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1 The discovery of the spontaneous mode-locking of lasers1,2,
2 that is, the synchronous oscillation of electromagnetic modes
3 in a cavity, has been a milestone of photonics allowing the
4 realization of oscillators delivering ultrashort pulses. This
5 process is so far known to occur only in standard ordered
6 lasers and only in the presence of a specific device (the satur-
7 able absorber). By engineering a mode-selective pumping
8 mechanism we show that it is possible to continuously drive a
9 random laser3 composed of micrometre-sized laser resonances

10 dwelling in intrinsically disordered, self-assembled clusters of
11 nanometre-sized particles, from a configuration in which the
12 various excited electromagnetic modes oscillate in the form
13 of several, weakly interacting resonances4,5 to a collective
14 strongly interacting regime6,7Q1 . This phenomenon, which opens
15 the way to the development of a new generation of miniaturized
16 and all-optically controlled light sources, may be explained
17 as the first evidence of spontaneous mode-locking in
18 disordered resonators.
19 Random lasers (RLs) are made from disordered highly scattering
20 materials that are able to amplify light when pumped externally. The
21 simultaneous presence of structural disorder and nonlinearity
22 makes these devices particularly promising for connecting photo-
23 nics with advanced theoretical paradigms8 such as chaos9, non-
24 Gaussian statistics10, complexity11 and also the physics of Bose–
25 Einstein condensation12. Historically, there has been a breach in
26 RL interpretationQ2 . In pioneering experiments, a smooth, single-
27 peaked emission was produced by pumping finely ground laser
28 crystals13 or titania particles dispersed in a dye-doped solution7.
29 This phenomenon has been dubbed RL with incoherent
30 feedback (IFRL), because it may be explained in the framework of
31 the diffusion approximation14, which neglects interference and
32 treats light rays as trajectories of random walking particles.
33 However, this theoretical framework does not explain another
34 kind of RL that exhibits sub-nanometre sharp spectral peaks15

35 associated with high-Q resonances16–19, known as resonant feedback
36 random laser (RFRL).
37 Standard multimode lasers without disorder and characterized
38 by equispaced resonances may be driven to a synchronous regime
39 through the so-called mode-locking transition, which so far has
40 only been shown to occur spontaneously in the presence of a satur-
41 able absorber and allows the generation of ultrashort light
42 pulses20,21. We show that the same transition occurs in RLs, allowing
43 us to lock the modes of an RFRL, casting its emission in the typical
44 IFRL spectrum and demonstrating the inherently coherent nature of
45 the random lasing phenomenon.
46 The system we consider here comprises an isolated micrometre-
47 sized cluster of titania nanoparticles with static disorder, immersed
48 in a rhodamine dye solution (see Supplementary Information).
49 Selected areas surrounding the cluster are pumped optically to gen-
50 erate a directional stimulated emission from the population-inverted
51 areas defined by shaping the beam of a solid-state pump laser using
52 a reflective spatial light modulator.Q3

53Figure 1a presents spiky spectra (RFRL) obtained by averaging
54over 100 pump pulses (‘shots’) and collecting light emitted off-
55plane from the centre of a cluster illuminated by stripe-shaped,
56directional pumping (see Methods). Notably, the spectral position
57of the peaks remains unchanged from shot to shot. Dashed and con-
58tinuous black lines in Fig. 1a correspond to stripes differing by a
59rotation of 158 (see insets). Similar results are obtained for a
60stripe with twice the width (red line in Fig. 1a), whereas changing
61the stripe orientation activates different sets of modes, as revealed
62by a change in the peaks’ positions. Figure 1c–e shows the spatial
63intensity distribution corresponding to the averaged spectra in
64Fig. 1a. Figure 1c,e corresponds to different stripe orientations
65and displays uncorrelated intensity distributions. All the spots in
66Fig. 1e are also present in Fig. 1d, which corresponds to a stripe
67with larger width but identical orientation (red and black continu-
68ous lines in Fig. 1a). The stripe orientation therefore affects the
69spatial distribution of the intensity and selects the set of activated
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Figure 1 | The two random lasing regimes. a, Three normalized spectra,

each obtained by averaging 100 single shots from pumping a stripe-shaped

area (length, 1.6 mm). Top and bottom traces were retrieved for a stripe of

the same thickness (16mm), but with different orientations (158 tilt). The

middle trace is for a stripe with the same orientation as for the bottom

trace, but with twice the thickness. b, Spectrum for disk-shaped pumping

(diameter, 1 mm) for two different pump densities. The insets show sketches

of the pumping areas. c–f, Emitted intensity distributions corresponding

to the lines in a and b. Images were retrieved by optical imaging of the

RL emission obtained with a pumping fluence of 0.1 nJmm22.

Scale bars, 16mm Q12.
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1 modes. Figure 1b shows the measured spectra when the cluster
2 (sample C1) is placed in the centre of a circular pump spot (diam-
3 eter, 1 mm) and no directionality is present. In this configuration,
4 the spectra are smooth (IFRL) and narrow when the energy is
5 increasing, and the spatial intensity is homogeneously distributed
6 (Fig. 1f )Q4 . Having established that we can selectively excite different
7 modes, we proceed to study the effect of the geometry of the pump
8 spot on the RL emission properties.
9 To study the transition from RFRL to IFRL we engineered a more

10 complex pumping design (consisting of a small circle and two
11 wedges), in which the effective input directions are controlled by
12 parameter Q (see Methods and Fig. 2a). Spectra observed for
13 small Q (�108) display several very narrow (�0.05 nm) peaks,
14 whereas large values of Q (�1008) produce a single and smooth
15 RL lineshape (�4 nm).
16 To classify a RL into IFRL or RFRL categories, we measure its spi-
17 kiness,Q5 S, that is, the amount of high-frequency components in the
18 spectrum (see Methods). Figure 2b is a plot of S versus Q at different
19 pump energies for sample C1 (squares and triangles) and averaged
20 over five different clusters (filled circles). All curves display the
21 same trend, suggesting a transition in which, after a rapid growth cor-
22 responding to an increase in fluence and number of excited modes
23 (appearing on a smooth fluorescence spectrum), S reaches a
24 maximum (RFRL regime), followed by the spectrum becoming
25 smoother as Q grows until an IFRL-like emission is achieved
26 (Fig. 2c). Note that smoothing at high Q is not due to averaging,
27 because sharp peaks are also absent in the single shot spectra.
28 Parameter Q also affects the inter-mode spectral correlation. In
29 Fig. 3c we show that intensities for a random pair of peaks of an
30 RFRL pumping configuration (Q¼ 188, average spectra reported in
31 Fig. 3a) obtained for 100 shots are uncorrelated. For Q¼ 3608 the
32 subtle features present on top of the otherwise smooth spectrum
33 (Fig. 3b) are repeatable from shot to shot (thus characteristic of the
34 cluster considered) and show strongly correlated intensities (Fig. 3d).

35Figure 3e shows the average Pearson correlation C (see
36Supplementary Information) obtained from all possible pairs among
37the 15 most intense peaks (105 pairs) versus Q for sample C1. The
38onset of a strongly correlated regime is obtained for Q� 1208. The
39same transition was observed in all samples considered, revealing a uni-
40versal trend in which C � 1 when Q. 1808. Further measurements
41(see Supplementary Information) allow us to exclude artefacts from
42spontaneous emission or from intensity fluctuations.
43In previous experiments on RFRL, a tightly focused pump spot
44was used to excite a limited number of modes, thus obtaining a spec-
45tral emission displaying narrow spikes17,22. In our approach, for
46small Q, we select modes that are strongly coupled with a directional
47input but dwell at distant positions (Fig. 1c–e). In the absence of
48spatial overlap their mutual interaction is negligible, and the
49spectra obtained feature narrow peaks with limited correlation
50(Fig. 3e for low Q). Conversely, when we excite a large number of
51spatially overlapped resonances, this results in a strongly correlated
52emission (Fig. 3e for large Q) and a spatially uniform intensity dis-
53tribution without hot spots (Fig. 1f ) due to pronounced interaction
54between the modes Q6. The increased degree of interaction is also con-
55firmed by time-resolved measurement of the RL emission23

56(Supplementary Fig. 5). We find that the emitted pulse is indeed
57affected by Q, being shortened by �30% in the strongly correlated
58regime compared with the uncorrelated regime.
59We reproduced these results within the framework of coupled
60mode theory (CMT1,11,12) by considering a set of N¼ 50 modes
61at different frequencies24, subject to mode repulsion25,26 and
62excited in random initial conditions by an external pump pulse
63(see Supplementary Information). In our model the role of Q is
64played by the variable 2 × nc, that is, the number of resonances to
65which every mode couples.
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Figure 2 | From spiky to smooth RL spectra. a, Cluster and surrounding

pumped area for Q¼ 368. b, S as a function of Q. Squares and triangles

correspond to different pump energies for cluster C1. Filled circles

correspond to the average of five measurements from different clusters.

Error bars indicate standard deviation. c, Three-dimensional graph

showing normalized spectra (average over 100 shots with a fluence of

0.2 nJ mm22), for different Q. Spectra are arbitrarily shifted in frequency

to superimpose intensity maxima. Dl is the wavelength shift from the

most intense peak.Q13

Θ (deg)

a b

c d

400 500 600 700
400

500

600

700

I (
λ 3

)

I (
λ 1

)

I (λ2)

λ (nm) λ (nm)

I (λ4)

e

200 300 400 500
100

200

300

400

0 50 100 150 200 250 300 350
0.0

0.5

1.0

 C

593 596 599
0

1

In
t. 

(a
.u

.)

In
t. 

(a
.u

.)

594 599 604
0

1

Figure 3 | Onset of a correlated random laser. a,b, Normalized average

spectra from cluster C1 for Q¼ 188 and Q¼ 3608, respectively. c, Intensity

values of the modes at wavelengths l1¼ 597.2 nm and l2¼ 596.7 nm

obtained for 100 single shots in the pumping configuration with Q¼ 188.
d, As in c, but for wavelengths l3¼ 598.4 nm and l4¼ 598.7 nm with

Q¼ 3608. e, Correlation C averaged over all possible combinations of the

15 most intense peaks versus Q. Error bars represent statistical errors from

all 105 pairs Q14.
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1 Figure 4 reports the result of our CMT calculations. Figure 4a pre-
2 sents average spectra for nc¼ 0, showing sharp peaks and resembling
3 an RFRL. Figure 4b shows the same for nc¼ 10, for which an IFRL-
4 like emission is retrieved that includes small features on top. The
5 difference between the two regimes becomes manifest in the time
6 evolution of the modes. The phases of the 50 weakly coupled
7 modes (nc¼ 3, Fig. 4c) oscillate uncorrelated, but begin to synchro-
8 nize as the coupling increases (Fig. 4d, nc¼ 6). Finally, the mode-
9 locked regime is found for nc¼ 10 (Fig. 4e). Note that the phases

10 are significant only in the time window where the pump pulse is
11 present (range [0.1,0.4] in the figure; for details see Supplementary
12 Information). The numerically retrieved collective parameters C
13 and S (reported in Fig. 4f as filled circles and open triangles, respect-
14 ively, as a function of nc) agree with the experimental results.Q7
15 In conclusion, by using a pumping scheme that enables the selec-
16 tion of the number of activated modes in a random laser, we demon-
17 strate that RLs may be prepared in two distinct regimes by controlling
18 the shape of the pump. When pumping is nearly unidirectional, few
19 (barely interacting) modes are turned on and appear as sharp, uncor-
20 related peaks in the spectrum. By increasing the angular span of the
21 pump spot, many resonances intervene,Q8 generating a smooth emission
22 spectrum with a high degree of correlation, and shorter lifetime. All the
23 phenomena reported can be accounted for by assuming a phase-
24 locking transition, the direct proof of which requires measurement
25 of the time evolution of the phases of the modes, which is beyond
26 the current state of the art. By unveiling the intimateQ9 and unique
27 nature of random lasers, these experiments pave the way for a new gen-
28 eration of miniaturized optical devices with engineered and tunable
29 spectral emission, and also lay the foundations for a bridge between
30 disordered photonics and the statistical physics of complex systems.

31 Methods
32 Stripe pumping. A stripe-shaped pumped area with a length of 1.6 mm (Fig. 1a)
33 and width of 16 mm was used to obtain a quasi-one-dimensional area to act as a
34 strongly directional source with the cluster located at the centre of the stripe.

35Pie pumping. To control the directions from which stimulated emission fed the
36modes, we designed ‘pie shaped pumping’. The excited area consisted of a disk
37(diameter, 150 mm) centred on the cluster (to assure homogeneous pumping even
38to the largest clusters) to which two symmetrical wedges of much larger radius
39(diameter, 1 mm) and controllable orientation and aperture angle (Q/2) were
40added, serving as launch pad for directional stimulated emission. A single wedge
41configuration led to the same results, but proved to be hydrodynamically less stable.
42The central circle placed the cluster barely below the lasing threshold, preparing the
43system for lasing once the wedges were turned on. The angular aperture Q controlled
44the angular aperture with which stimulated emission was produced and therefore
45controlled the number of modes expected to be excited.

46Spikiness. To classify a RL into the IFRL or RFRL categories we analysed the Fourier
47transform power spectrum (FTS) of the emission. S is defined as the high-frequency
48fraction of the total FTS area, that is, the spectral power above a frequency threshold.
49As a cutoff we defined K¼ 1.20 nm21 in the horizontal scale of the FTS, then
50calculated S as the area of the FTS lying in the high period part from K Q10
51(corresponding to periods greater than K). S returns a value close to one for
52very spiky spectra, and a value close to 0 for smooth spectra.
53
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Figure 4 | Results from numerical CMT calculations. a,b, Spectra obtained

from 50 modes for nc¼0 and nc¼ 10, respectively. c–e, Phases plotted

versus time for nc¼ 3, nc¼ 6 and nc¼ 10. f, Numerically calculated C

(filled circles) and S (open triangles) as a function of nc.Q7
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