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Abstract: Assessing the spatial distribution of soil properties has achieved considerable interest 
among soil scientists, both for testing hypotheses about the soil formation processes and for 
predicting the properties of soils at non-sampled locations (mapping). In this paper we provide a 
discussion of the various approaches to the modeling of spatial variates, and we propose a modeling 
framework that is able to incorporate the most important effects usually found in spatial variates, 
including fixed and random spatial effects, spatial trends and heteroscedasticity. We provide a case 
study of the analysis of eight soil properties in a mountain catchment in the Spanish Pyrenees. As 
explanatory covariates we use several topography parameters, which can be related to the 
pedogenetic processes active in the area. Several of them proved useful for explaining the 
variability of soil properties, explaining up to 77% of their variance. We focus on the importance of 
model selection in order to determine which effects are relevant for modeling each soil parameter. 
We find that the full model is not necessarily optimum for all the variables tested, and that the 
model should be adapted to the complexity of each individual case. This paper is a contribution to 
the discussion on the modeling of spatial variates, and to the eventual development of a general 
theory of spatial variates. 
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1. Introduction 
Assessing the spatial variation of soil properties has received considerable attention from soil 
scientists for many years. This is due to a great interest in the distribution of soil properties as 
environmental resources or as soil quality indicators (i.e.prediction); but also as a means of testing 
hypothesis regarding the influence of external parameters on soil formation processes 
(i.e.inference). More recently, there has been renewed interest in the topic because of the need for 
producing reliable maps of soil properties for spatially distributed ecological modeling. There is a 
general lack of detailed soil information at the appropriate spatial resolution and this is seen by 
many as one of the most important limitations for developing process-based simulation models. In 
fact, it is one of the main reasons for the development of spatial interpolation techniques (Burrough, 
1993). Examples of soil properties which have been the subject of analysis include: genetic features 
such as the soil depth, soil type, or the presence of diagnostic horizons (Bourennane et al., 2000; 
Zhu et al., 2004); physical properties such as soil color, texture, total porosity or water content 
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(Pachepsky et al., 2001; Bragato, 2004; Selige et al., 2006); physical-chemical properties such as 
electrical conductivity, cation exchange capacity or pH (Bishop et al., 2001; Goovaerts et al., 2002; 
Emery, 2006); chemical composition (Gessler et al., 1996 ; McKenzie and Ryan, 1999; Bishop et 
al., 2001; McBratney et al., 2003; Selige et al., 2006; Simbahan et al., 2006; Navas et al., 2008); 
organic matter (Lark, 2000); soil salinity (Corwin et al., 2003; Douaik et al., 2005; Taylor and 
Odeh, 2007); soil erosion (Ziadat, 2007); or contaminant concentrations (Goovaerts, 1999; Van 
Meirvenne and Goovaerts, 2001; Hang et al., 2002; Amini et al., 2005). 

Studies on the spatial variability of soil properties are typically based on known values of 
these properties at a number of spatial locations obtained by field sampling and the relationships 
between these and other—auxiliary—covariates. Several mathematical models have been proposed 
for estimating the values of soil properties at unvisited locations, and the plethora of literature on 
this topic is reflective of this (see McBratney et al., 2003, for a comprehensive review). In general 
terms, two main methodological currents or lines of thought have prevailed: (1) standard statistical 
approaches; and (2) geostatistical approaches. The standard statistical approach includes tools from 
the family of univariate and multivariate regression methods as well as adaptive data-mining 
methods such as generalized additive models, splines, regression trees, artificial neural networks 
and support vector machines. These methods are especially suited to exploring the relationships 
among soil properties and other environmental factors and testing hypothesis concerning the 
variability of soil formation processes, and this is reflected in several seminal works (Yaalon, 1975; 
Webster, 1977) as well as in modern applications (Park and Vlek, 2002). However, these methods 
have also been extensively used with emphasis on their prediction abilities for generating maps of 
soil properties (Moore et al., 1993;  Gessler et al., 1996; McKenzie and Ryan, 1999; Selige et al., 
2006; Ben-Dor et al., 2006; Ziadat, 2007; Behrens and Scholten, 2007; Mackenzie and Gallant, 
2007). 

On the other hand geostatistical techniques exploit the self-correlation properties of spatial 
variates (Cressie, 1993). They are specifically suited for spatial prediction (spatial interpolation), 
and were developed in close relationship with the Earth Sciences. Geostatistical methods were 
applied to soil properties data since the 1960s (Davies and Gamm, 1969) but became more 
extensively from the 1980s onwards due to the popularity of kriging and their implementation in 
several commercial geographic information systems (GIS) packages (Burgess and Webster, 1980a, 
1980b; Webster and Burgess, 1980; Vauclin et al., 1983; Goovaerts, 1994; Sinowski and 
Auerswald, 1999; Goovaerts et al., 2002; Pebesma, 2004; Douaik et al., 2005). 

Extensive research has been devoted to comparing between different statistical and 
geostatistical techniques (Laslett et al., 1987; Leenaers et al., 1990; Weber and Englund, 1992; 
Knotters et al., 1995; Gotway et al., 1996; Goovaerts, 1999a, 1999b; Bourennane et al., 2000; 
Bishop and McBratney, 2001; Vicente-Serrano et al., 2003; Amini et al., 2005; Emery, 2006; 
Simbahan et al., 2006; Behrens and Scholten, 2007; Taylor and Odeh, 2007; Beguería and Pueyo, 
2009). Both statistical and geostatistical approaches have proven to give good results, although 
some authors have warned against too simplistic formulations, such as linear regression with 
uncorrelated errors or simple kriging, which do not adapt well to the complexity usually found in 
spatial variates (Opsomer et al., 1999; Lark, 2000; Hengl et al., 2004).  This has motivated the 
development of advanced methods sharing characteristics of both standard regression and 
geostatistics. Examples of such approaches are two-step formulations using ordinary regression 
followed by simple kriging on the residuals (Knotters et al., 1995; Carré and Girard, 2002; Inakwu 
et al., 2007); kriging with external drift (Bourennane et al., 1996; Hengl et al., 2003); the IRF-k 
theory (Matheron, 1982); universal and regression kriging (Knotters et al., 1995; Odeh et al., 1995; 
Hengl et al., 2004; Herbst et al., 2006; Heuvelink et al., 2006; Hengl et al., 2007); and mixed effects 
models including spatially-correlated errors (Lark, 2000; Pachepsky et al., 2001; Beguería and 
Pueyo, 2009). These techniques allow integrating all the information available to the researcher, 
from the purely spatial information from the field survey of dependent variables to background 
pedological knowledge in the form of relationships with environmental covariates. There is still, 
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however, a lack of a general framework capable of integrating all these approaches into a common 
theory of spatial variables. 

In practice, the selection of a given statistical model continues to be highly subjective and 
depends, among others things, on personal factors such as training and software availability. Ideally 
though, these factors should be of secondary importance to other considerations such as the purpose 
of the study (e.g. whether the stress is on hypothesis testing or just on spatial prediction); the 
sampling design; the previous knowledge of the variates being modeled; or the expected correlation 
with covariates. In this paper we propose a binary decision tree with criteria for helping decide 
which method is best suited for a given data set configuration. We use generalized least squares 
(GLS) regression to fit a mixed-effects model with spatially-correlated errors and heteroscedasticity 
(different variances) to assess the spatial variability of eight soil properties in a small mountain area 
in the Spanish Pyrenees. A model selection procedure is designed to help find the minimal adequate 
model for each soil property, from which best linear unbiased predictor maps are produced. This 
method is equivalent to what has been usually referred to as regression kriging (Schabenberger and 
Gotway, 2005; Hengl, 2007). 

The study area corresponds to an experimental catchment for which a good level of 
knowledge exists (García-Ruiz et al., 1995; González et al., 1997; García-Ruiz et al., 2005; Navas 
et al., 2005a, 2005b; Lasanta et al., 2006; Navas et al., 2008). Like many other areas in the Spanish 
Pyrenees, the catchment supported intensive human use during the past centuries (what has been 
termed 'the traditional land use system'), but the land was rapidly abandoned during the first half of 
the 20th Century. Improving our knowledge about the spatial distribution of soil properties in areas 
that experienced changes in land use / land cover may help determining: i) how past land use 
arrangements affect soil quality, and ii) how the spatial variation of soil properties affects the 
regeneration of the natural vegetation after land abandonment. 

 

2. Data and methods 
Study area 
The study was carried out in the Arnás River catchment, a small first-order stream in the Spanish 
Central Pyrenees (Figure 1). The catchment occupies an area of 2.84 km2 and it corresponds to a 
middle mountain area with elevation ranging between 910 and 1341 m a.s.l. Average annual 
temperature is 10ºC, and mean annual precipitation is 930 mm. The Arnás River divides the 
catchment in two sides with contrasting topographical characteristics. To the left of the river (sunny 
side) the slopes are shorter and steeper, contrasting with the more gentle slopes found on the right 
(shady side). 

Vegetation on the sunny side is composed of a dense scrubland with sparse trees or small 
patches of pine forest, whereas on the shady side there are large patches of pine and mixed forests, 
especially in the upper part of the slopes. Most of the catchment was cultivated until the mid 20th 
Century and was abandoned thereafter. Since then, vegetation recovery occurred naturally, 
especially on the shady side. 

The geology of the catchment corresponds to the Eocene Flysch, with thin—centrimetric to 
decimetric— alternating layers of marls and sandstones. There are six soil types with the most 
abundant being Haplic Kastanozems, Calcaric Regosols and Rendsic Leptosols (Figure 2). In 
general, the soil texture is clay loam and the soils tend to be alkaline (Navas et al., 2005a). 
 

Data 
A regular sampling scheme was devised in order to obtain an evenly spaced sample (Figure 1). The 
sample consisted of 74 points, separated at distances of 100 m from each other. The sampling was 
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carried out during one intensive field campaign in order to restrain variation in the climatic and 
hydrological conditions. The samples were stored at 4ºC until they were analysed. Samples were 
air-dried, ground, homogenized and quartered, to pass through a 2 mm sieve. Eight soil properties 
were determined for each sampling point: i) clay content of the fraction below 2 mm (%); ii) bulk 
density (g cm-3); iii) carbonates content (% CaCO3); iv) pH; v) field capacity (% of the soil 
volume); vi) organic matter content (%); vii) nitrogen content (%); and viii) cation exchange 
capacity (meq g-1). These properties were measured following standard techniques. Grain size 
analysis was performed using Coulter laser equipment. To eliminate the organic matter, samples 
were chemically disaggregated with 10% H2O2 heated at 80ºC, then stirred while ultrasound was 
also used to facilitate particle dispersion. Carbonates were measured using a pressure calcimeter. 
The pH (1:2.5 soil:water) was measured using a pH-meter. Water retention at field capacity was 
determined at -33 kPa using a Richards Membrane. Organic matter was determined by titration. 
Total nitrogen was measured using the Kjeldhal Method. To determine the exchangeable capacity 
by sodium displacement, a Mg (NO3)2 solution was used followed by ICP-OES analysis. Basic 
statistics of the eight soil properties are shown in Table 1. 

A map of soil types was prepared based on field survey and soil profiles. Six soil types were 
identified and classified according to FAO (1989), and their spatial extension was mapped. A 
digital elevation model (DEM) with a 5 m spatial resolution, generated from photogrammetric 
restitution, was employed for deriving a set of topographic parameters. Elevation was used as the 
primary covariate, due to its influence in several climatic variables relevant for pedological 
processes such as rainfall amounts or temperature. Wang and Liu’s (2006) algorithm was then 
applied to the original DEM for filling small depressions and obtaining a hydrologically continuous 
model. The first derivatives of the elevation (slope gradient and aspect) were computed following 
the method of Zevenbergen and Thorne (1996). The slope gradient is related with erosion and 
deposition processes, and usually is correlated with soil depth and other soil properties. The aspect, 
on the other hand, is related to the amount of solar energy received by the slope. A cosine 
transformation was applied to the aspect for transforming from an angular to a linear scale, thus 
stressing the variability in the north-south axis. A multiple flow direction algorithm was used for 
computing the catchment area, with a concentration exponent of 1.1 and a threshold of 1500 cells 
for the initiation of concentrated flow in line with the approach suggested by Freeman (1991) and 
Quinn (1991). The catchment area is related to the accumulation of water and sediment flows in the 
landscape, thus having an influence on pedogenic processes. The topographic wetness index 
(Moore et al., 1991) was finally derived from the previous variables. It is related to pedogenic 
processes such the redistribution of soil moisture in the landscape or soil erosion and accumulation. 
All topographic analyses were performed using the following modules of SAGA GIS (Böhner et al., 
2006): fill sinks, local morphometry, parallel processing, and topographic indices. Basic statistics 
of the topographical covariates are shown in Table 1, and their spatial distribution is shown in 
Figure 2. 
 

Exploratory analysis 
We performed a preliminary analysis in order to determine the main factors of variation for each 
soil property. Only four soil types (calcaric Regosols, rendsic Leptosols, haplic Kastanozems and 
haplic Phaeozems) were considered, since the other two soil types found in the area occupied a 
small surface and were not represented in the soil sampling. We performed ANOVA tests in order 
to check the explanatory capacity of the soil classification. A pairwise t-test using the Holm (1979) 
method for adjusting the p-values in multi-contrast analyses was then applied on those soil 
properties yielding positive results in order to determine the pairs of soil types that were different. 
The Levene test for homogeneity of variances was used for checking against heteroscedasticity 
among soil types. Pearson's correlation was used for exploring pairwise relationships between the 
soil properties and the covariates. Bivariate plots were used for exploring differences in these 
relationships between soil types. Finally, the Moran's I test was used for checking against spatial 
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autocorrelation of the soil properties. 

Exploratory analysis can only give suggestions about the effects on the variability of the 
dependent variables and help defining the structure of the models: i) whether heteroscedasticity and 
spatially correlation must be included in the error term, and ii) which covariates and interactions 
among them to include. Moreover, some of the analysis such as ANOVA assume independence, 
normality and homoscedastic errors. The significance and sign of these effects can only be 
determined by a mixed-effects model analysis. 

 
Mixed-effects model analysis 

It is possible to formulate a universal model for a spatial variate as a sum of deterministic (fixed) 
and stochastic (random) components in the following form: 

 
Z s( )  =  m(s)  +  !ε s( )  +  !!ε (s),  (eq. 1) 

where Z is the value of a spatially-explicit variate depending on the spatial coordinates s, m is a 
deterministic function of spatial variation containing the relationship with covariates and whose 
parameters may or may not vary spatially, ε’ is a stochastic component of spatial variation (a 
spatially correlated error), and ε’’ is a random (uncorrelated) error. This model is often termed 
regression kriging (Hengl, 2007) and is virtually identical to a linear mixed-effects model with 
spatially-correlated errors (Pinheiro and Bates, 2000). Several methods such as ordinary least 
squares (OLS) regression and simple and ordinary kriging are in fact special (incomplete) cases of 
this model. In OLS regression the fixed effects (relationship with covariates) is captured but the 
spatial random variation is ignored, with negative effects on the confidence intervals of both 
parameter estimates and predicted values (Beguería and Pueyo, 2009). In simple and ordinary 
kriging the spatial random variation is captured but the relationship with covariates is not 
considered. 

A binomial decision tree such as the one in Figure 3 can help deciding which technique is 
most suitable for assessing the spatial variability of a soil parameter. If a physical (deterministic) 
model is available it is preferable to any statistical method because it usually allows for a deeper 
insight on the processes responsible for the variability of the soil parameter of interest. For example, 
mass balance models have been used for assessing profiles of 137Cs activity (Soto and Navas, 2004 
and 2008) or soil erosion and deposition (Alatorre et al., 2011). If a physical model is not available 
a statistical approach is the only option. If the soil parameter is expected to be correlated with other 
environmental variables this relationship can be used for modeling its variability. OLS regression 
has been extensively used for that, but it is not recommended for spatial variables for the reasons 
stated above, so methods based on the Generalized Least Squares (GLS) algorithm such as a mixed-
effects model or regression kriging are to be preferred. If no correlation exists with other 
environmental variables or if data on other variables is not available, the stochastic random 
variation of the soil property of interest can be modeled by geostatistical methods such as ordinary 
or simple kriging, inverse distance weighted local regression, splines, etc. If the soil property shows 
no spatial correlation at the sampling scale it is not possible to go beyond the null model (the 
sample mean) unless additional data are obtained. 

For our case study, with four continuous covariates and one factor (four soil types) and 
presumed spatial correlation and heteroscedasticity (unequal variances) we defined a full model in 
the following form: 

 z j, s( )  =  β( j) x s( )  +  ε j, s( ), ε( j)  ~  N 0,σ j
2Λ( ) , (eq. 2) 

where z( j, s)  is a realization of Z associated with location s and soil type j; β( j)  is a vector of 
regression coefficients that includes an intercept and vary among soil types; x  is a vector of 
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covariates at location s ; and ε( j, s)  is a spatially-dependent, heteroscedastic error term. Unlike the 
standard linear model in which the errors are independent and identically distributed, the model in 
equation 2 allows different variances according to the levels of the factor (heteroscedasticity) and 
autocorrelation through the variance-covariance matrix Λσ j

2 . Such a model can be fit by GLS 
(Pinheiro and Bates, 2000) using maximum likelihood (ML) or, best, restricted maximum 
likelihood (REML) methods. Best linear unbiased predictions (BLUPs) at a given location s can be 
obtained including the fixed effects (covariates) and the spatial random effects estimated from 
known measurements of the response variate at nearby locations. These are different from the best 
linear estimates (BLUEs), which include only the fixed effects. 

For modeling the spatial dependence of the errors it is common to assume that the correlation 
between two error values sε  and s'ε  depends on the Euclidean distance d  between their location 
vectors, ( )s's, , and a correlation parameter, ρ . As it is classical in the geostatistical literature, we 
express the error correlation structure through the semivariogram, i.e. a model of the variance of the 
difference between two values of ε  at different spatial locations depending on the distance between 
them (Cressie, 1993). Several options exist for modeling the empirical semivariogram arising from 
the data (variogram models): linear, Gaussian, spherical, exponential, etc. Moreover, the 
characteristics of the semivariogram may vary in space (non-stationarity) or depend on the direction 
(anisotropy). 

With complex models such as the one described above a model selection procedure is needed 
to help determining which effects are really relevant for the soil parameter under study: i.e. find 
which covariates and covariate interactions are significant and decide whether or not a random 
effect (spatially-correlated errors) and heteroscedasticity must be included in the model. The 
objective is not only to simplify the model as much as possible by removing unnecessary 
parameters, but also to achieve appropriate p-values for the covariates since the power of GLS 
analysis increases when only the significant effects are left (Crawley, 2007). Model selection 
consists on finding an optimum model configuration in which only the significant effects are 
included. Here we followed a top-down  strategy (Diggle et al., 2002; Zuur et al., 2009): 
1. Beyond optimal model. A full model including all the covariates and meaningful interactions, 

as well as heteroscedasticity and spatial correlation of the errors was fit for each dependent 
variable. The models were fit by GLS using the REML method. Alternative models with 
different semivariogram models were fit, and a likelihood-ratio test was used for choosing the 
most appropriate one. These models contained presumably a higher number of effects than 
really needed, i.e. they included non-significant effects, so the p-values obtained for the 
covariates are not to be trusted. In the following steps all non-significant effects were 
removed until an optimal model was achieved. 

2. Covariates selection. The t-statistic was used for determining the significance of covariates, 
and those that did not achieve significance at a confidence level α=0.01 were removed. The 
covariate with the highest p-value was removed each time, and the process was iterated until 
only significant covariates were left. 

3. Residual model. Alternative models to the best one obtained from step 2 were fit with no 
heteroscedasticity and no spatially correlated errors. A likelihood-ratio test was then used to 
compare between the models and determine which was the best configuration of the residual 
model. 

4. Optimum model. The model arising from step 3 was considered the best one and used for 
further analysis (cross-validation, prediction maps, etc). 
For best clarifying this process, the R code used for performing model selection and needed 

data are provided as online supplementary material to this article. 
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Leave-one-out cross-validation was used to check the ability of the fitted models to predict 
the values of soil properties at non-sampled locations. This procedure involved fitting the model as 
many times as samples are in the data set, but each time keeping one sample out of the training 
sample. This allows computing independent validation statistics such as the mean absolute error 
(MAE), the mean bias error (MBE) and the root mean square error (RMSE) from the left-out 
samples. 

Maps of best linear unbiased estimations (BLUEs) were produced from the optimum fitted 
models using the functions for regression kriging in the gstat R library (Pebesma, 2004). Sample 
data and code for replicating the analysis are provided as online supplementary material to this 
article. 

 

3. Results 
Exploratory analysis 

The exploratory analysis provided evidence of differences in mean and variance, as well as 
spatial autocorrelation, for the eight soil properties and for the topographic covariates (Table 2 and 
Figure 4). Haplic Phaeozems were the most different soils, with higher values of clay content, 
organic matter, field capacity, nitrogen content and cation exchange and lower bulk density, 
carbonates content and pH. They appeared in medium to high areas of the shady aspect slopes of 
the catchment, with moderately high values of the topographic wetness index. Haplic Kastanozems 
also appeared in the shady aspect of the catchment, but on the lower and gentler parts of the slopes, 
with high values of the topographic wetness index, and their soil properties were average. Rendsic 
leptosols were characteristic of the higher parts of the sunny aspect slopes, with low values of the 
topographic wetness index. They could have high values of field capacity, organic matter and cation 
exchange capacity and relatively low carbonate content and bulk density, but they also showed a 
very large variance. Calcaric Regosols appeared in preference in the lower slopes of the sunny side 
of the catchment, with relatively low values of the topographic wetness index. They had the highest 
bulk density and pH and low field capacity, nitrogen and organic matter content. Globally, the soil 
classification seemed to have a relatively good capacity for predicting the soil properties, although 
it was well correlated to the topographic covariates too.  

Good correlations were found among soil properties, which were lower in the case of the clay 
content (Figure 5). Significant correlations were also found between the soil properties and several 
topographic covariates, especially with the altitude and the slope aspect, suggesting a good 
predictive capacity. Significant correlations were also found between the slope gradient and the 
aspect, and between the wetness index and the rest of topographic covariates. 

It must be noted that all of these factors of variability were checked in the exploratory 
analysis as being independent from each other, although some of them could be interrelated. For 
example, spatial autocorrelation in the dependent variables could be caused–and be totally 
explained–by spatial autocorrelation of the covariates. The methodological approach followed 
guaranteed that only the significant effects would be retained in the final models, allowing for a 
better interpretation of the results. As suggested by the exploratory analysis, the whole set of 
covariates were included in the analysis–soil type, altitude, slope, aspect, wetness index–, as well as 
the interactions between aspect and altitude and altitude and slope. Other possible interactions 
among topographical covariates were rejected due to the correlations between them. Interactions 
between the soil types and the topographic covariates were also not included for the same reason. 

 
Mixed-effects analysis: selection of covariates and residual model 

The process of model selection allowed determining the optimum model configuration for each soil 
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parameter (Table 3). The soil classification (soil type) was only retained for clay and carbonates 
content, which had different intercepts for the haplic Phaeozems. For the remaining soil properties 
the optimum models consisted only on combinations of the topographic covariates. The 
combination of slope aspect (asp) and the interaction between aspect and altitude (asp:alt) 
determined the optimum model for the bulk density, field capacity, nitrogen content and cation 
exchange capacity. The slope gradient (slope) or the slope gradient and its interaction with the slope 
aspect were selected for the carbonates content, pH and organic matter content. The topographic 
wetness index was not included in any model. 

The standard errors (standard deviation of the residuals) of were relatively high when 
compared to the variance of the dependent variables, for example as expressed by the interquantile 
range (Table 4 and Table 1, respectively). With respect to the residual models, heteroscedasticity 
was required for all dependent variables except the clay content and the cation exchange capacity, 
as demonstrated by a likelihood-ratio test between the models with and without heteroscedasticity, 
at the confidence level α=0.05. As compared to the calcaric Regosols, the haplic Phaeozems had 
larger residual variances for the pH (almost four times higher), field capacity, organic matter and 
nitrogen content, while it was lower for the bulk density and the carbonates content. Rendsic 
Leptosols had larger residual variances for pH, field capacity and organic matter, and lower for the 
remaining properties. Haplic Phaeozems had lower residual variances for all soil properties except 
nitrogen content. Spatial autocorrelation was required for four soil parameters: bulk density, pH, 
field capacity and organic matter. The best semivariogram models varied between the spherical, 
gaussian and rational models, and the range parameters varied between 125 and 480 m. 

 

Validation and BLUPs 
Validation statistics based on leave-one-out cross-validation (Table 5) yielded low to moderate R2 
values ranging between 0.118 and 0.513, indicating that the prediction ability of the models in 
unvisited locations was not high. The predictions showed very little bias compared with the 
observed values (MBE close to zero), and the absolute errors (MAE) and RMSE were lower than 
the range of variation of the dependent variables. Prediction plots showed relatively good fit 
between predicted and measured values was higher for some variables such as the pH and the 
carbonates content, while others such as the clay content or the organic matter were poorly 
predicted (Figure 6). 

Maps of the predicted soil properties were produced based on the optimum models fitted 
(Figure 7). Maps of the random variabilidy (standard error) were also produced based on the 
residual models (Figure 8). The spatial distribution of predictions and errors reflected the effects 
included on each models. The effect of the soil classification was clearly visible for the clay and 
carbonates content, while in the remaining cases only the topographical effects were present. The 
contribution of the spatially-correlated random effect was especially noticeable for the field 
capacity and organic matter. 

 

6. Discussion 
A review of the methodological developments for modeling spatial variables reveals a convergence 
of regression and geostatistical techniques towards mixed approaches that are able to account for 
fixed and random sources of spatial variation. Such approaches, despite the varying terminology 
(mixed-effects models, regression kriging), are based on the generalized least squares algorithm 
(GLS) and facilitate taking advantage of all the information available for estimating the values of 
spatial variates at non-sampled locations (BLUEs). Compared to ordinary least squares (OLS) 
regression, the mixed-effects approach allows incorporating spatial autocorrelation on the error term 
and reduce inference errors (bias in the estimation of parameter confidence levels), and allows 
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obtaining unbiased estimations of the dependent variables. Compared to traditional geostatical 
procedures such as ordinary or simple kriging, regression-kriging allows incorporating the 
researcher's pedological knowledge in the form of relationships with other environmental 
covariates. The main difference between the mixed-effects regression approach and regression 
kriging is that, while kriging was traditionally focused on predicting the spatial distribution of a 
variate, the mixed-effects approach was more focused on statistical inference, i.e. on drawing 
conclusions about the effects explaining the variation of a given spatial propery. This explains that 
the mixed-effects approach has developed very precise tools for determining which effects 
(covariates, factor levels, etc) are significant, while these are much less developed in the kriging 
environment. 

In our case we used a mixed-effects analysis approach since we were interested in 
determining the significance of different sources of variation in our data, including the significance 
of incorporating heteroscedasticity and spatial correlation in the error term. Starting from a 
complete model formulation, a model selection procedure allowed removing all non–significant 
effects to finally achieve an optimum model for the each dependent variate, given the available 
information. 

Despite sharing a homogeneous parent material, the soils of the study area had significant 
differences with respect to eight soil properties analyzed. Significant relationships were found with 
the topography except for the clay content, and one soil type (haplic Phaeozems) had significantly 
different intercepts for two soil properties (clay and carbonates content). In the remaining cases, the 
differences in soil properties found among soil types during the exploratory analysis were explained 
by the topography. The error term also had a complex structure, since different standard errors by 
soil type were needed in most models, and spatial correlation was present in four out of eight cases. 

As several authors pointed out, topographic covariates obtained from digital terrain models 
have a good ability for predicting soil properties (McKenzie and Ryan, 1999; Farenhorst et al., 
2003; Leij et al., 2004). The organic matter and the nitrogen content were the soil properties most 
poorly predicted, a characteristic of soil attributes whose variability is mostly governed by vertical 
pedogenetic processes and by local variation in ecological properties such as the plant cover (Park 
and Vlek, 2002). On the other hand soil properties such as the carbonates content were best 
explained by the topography, as it could be expected from soil attributes which are influenced not 
only by vertical processes within the soil but also by the lateral movement of surface and subsurface 
water and soil particles. The slope aspect and its interaction with the altitude had a significant effect 
on the bulk density, field capacity, nitrogen content and cation exchange capacity, while the slope 
and its interaction with the altitude were significant for the carbonates content, pH and organic 
matter. The presence of the altitude in most of the models could be related to the general pattern of 
precipitation in the catchment that increases with the elevation. Also, a more dense vegetation cover 
is found in the upper parts of the catchment and is likely related to a higher input of organic matter. 
Apart from the altitude, either the aspect or the slope was included in most models. Slope is related 
to the intensity of erosion processes and the accumulation of organic matter and other soil 
properties, while the aspect controls the energy balance and hence it is related to the hydrology of 
the soils and the vegetation activity. Given the correlation between them we are probably facing a 
similar topographic effect here, so it is difficult determining which of the two covariates (or even 
both) is really affecting the soil properties. Interestingly, the topographic wetness index was 
rejected consistently in all the models. This could be an indication that topographic properties of 
cumulative nature are not so important in the area so only short-range pedogenic processes prevail. 
But, given the correlation between the wetness index and the remaining topographic covariates it 
could be also that the combined index did not incorporate any new information. 

The residual models revealed that the variances varied between soil types. The haplic 
Kastanozems, found in medium and low slopes on either slope aspects, had a lower variance for 
almost all soil properties, while the rendsic Leptosols and the haplic Phaeozems, corresponding to 
forestal soils located near the topographic divides, had larger variances for several soil parameters. 
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This can be related to a longer and more complex pedogenic evolution of the latter, resulting in 
increasing spatial variability. The presence of spatial autocorrelation in the residuals in four out of 
eight models indicates that other sources of spatial variation not included in the analysis might be 
significant. For example, variations in the parent material, vegetation composition and even in the 
land use history could help improving the models. 

 

7. Conclusions 
While new model formulations have currently been proposed and tested, the question of how to best 
model the spatial variation of soil properties with the purposes of inference and prediction still 
remains. Significant advances have been made on the topic by soil scientists, which have been 
traditionally at the cutting edge of the discipline. In this paper we provided a brief discussion of the 
various approaches to the modeling of spatial variates and proposed a theoretical framework that is 
able to incorporate the most important effects usually found in spatial variates, including fixed and 
random spatial effects, spatial trends and heteroscedasticity. Here we used a mixed effects 
regression approach fitted by the generalized least squares (GLS) algorithm. We discussed the 
nature of the different effects and provided a practical example through a case study. We found that 
the full model is not necessarily optimum for all the variables tested and that the model should be 
adapted to the complexity found on each particular case. As such, this paper intends to be a useful 
contribution to the discussion on the modeling of spatial variates and to the development of a 
general theory of spatial variates. 
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Tables 
 
Table 1. Basic statistics of soil properties (dependent variables, in uppercase) and covariates 
(in lowercase): minimum and maximum values, median and interquantile range (Q3-Q1). 
Sample size N = 74. 
 
Variable Definition and units Min Max Median Int. range 

CLAY Clay content (%) 12.01 27.23 20.12 4.07 

BULK Bulk density (g cm-3) 0.63 1.57 1.16 0.27 

CO3 Carbonates content (%) 0.11 51.03 25.62 22.14 

PH pH 6.36 8.55 8.12 2.40 

FIELD Field capacity (% volume) 22.09 46.81 32.01 8.37 

MO Organic matter content (%) 1.53 14.99 5.10 2.29 

N Nitrogen content (%) 0.12 0.66 0.28 0.11 

CEC Cation exchange capacity (meq g-1) 153.3 232.6 191.5 20.9 

alt Altitude (m above sea level) 926 1304 1108 136 

slope Slope gradient (m m-1) 0.05 0.68 0.33 0.22 

asp Slope aspect, cosine (-) 0.08 4.79 1.74 2.41 

wet Topographic wetness index () 3.88 9.27 5.90 2.30 
 
 
 
Table 2. Analysis of variance, Levene's test for homogeneity of variance and Moran's test for 
spatial autocorrelation (p-value) of soil properties (dependent variables, in uppercase) and 
covariates (in lowercase). 
 
Variable  Analysis of variance  Levene's  test Moran's test 

 F3,70 p-value F3,70 p-value I p-value 

CLAY 6.762 <0.001 0.930 0.431 0.033 <0.001 

BULK 5.093 0.003 2.689 0.053 0.038 <0.001 

CO3 20.051 <0.001 5.602 0.002 0.109 <0.001 

PH 16.840 <0.001 9.578 <0.001 0.094 <0.001 

FIELD 9.058 <0.001 0.830 0.482 0.053 <0.001 

OM 6.533 0.001 2.653 0.055 0.023 0.009 

N 4.635 0.005 0.974 0.410 0.020 0.015 

CEC 4.360 0.007 1.192 0.319 0.060 <0.001 

alt 8.173 <0.001 3.550 0.019 0.210 <0.001 

slope 11.02 <0.001 4.310 0.008 0.057 <0.001 

asp 22.364 <0.001 3.533 0.019 0.253 <0.001 

wet 21.04 <0.001 1.929 0.133 0.073 <0.001 
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Table 3. Model selection: covariates included in the optimum models for each variable. 
Interactions between covariates are indicated by ‘:’. 
Variable Covariates Value Std. Error t-value p-value 
CLAY (Intercept) 19.6 0.375 52.3 <0.001 
 soilHP 4.049 0.932 4.34 <0.001 
BULK (Intercept) 0.996 0.0348 28.6 <0.001 
 asp 0.402 0.118 3.40 0.001 
 asp:alt -3.12E-04 1.08E-04 -2.90 0.005 
CO3 (Intercept) 21.2 3.117 6.80 <0.001 
 soilHP -25.8 1.880 -13.7 <0.001 
 slope 21.4 7.824 2.74 0.008 
PH (Intercept) 8.09 6.20E-02 130.4 <0.001 
 slope 2.70 0.959 2.816 <0.001 
 slope:alt -2.32E-03 8.69E-04 -2.669 <0.001 
FIELD (Intercept) 35.3 1.45 24.3 <0.001 
 asp -11.2 3.61 -3.09 0.003 
 asp:alt 8.94E-03 3.36E-03 2.66 0.010 
OM (Intercept) 5.69 0.681 8.36 <0.001 
 slope -26.9 10.1 -2.67 0.009 
 slope:alt 2.38E-02 9.06E-03 2.63 0.011 
N (Intercept) 0.345 1.79E-02 19.3 <0.001 
 asp -0.164 5.01E-02 -3.26 0.002 
 asp:alt 1.30E-04 4.69E-05 2.76 0.007 
CEC (Intercept) 203 3.12 65.0 <0.001 
 asp -41.5 7.38 -5.63 <0.001 
 asp:alt 3.35E-02 6.64E-03 5.04 <0.001 

 

Table 4. Residual model: residual standard error, variance structure and spatial correlation 
structure for each dependent variable. 
Variable Standard error Variance structure Correlation structure 
  soilCR soilRL soilHK soilHP model range nugget 
CLAY 2.96 – – – – – – – 
BULK 0.212 1 0.841 0.731 0.382 spherical 405 8.92E-9 
CO3 11.4 1 0.987 0.829 0.298 – – – 
PH 0.172 1 1.79 0.720 3.90 gaussian 480 0.481 
FIELD 5.27 1 1.33 0.720 1.189 spherical 125 1.40E-6 
OM 2.02 1 1.98 0.780 1.39 spherical 387 5.46E-8 
N 0.0914 1 0.677 1.54 1.05 – – – 
CEC 13.4 – – – – – – – 
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Table 5. Cross-validation statistics: leave-one-out BLUPs (estimations considering both the 
fixed effects and the spatial random effects) were compared with the measured values at left-
out locations and used for computing several statistics (mean bias error, mean absolute error, 
root mean square error). 
 
Variable R2 MBE MAE RMSE 

CLAY  0.169  -3.60E-16  2.40   2.99  

BULK  0.212  -0.0177   0.134   0.173  

CO3  0.513  -6.80E-03  7.65   9.85  

PH  0.145   0.089   0.208   0.361  

FIELD  0.197  -0.144   4.37   5.32  

OM  0.030  -0.164   1.84   2.49  

N  0.118  -1.80E-03 0.0699   0.0953  

CEC  0.313  -0.0142   10.5   13.8  
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Figures 
 

Figure 1. Location of the study area within the Iberian Peninsula, aerial photograph of the 
catchment and sampling scheme. 

Figure 2. Maps of soil types and topographic covariates. 

Figure 3. Decision chart for the analysis of spatial variables. 

Figure 4. Boxplots of soil properties and topographic covariates according to soil type: a, calcaric 
Regosols; b, rendsic Leptosols; c, haplic Kastanozems; d, haplic Phaeozems. The horizontal line 
represents the global mean for each variable. Letters above the box plots indicate significant 
differences between soil type pairs. 

Figure 5. Scatterplot matrix: frequency distributions (diagonal panel), bivariate plots for each 
variable combination (lower panel, point pairs as circles and loess smoother as a bold line) and 
Pearson’s correlation (upper panel, correlations significant at α=0.05 are marked with an asterisk 
and a bigger font). 

Figure 6. Prediction plots: leave-one-out jacknife predictions against measured values, and line of 
perfect fit (1:1). 

Figure 7. Prediction maps for eight soil properties, based on the optimum fitted models. 

Figure 8. Standard error maps for eight soil properties. 
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