.7\pm0.1^{b}$         | $494 \pm 13^{\rm b}$            | $4.3\pm0.2^{b}$                           |
| G1 (30-30-30A)   | $17.7 \pm 0.3^{b}$     | $30.4 \pm 1.8^{b}$                   | $4.3\pm0.2^{\text{ b}}$ | $372 \pm 16^a$                  | $7.6 \pm 0.8^{\circ}$                     |
| G2 (30-30A-30A)  | $19.4 \pm 0.2^{b}$     | $31.6 \pm 3.4^{b}$                   | $4.3\pm0.6^{\ b}$       | $358 \pm 13^a$                  | $9.0 \pm 1.4^{\circ}$                     |
| G3 (30A-30A-30A) | $17.9 \pm 1.2^{b}$     | $31.1 \pm 2.3^{b}$                   | $4.5\pm0.2^{b}$         | $367 \pm 22^a$                  | $8.5 \pm 1.6^{c}$                         |
| G4 (30A-30-30)   | $20.2\pm0.1$           | $35.6 \pm 2.1$                       | $4.8\pm0.3^{\ b}$       | $489 \pm 11^{b}$                | $4.4\pm0.1^{b}$                           |
| G5 (90)          | $20.1\pm0.3$           | $32.4 \pm 2.6$                       | $4.6\pm0.4^{b}$         | $483 \pm 15^{\rm b}$            | $4.8\pm0.1^{b}$                           |
|                  | p≤0.005 <sup>a,b</sup> | $p \le 0.02^{a,b}$<br>$p > 0.54^{b}$ | p<0.0001 <sup>a,b</sup> | p < 0.0001 <sup>a,b</sup>       | $p \le 0.0002^{a,b}$ $p \le 0.0008^{b,c}$ |

7

**Table 3.** Stress-intensity levels at crack inception (mean  $\pm$  SD) for virgin, post-irradiation

2 annealed and sequentially annealed UHMWPEs.

| Material         | $\Delta K_{inception} (\mathrm{MPam}^{1/2})$ | т              |
|------------------|----------------------------------------------|----------------|
| Unirradiated     | $2.22 \pm 0.06$                              | $12.1 \pm 2.0$ |
| G1 (30-30-30A)   | $1.49 \pm 0.03$                              | $12.9 \pm 0.8$ |
| G2 (30-30A-30A)  | $1.58 \pm 0.08$                              | $8.6 \pm 0.3$  |
| G3 (30A-30A-30A) | $1.51 \pm 0.03$                              | $7.1 \pm 1.5$  |
| B100A*           | $1.49 \pm 0.06$                              | $12.9 \pm 0.8$ |

\*Data reported in reference [9] corresponding to 100 kGy e-beam irradiated and annealed
 UHMWPE

9 Table 4. Estimations of toughness behavior (mean ± SD) from uniaxial tension and impact
 10 tests.

| Material         | Work to Fracture<br>(MPa or MJ/m3) | Impact Toughness<br>(kJ/m2)                                           |
|------------------|------------------------------------|-----------------------------------------------------------------------|
| Unirradiated     | $209.7\pm20.7^{a}$                 | $100.9 \pm 10.3^{a}$                                                  |
| G0 (30-30-30)    | $116.5 \pm 4^{b}$                  | $62.6 \pm 4.7^{b}$                                                    |
| G1 (30-30-30A)   | $88.8 \pm 6.4$ <sup>b</sup>        | $47.1 \pm 2.9^{b, c}$                                                 |
| G2 (30-30A-30A)  | $93.3 \pm 19.4^{\text{b}}$         | $47.8 \pm 2.6^{b, c}$                                                 |
| G3 (30A-30A-30A) | $94.1 \pm 7.1^{\text{ b}}$         | $47.9 \pm 5.2^{b, c}$                                                 |
| G4 (30A-30-30)   | $114.8 \pm 10.7$ <sup>b</sup>      | N/A                                                                   |
| G5 (90)          | $105.3 \pm 12.8$ <sup>b</sup>      | N/A                                                                   |
|                  | $p < 0.0001^{a,b}$                 | $\begin{array}{c} p < 0.0001^{a,b} \\ p \le 0.0015^{b,c} \end{array}$ |

12 N/A: Not available

| 1                          | FIGURE CAPTIONS                                                                           |
|----------------------------|-------------------------------------------------------------------------------------------|
| 2                          | Figure 1. First-heating DSC curves corresponding to virgin, post-irradiation annealed     |
| 3                          | (303030A or G1), and sequentially crosslinked (3030A30A or G2, and 30A30A30A or           |
| 4                          | G3) UHMWPEs.                                                                              |
| 5                          |                                                                                           |
| 6                          | Figures 2A-B. Thermogravimetric decomposition curves corresponding to virgin, post-       |
| 7                          | irradiation annealed, and sequentially crosslinked UHMWPEs, (A). A close-up view          |
| 8                          | within the $125 - 275$ °C range revealed a mass increase associated to thermooxidation of |
| 9                          | the polymers, (B).                                                                        |
| 10                         |                                                                                           |
| 11                         | Figures 3A-E. TEM micrographs (x60,000) of virgin, (A), as-irradiated (B), post-          |
| 12                         | irradiation annealed, (C), sequentially crosslinked G2, (D), and sequentially crosslinked |
| 13                         | G3, (E), UHMWPES.                                                                         |
| 14                         | Figure 4. Typical anging strong strong symplex obtained from uniovial tensils tests for   |
| 15                         | virgin post irradiation annealed and sequentially crosslinked LIHMWPEs                    |
| 17                         | virgin, post-inaulation annealeu, and sequentiarly crossinikeu Ornwiwi Es.                |
| 18                         | Figure 5. Stress-life curves for virgin, post-irradiation annealed, and sequentially      |
| 19                         | crosslinked UHMWPEs.                                                                      |
| 20                         |                                                                                           |
| 21                         | Figure 6. Fatigue crack propagation curves corresponding to virgin, post-irradiation      |
| 22                         | annealed, and sequentially crosslinked UHMWPEs.                                           |
| 23                         |                                                                                           |
| 24                         | Figure 7. Load-displacement curves to fracture corresponding to compact tension           |
| 25                         | specimens of virgin, post-irradiation annealed, and sequentially crosslinked, G3,         |
| 26                         | UHMWPEs.                                                                                  |
| 27                         |                                                                                           |
| 28                         |                                                                                           |
| 29<br>30<br>31<br>32<br>33 |                                                                                           |

-





# FIGURES 3A-E









# FIGURE 6



