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Abstract 10 

The purpose of this work was to explore the application of microwaves for the low 11 

temperature regeneration of activated carbons saturated with a pharmaceutical compound 12 

(promethazine). Contrary to expectations, microwave-assisted regeneration did not lead to 13 

better results than those obtained under conventional electric heating. At low temperatures 14 

the regeneration was incomplete either under microwave and conventional heating, being 15 

this attributed to the insufficient input energy. At mild temperatures, a fall in the adsorption 16 

capacity upon cycling was obtained in both devices, although this was much more 17 

pronounced for the microwave. These results contrast with previous studies on the benefits 18 

of microwaves for the regeneration of carbon materials. The fall in the adsorption capacity 19 

after regeneration was due to the thermal cracking of the adsorbed molecules inside the 20 

carbon porous network, although this effect applies to both devices. When microwaves are 21 

used, along with the thermal heating of the carbon bed, a fraction of the microwave energy 22 

seemed to be directly used in the decomposition of promethazine through the excitation of 23 

the molecular bonds by microwaves (microwave-lysis). These results point out the nature 24 

of the adsorbate and its ability to interact with microwave are key factors that control the 25 

application of microwaves for regeneration of exhausted activated carbons. 26 
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1. INTRODUCTION 1 

Industrial applications of microwave technology were initiated after the commercialization 2 

of domestic ovens, and since then it has been used in many fields (food processing, drying 3 

processes, polymerization of resins and polymers), most of them based on the ability of 4 

microwaves to heat substances (Jones et al., 2002; Meredith, 1998). From a technological 5 

point of view, microwaves offer a number of advantages over conventional electric heating 6 

such as rapid and selective material heating, quick start-up and stopping, and high level of 7 

safety and automatization. Additionally, the microwave heating of a dielectric material is a 8 

volumetric heating that occurs from the interior of the material.  9 

Microwave heating occurs through the interaction of the electric field component of the 10 

microwaves with a) the dipoles (permanent or induced) or b) the charged particles present 11 

in some materials. In this regard, carbon materials are good microwave absorbers as a 12 

consequence of the interactions of the delocalized π-electrons with the microwaves, thus 13 

converting microwave energy into heat. For this reason, the combination of carbon 14 

materials and microwave heating has been widely explored in many fields covering soil 15 

remediation processes, pyrolysis of biomass and organic wastes, and regeneration of 16 

exhausted carbon beds (Menéndez et al., 2010).  17 

A number of studies in the literature including our own previous work have reported the 18 

use of microwaves for the thermal regeneration of activated carbons (AC) saturated with 19 

different pollutants (Ania et al., 2004, 2005, 2007; Bo et al., 2008; Cha et al., 2004; Chang 20 

et al., 2010; Emamipur et al., 2007; Fang and Lai, 1996; Hashisho et al., 2005; Kim and 21 

Ahn, 2008; Kuo, 2008; Liu et al., 2007; Price and Schmidt, 1997; Robers et al., 2005; Tai 22 

and Lee, 2007; Wang et al., 2010; Yuen and Hameed, 2009; Robinson et al., 2008; Jou, 23 

2006; ). All of them report the supremacy of microwave-assisted regeneration of AC at 24 

high temperatures over conventional heating for a number of reasons: fast heating, 25 

economic savings due to shorter exposure times, and a superior regeneration efficiency 26 

over a larger number of cycles. Furthermore, microwave technology allowed the activated 27 

carbons to be recycled and reused several times. And it was shown that the use of this 28 

technique causes no damage to the carbon, preserving the porous structure of the 29 
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regenerated carbons; rather, an increased in the surface area can be achieved during the first 1 

regeneration cycles (Ania et al., 2005, 2007).  2 

On the other hand, although low temperature regeneration under conventional heating has 3 

been investigated by some authors (Cabal et al., 2009; Zhu, 2009), it is still not clear 4 

whether this method offers clear advantages over conventional ones (beyond a reduction in 5 

the energy penalty). Therefore the main objective of this study was to explore the 6 

application of microwave-assisted treatment to the regeneration of AC saturated with a 7 

pharmaceutical compound (i.e., promethazine). The efficiency of the low temperature 8 

regeneration process and its impact on the characteristics of the adsorbent as well as on its 9 

adsorptive performance along subsequent cycles was carefully investigated. The results 10 

were compared with those of thermal reactivation conducted under conventional electric 11 

heating in similar operating conditions. Our results show that microwave assisted 12 

regeneration of exhausted carbon beds may present outstanding disadvantages over 13 

conventional heating. The anomalous underperformance of microwave regeneration is 14 

herein reported for the first time, and discussed in terms of the nature of the target pollutant.  15 

 16 

2. MATERIALS AND METHODS 17 

2.1. Materials 18 

Powdered activated carbon (carbon A) supplied by Norit was chosen for this study. The 19 

chemical composition of the carbon is shown in Table S1. Promethazine hydrochloride 20 

(PMET) of 98% purity was supplied by Sigma-Aldrich (Spain). All the promethazine 21 

solutions were prepared in distilled water without pH adjustment. For the purpose of 22 

clarity, the structural formula of PMET is shown in the Supplementary File (Figure S1).  23 

2.2 Regeneration of the saturated activated carbon 24 

Prior to the regeneration studies, the AC was saturated with the pharmaceutical compound 25 

in batch experiments using an excess of PMET solution (i.e., 10 g L-1) and kept under 26 

stirring for 48 h. The saturated sample (AX) was filtered and dried at 100 ºC for 2 h before 27 

regeneration. The procedure and the characteristics of the microwave and electric furnaces 28 
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used have been described elsewhere (Ania et al., 2005; Fidalgo et al., 2008). For each 1 

regeneration, about 10 g of the dried saturated carbon were placed in a quartz reactor and 2 

purged with N2 (60 ml min-1). The inert atmosphere was maintained during the heating-up 3 

and cooling-down intervals. Regeneration was carried out at different temperatures between 4 

300-500 ºC varying the exposure times (5, 15, 30, 60 min). For regeneration in the 5 

microwave device (MW), the time needed to reach the selected temperature was very fast 6 

(ca. 5-7 min). This was not the case in the conventional electric furnace (EF). Therefore, in 7 

order to minimize the differences between the operating conditions of both systems, the 8 

electric device was preheated at 100 ºC and the heating rate was adjusted to the maximum 9 

output value, which enabled the target temperature to be reached in 11 min. The samples 10 

after regeneration will be denoted as AX (saturated carbon) followed by a reference to the 11 

furnace (W and E for microwave and electric furnace, respectively), temperature and time 12 

(e.g., AXW300-20 for the sample regenerated in the microwave furnace at 300 ºC for 20 13 

minutes). Any likely modifications of the physicochemical features of the AC as a 14 

consequence of the thermal treatment itself were evaluated by performing blank 15 

experiments, which will be denoted as A followed by the reference to the device, 16 

temperature and time (e.g., AW300-15).  17 

2.3 Textural and chemical characterization 18 

Textural characterization was carried out by measuring the N2 adsorption isotherms at 19 

-196 ºC in an automatic apparatus (Tristar 3000, Micromeritics). Before the experiments, 20 

the samples were outgassed under vacuum at 120 °C overnight. The isotherms were used to 21 

calculate the specific surface area SBET, total pore volume VT, and pore size distribution 22 

using the density functional theory method (Rouquerol et al., 1999).The as-received, 23 

saturated and reactivated samples were further characterized by the point of zero charge 24 

(Noh and Schwarz, 1989) and thermal analysis. The thermal analyzer (Labsys, Setaram) 25 

was set to operate at a heating rate 15 ºC min-1 under a nitrogen flow rate of 100 ml min-1. 26 

For each measurement about 25 mg of carbon sample was used. 27 

 28 

 29 
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3. RESULTS AND DISCUSSION 1 

3.1 Promethazine adsorption on the activated carbon 2 

The saturated carbon (AX) was initially characterized in a thermobalance (Figure 1 A), to 3 

investigate the adsorbate-adsorbent interactions and their dependence on temperature. The 4 

profiles revealed three desorption peaks centered at around 100, 250 and 500 ºC.  5 

 6 

Figure 1. Desorption profiles of the initial and saturated activated carbon (A) subjected to 7 

regeneration under various conditions: B) 400 and 500 ºC in EF and MW; C) 350 ºC in EF; 8 

D) 350 ºC in MW. 9 
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The first peak was assigned to the moisture present in the AC. Subsequent peaks were only 1 

observed for the saturated carbon, and they were attributed to interactions between the 2 

pharmaceutical compound and the carbon surface in different sites of adsorption. The peak 3 

centered at about 270 ºC was assigned to the desorption of PMET retained in the low 4 

energy adsorption sites in the AC (physisorption), whereas the second peak at higher 5 

temperature was attributed to the evolution of the chemisorbed compound. Indeed, 6 

calculation of the activation energies of the two peaks from the profiles at different heating 7 

rates rendered 48 and 155 kJ mol-1, respectively. Analogous desorption profiles showing 8 

several peaks have been reported for other aromatic compounds on AC (Cabal et al., 2009).  9 

On the basis of the thermogravimetric profiles of the saturated carbon, it seems reasonable 10 

to assume that the regeneration temperature has to be a priori high enough to promote the 11 

evolution of both the physisorbed and the chemisorbed fractions (between 250 and 650 ºC). 12 

Indeed preliminary studies indicated that temperatures below 300 ºC were too low (data 13 

non shown), with a small desorption of the physisorbed fraction of PMET even after 14 

prolonged regeneration times. Since our objective was to explore the low temperature 15 

regeneration process, temperatures between 300 and 500 ºC were chosen for both the 16 

microwave and the electric furnaces.  17 

3.2 Low temperature regeneration of the saturated carbon 18 

Blank experiments were conducted at temperatures between 300-500 ºC to evaluate the 19 

effect of the thermal treatment itself on the adsorbent. Tables 1 and S1 show that other than 20 

a slight fall in the oxygen content, the textural and the chemical properties of the AC 21 

remained unchanged due to the thermal treatment. Indeed, because of the hydrophobic 22 

character of the carbon and the low temperatures applied, no structural annealing was 23 

expected (Rao et al., 1996).  24 

During the regeneration, desorption of PMET or its decomposition intermediates occurred 25 

between 200-500 ºC (change in the colour of the evolved gases). Simultaneously a whitish 26 

precipitate, identified as PMET by infrared analysis, was observed to condense in the cold 27 

parts of the reactor. This also occurred in subsequent regeneration cycles. The extent of 28 

PMET desorption was evaluated by means of thermal analysis of the regenerated samples. 29 
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Table 1. Nanotextural characterization of the exhausted activated carbon (AX) after 1 

thermal regeneration at various temperatures in the electric (E) and microwave 2 

(W) furnace. 3 

 
SBET 

[m2 g-1] 
VTOTAL

a 
[cm3 g-1] 

VMICROPORES
b 

[cm3 g-1] 
VMESOPORES

b 
[cm3 g-1] 

A 1062 0.536 0.329 0.107 
AX 250 0.162 0.046 0.051 
AW350-60 1060 0.536 0.330 0.106 
AW500-60 1065 0.536 0.331 0.106 
AE350-60 1070 0.540 0.333 0.105 
AE500-60 1095 0.550 0.340 0.107 
AXW350-20 823 0.457 0.232 0.119 
AXW350-30 709 0.390 0.194 0.111 
AXW350-60 661 0.360 0.187 0.096 
AXE350-20 534 0.307 0.094 0.085 
AXE350-30 661 0.362 0.121 0.103 
AXE350-60 665 0.360 0.119 0.107 
AXW500-C1 578 0.325 0.163 0.101 
AXW500-C3 610 0.335 0.104 0.087 
AXW500-C5 591 0.338 0.104 0.040 
AXE500-C1 717 0.384 0.203 0.111 
AXE500-C3 757 0.395 0.217 0.105 
AXE500-C5 860 0.480 0.242 0.130 
a evaluated at relative pressure 0.99 
b evaluated by DFT method applied to nitrogen adsorption data  

 4 
 5 

Figure 1 (plots B,C,D) shows the differential thermogravimetric profiles (DTG) of the 6 

saturated carbon subjected to regeneration at different temperatures in both devices. The 7 

peak assigned to chemisorbed PMET (i.e., centered at 500 ºC) was still detected in the DTG 8 

profiles after regeneration at 350 ºC in both devices, indicating that desorption was 9 

incomplete under these conditions. However, at 350 ºC the amount desorbed was much 10 

larger when the carbon was heated in the MW. Whereas regeneration in the EF at 350 ºC 11 

only provoked the desorption of the physisorbed PMET (as expected bearing in mind the 12 

regeneration temperature), microwave heating induced the removal of the physi- and 13 
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chemisorbed PMET fraction. In other words, microwave heating seemed to be more 1 

powerful than heating in a conventional furnace. PMET was almost totally desorbed by 2 

heating at 350 ºC in the microwave (ca. mass loss below 1 wt.%), even though the applied 3 

temperature was lower than that corresponding to the chemisorbed fraction (Figure 1 A).  4 

When the treatment was carried out in the electric furnace at 350 ºC, the DTG profiles 5 

show that the amount of PMET that remained inside the AC was very large (even for 6 

prolonged times). Therefore, the experiments were conducted at higher temperatures. It 7 

appeared that the temperature needed to be raised to 500 ºC to achieve the complete 8 

desorption of PMET under conventional heating. The DTG profiles in the MW and the EF 9 

at 500 ºC were rather close (Figure 1B), evidencing that the differences between both 10 

devices become smaller at high temperatures. The results shown that better desorption 11 

yields are obtained for microwave-assisted heating when low temperatures are used.  12 

The influence of thermal regeneration on the subsequent adsorption capacity of PMET was 13 

investigated at various temperatures and after successive regeneration cycles (Figures 2 and 14 

S2). For the sake of comparison, the adsorption capacities of the AC exposed to thermal 15 

heating (blanks) have also been included. It can be seen that the adsorption capacity of the 16 

raw carbon did not change much when it was exposed to moderate temperatures in the MW 17 

and EF (series AW and AE). This was somehow expected since the thermal treatment itself 18 

did not substantially modify its porous structure or composition (Tables 1 and  S1).  19 
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 1 

Figure 2. Regeneration Efficiency (RE) and Step Stripping Efficiency (SSE) upon 2 

regeneration at 500 ºC in the electric furnace (EF) and the microwave (MW). 3 

 4 

Upon regeneration at 350 ºC the PMET adsorption capacity of the carbon decreased 5 

drastically for both series treated in the MW and the EF (Figure S2). The DTG profiles 6 

(Figure 1C) indicate that this behavior could be due to an incomplete desorption of PMET 7 

molecules, assuming that 350 ºC would be too low to promote the desorption of the physi- 8 

and chemisorbed fractions of PMET. This hypothesis may be valid for regeneration in the 9 

EF (as confirmed by Figure 1C), but not for the MW. A sharp decrease in PMET 10 

adsorption capacity was also observed after microwave-assisted regeneration at 350 ºC, 11 

which contrasts with the low mass loss of the DTG profiles of the corresponding samples 12 

(Figure 1D) that had suggested that PMET is completely desorbed under these conditions. 13 

Moreover, when the temperature is raised to 400 and 500 ºC, the fall in the adsorption 14 

capacity is still remarkable, but it becomes more pronounced for the sample regenerated in 15 

the MW. Indeed, it seems that the better performance of the AC (in terms of PMET 16 

retention) after regeneration in the MW compared to EF is only valid for low temperatures, 17 

whereas the opposite trend applies from 400 ºC.  18 
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Our results contrast with previous studies reporting a more efficient regeneration of 1 

saturated AC when MW heating is applied (Ania et al., 2004, 2005, 2007; Chang et al., 2 
2010; Hashisho et al., 2005; Kuo, 2008; Liu et al., 2007; Price and Schmidt, 1997; Tai et 3 

al., 2007; Wang et al., 2010; Yuen and Hameed, 2009). In fact, a literature survey of the 4 

studies available in the bibliography on the use of microwaves for the regeneration of 5 

carbon materials saturated with organic pollutants shows that all of them reported the 6 

benefits of MW-assisted heating, particularly when compared to conventional heating. A 7 

summary of available data found in the literature (including our previous works) is 8 

compiled in Table 2. Consequently, conventional wisdom on this topic supports the 9 

supremacy of microwave over conventional electric heating as a general rule.  10 

To further comprehend the herein tendency obtained for low and mild temperature 11 

regeneration, we have analyzed the process considering different viewpoints that 12 

encompass not only the heating mechanism (MW vs EF) but also the characteristics of the 13 

system (adsorbent –adsorbate).  14 

On the basis of the thermogravimetric analysis (Figure 1), it seems reasonable to assume 15 

that the deterioration of the adsorption capacity of the regenerated samples could be linked 16 

to the thermal cracking of the adsorbed PMET molecules inside the carbon material during 17 

the regeneration step. The decomposition products would cause a pore plugging effect on 18 

the adsorbent, preventing the carbon porosity from being reused in subsequent adsorption 19 

cycles. This hypothesis is widely found in the literature to explain the decrease (whether 20 

low or high) in the adsorption capacity of regenerated carbons, regardless of the heating 21 

mechanism (Ania et al., 2004, 2005, 2007; Cabal et al., 2009; Chang et al., 2010; Hashisho 22 
et al., 2005; Kuo, 2008; Liu et al., 2007; Price and Schmidt, 1997; Wang et al., 2010; Yuen 23 

and Hameed, 2009). However the thermal decomposition of PMET would be expected to 24 

occur in both the EF and the MW, and our results suggest that the thermal cracking of this 25 

compound is accelerated under microwave irradiation, underlying the importance of the 26 

nature of the adsorbate.  27 

 28 

 29 
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Table 2. Summary of previous studies on the regeneration of carbonaceous materials using 1 
microwave technology. Data of available publications according to ISI Web of 2 
Knowledge, 20/12/2010. Search terms: (a) ‘‘microwave AND regeneration AND 3 
carbon”, (b) ‘‘carbon AND regeneration AND microwave*’’.  4 

Compound Reference Remarks 

Ethanol, acetone Fang, 1996 Low carbon losses upon MW irradiation of the saturated 
carbon; adsorption capacity is maintained upon 3 cycles. 

5-chlorophenol Price, 1997 High level of adsorption capacity after several cycles 
Phenol Ania, 2004 MW outperforms conventional regeneration 
Phenol Ania, 2005 MW outperforms conventional regeneration 
Salicylic acid Ania, 2007 MW outperforms conventional regeneration 
Toluene, ethyl acetate, 
methylene chloride Cha, 2004 MW restored the original adsorption capacity 

Methy-ethyl-ketone Emamipour, 2007 Dynamic desorption tests; good performance of a 
microwave swing adsorption system 

PAH, VOCs, Hashisho, 2005 Rapid regeneration; adsorption capacity is maintained 
after 3 cycles 

Acid Orange Bo, 2008 Initial adsorption capacity was maintained after 2 cycles 
Benzene Kim, 2008 Initial adsorption capacity maintained after 5 cycles 
Reactive Red Kuo, 2008 MW regeneration outperformed NaOH extraction 
Reactive Black 5 Chang, 2010 Adsorption capacity is maintained over 7 cycles 

2,4,5-trichlorobiphenyl Liu, 2007 Adsorption capacity maintained high level after five 
adsorption/regeneration cycles. 

Methy-ethyl-ketone Tai, 2007 MW-induced regeneration restored initial capacity 

Dye Reactive Red 3BS Wang, 2010 
High regeneration efficiencies achieved after several 
cycles; fall in adsorption capacity due to thermal cracking 
under MW 

Acid Orange 7 Yuen, 2009 

Initial adsorption capacity and rate maintained at high a 
level over several cycles. The damage to carbon upon 
MW irradiation was lower than for conventional 
regeneration methods. 

Triethylamine, acetic 
acid Robers, 2005 Best results obtained with MW and ultrasonic–water 

regeneration 

n-alkanes (C12–C20) Robinson, 2008 
Technological and energetic advantages of MW-assisted 
over conventional gas stripping operations are reported in 
the removal of oils from contaminated drill cuttings.  

Pb (II) Jou, 2006 MW allows the immobilization of heavy metal ions in 
contaminated soil wastes.  

 5 

Promethazine is a polar compound that would so be expected to easily absorb microwaves. 6 

Thus, it might occur that along with the heating of the AC (which is a good microwave 7 
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absorber), a fraction of the microwave energy supplied is being absorbed by the PMET 1 

molecules retained in the carbon. The heating mechanism using microwave irradiation is 2 

based on a quick molecular level heating. Therefore, the interactions between microwaves 3 

and the chemical bonds of the PMET molecules may eventually facilitate the quick thermal 4 

cracking of the compound (microwave-lysis), and consequently favor the formation of coke 5 

deposits that would block the microporosity of the regenerated adsorbent. The ability of 6 

microwaves to break down a given compound would depend on its chemical nature and 7 

could be governed by its polarity, polarizability, stability, aromaticity, and so forth.  8 

For instance, previous works on the regeneration of AC saturated with two aromatic 9 

compounds (phenol and salicylic acid) revealed different behaviors in each case. Salicylic 10 

acid is strongly resistant to thermal cracking (both in MW and EF) due to its ability to 11 

sublimate at 300 ºC. In contrast, phenol easily undergoes thermal breakdown when it is 12 

heated at high temperatures, although no enhancement is observed when microwaves are 13 

used maybe due to its high aromatic character (Ania et al., 2004, 2005).  14 

 15 

3.3 Regeneration efficiency over subsequent cycles 16 

Successive adsorption-regeneration cycles were performed at 500 ºC and the overall 17 

efficiency of the regeneration process was evaluated by means of the regeneration 18 

efficiency (RE) and the single Step Stripping Efficiency (SSE) parameters (Figure 2) 19 

calculated as:  20 

RE = Qi/Qo * 100 (1)  21 

SSE = Qi/Qi-1 * 100, Qi-1 (2)  22 

where Qi is the adsorptive capacity of the regenerated carbon in a given cycle i, and Qo the 23 

adsorptive capacity of the fresh carbon.  24 

The RE gradually decreased after several cycles, this effect being more pronounced after 25 

the first cycle and when regeneration was carried out using microwave heating (i.e., values 26 

below 40% after the first cycle). Comparatively, better results were obtained with 27 

conventional heating. After falling during the first cycle, the RE recovered slightly when 28 
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the regeneration was conducted in the EF, reaching values above 80% after 4 cycles. In 1 

contrast, the regeneration efficiency of the samples heated in the MW was very poor and 2 

the life span of the AC was dramatically reduced with the number of cycles.  3 

The stripping efficiency -SSE- is defined as the ratio between the adsorption capacity of a 4 

given cycle and that of the previous one, and allows the desorption yield in the different 5 

cycles to be evaluated. Unlike RE, the SSE values did not decrease with the number of 6 

cycles with exception of the first one. The gradual increase observed after the second 7 

regeneration cycle, particularly for the samples heated in the conventional furnace, suggests 8 

that the desorption of fresh PMET molecules from the regenerated carbon becomes easier 9 

with the number of cycles. SSE was lower in the MW series, confirming that regeneration 10 

for every cycle is more efficient when conventional heating is used.  11 

As previously mentioned, the regeneration time (30 min) was chosen on the basis of 12 

negligible mass loss of the regenerated samples by thermal analysis. However, to determine 13 

whether 30 min was long enough for complete desorption of the retained pollutant, the 14 

saturated carbon was also subjected to a thermal treatment at 500 ºC for 60 and 90 min. The 15 

RE values were found to be similar to those after heating for 30 min (i.e., 80, 78 and 77% 16 

for 30, 60 and 90 min, respectively), demonstrating that longer periods of time would only 17 

increase the energy consumption of the process. Similarly, regeneration at 800 ºC -the usual 18 

temperature applied in industrial processes- followed the same trend in RE (below 80% in 19 

the first cycle).  20 

3.4 Effect of MW regeneration on the textural properties of the activated carbon 21 

Detailed characteristics of the pore structure of the series of as-received, saturated and 22 

regenerated carbons are presented in Table 1). As mentioned above, thermal treatment by 23 

itself (either in MW or EF) did not modify the textural properties and composition of the 24 

carbon. As a general rule, the values of specific surface area and micropore volume of the 25 

raw AC were not restored after regeneration, although the shape of the gas adsorption 26 

isotherms was not changed (data not shown).  27 

For the series of carbons treated in the MW at 350 ºC, a gradual fall in the porosity of the 28 

regenerated samples was observed with regeneration time. This finding confirms the pore 29 
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plugging effect mentioned above. Thus, along with the partial desorption of PMET upon 1 

microwave irradiation, the adsorbed molecules could also be irreversibly bound or 2 

degraded inside the AC due to their interaction with the microwaves (microwave-lysis).  3 

Comparatively, the blockage of the porosity was greater in the case of the carbon 4 

regenerated at 350 ºC in the EF than under microwave heating. This seems reasonable 5 

considering that at this temperature a large fraction of PMET still remained inside the 6 

carbon skeleton (Figure 1C). However, as the regeneration temperature was raised, the 7 

collapse of the porous features become more important for the samples treated in the 8 

microwave.  9 

The most pronounced deterioration of the porous features after successive regeneration 10 

cycles corresponded to the regeneration carried out at 500 ºC in the microwave, which is in 11 

good agreement with the fall observed in adsorption capacity (Figure S2). The damage to 12 

porosity indicates that the thermal cracking of PMET (and thus pore blockage in the 13 

regenerated samples) became more evident with the rise in temperature. In contrast, when 14 

regeneration was carried out in the EF the porous features of the initial carbon were 15 

somehow recovered with the number of cycles. This would explain the increase in the RE 16 

and SSE parameters after the second and subsequent cycles, pointing to a gradual recovery 17 

of the adsorption capacity of the samples regenerated in the conventional furnace 18 

(Figure S2).  19 

In sum, improvement of regeneration efficiency would be expected if the regeneration were 20 

carried out under oxidizing atmosphere (steam, CO2, air), which could promote the 21 

activation of the coke deposits formed due to thermal cracking of the adsorbate, thereby 22 

counteracting the pore plugging effect.  23 

 24 

4. CONCLUSIONS 25 

As a general rule, microwave heating has long been considered a powerful technology for 26 

the regeneration of loaded activated carbons (based on previous works with different 27 

pollutants) due to its superior performance vs conventional heating in terms of regeneration 28 
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efficiency upon several cycles, adsorption capacities of regenerated samples and economic 1 

savings due to the fast microwave response. The results of this study show that if the nature 2 

of the pollutant is regarded, the use of microwave heating in the regeneration of exhausted 3 

carbons does not guarantee a good performance of the regenerated samples upon cycling. 4 

This has been herein illustrated with the low temperature regeneration of an activated 5 

carbon loaded with a pharmaceutical (promethazine), where microwave-induced 6 

modifications of the pollutant have shown to be determinant in the cycle-ability and 7 

adsorption performance of the regenerated carbon.  8 

Incomplete desorption occurred in both devices (EF and MW) when the applied 9 

temperature was too low to promote desorption of the physi- and chemisorbed fractions of 10 

the adsorbed compound (even after long regeneration times). Increasing the regeneration 11 

temperature favored the desorption of the retained compound, although still low 12 

regeneration yields were obtained due to thermal cracking of the adsorbate inside the 13 

porosity of the AC. Contrary to expectations based on previous works carried out on a 14 

variety of pollutants, this effect was more pronounced in the samples regenerated by 15 

microwave irradiation. For this particular compound (promethazine), it seems that 16 

microwave heating leads to a decrease in the efficiency of the regeneration process, due to 17 

an enhanced cracking of the pollutant caused by direct interaction between the adsorbate 18 

and the microwaves (microwave-lysis).  19 
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