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ABSTRACT 

We here present an effective strategy to prepare enhanced composites using poly(vinyl alcohol) 

(PVA) and multiwalled carbon nanotubes (MWCNT). It contains two essential steps. First, the 

elaboration of homogeneous aqueous MWCNT dispersions and the selection of the most effective 

dispersing agent. In a sequential dispersion protocol for seven common dispersants, including 

surfactants and polymers, the dispersion quality and dispersion ability, independent of the intrinsic 

nature of the dispersing agent were established using zeta-potential and UV-Vis-spectroscopy. 

Second, the combination of the most effective dispersing agent, namely dodecylbenzenesulfonate 

(SDBS) with a polymer dispersant of high affinity towards the PVA matrix, namely 

polyvinylpyrrolidone (PVP). This resulted in homogeneous PVA-MWCNT composites with 

significantly improved glass transition temperature by up to 12 ºC as a function of the sequential 

order of dispersant addition. The presented dispersion strategy is straightforward and thus may 

provide a fast, reliable and general guide for fabricating nanotube composites with improved 

performance. 
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1. Introduction 

Carbon nanotubes (CNTs) have attracted increasing interest since their discovery due to their 

outstanding properties, including high moduli, high aspect ratio, and excellent thermal and electrical 

conductivities among others [1]. As fillers in polymers, nanotubes offer extraordinary advantages for 
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the development of new materials with improved properties [2, 3]. However important challenges 

still need to be resolved, including (i) homogeneous dispersion of CNTs in the polymer matrix, and 

(ii) establishment of a strong interfacial interaction/wetting between the CNTs and the matrix. 

Several approaches have been used to produce carbon nanotube-polymer composites with apparent 

homogeneous dispersion of the fillers, such us high power ultrasonic mixers [4], surfactants [5], 

solution mixing [6-10], and in situ polymerization [11]. Though, to-date, there has been no 

convincing transference of these CNT superior properties to the macro-structural level [12]. 

Chemical functionalization of the CNT surface [13, 14] has been proposed as a way to effectively 

disperse the nanotubes in the polymer matrix, and to promote interfacial interactions between CNT 

and polymers. However, this approach alters the π-electronic conjugation in CNTs, with the 

consequent deterioration of the unique CNT properties [15, 16]. For this reason, very frequently, 

non-covalent approaches are preferred. Consequently, solution mixing with addition of dispersants 

has been one of the most common methods used to overcome the problems associated with the 

nanotube aggregation. Following this approach a large number of CNT dispersants, both surfactants 

and polymers, have been reported [15-18]. Here, the nature of the dispersant, its concentration, and 

the type of interaction with nanotubes have been identified as key parameters for an optimal 

dispersion [15, 19]. Ionic surfactants are mostly selected to disperse CNTs for the preparation of 

composite materials, and frequently high surfactant concentrations are required to guarantee a good 

CNT dispersion. Unfortunately, due to the high surfactant content, the combination of the prepared 

CNT dispersions with the polymer matrices alters the processability of the resulting system and 

further optimization of the composite material is usually required. Acosta et al.  [20] proposed the 

use of mixtures of anionic surfactants with cationic surfactants for improving the efficiency of the 

surfactants, and subsequent studies [21, 22] showed special synergism between anionic/cationic 

surfactants, which reduced the concentration of surfactant required to disperse CNTs. However, to 

the best of our knowledge, no preparation of composite materials with mixed surfactant CNT 

dispersions has been published. In this study, we propose a different approach, consisting on the use 

of a mixture of two dispersants of different nature: a surfactant with high efficiency in dispersing 
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CNTs, and a polymer dispersant of high chemical compatibility to PVA, as an efficient method to 

prepare improved poly(vinyl alcohol)/carbon nanotube composites. We also show that by adjusting 

the order of the dispersant addition, favorable interactions are established, resulting in a significant 

increase of glass transition temperature.  Thus, the elaboration of pre-optimized MWCNT 

dispersions mixtures containing an ionic surfactant and a compatible polymer component is a 

valuable strategy to provide tailored MWCNT dispersions for fabricating MWCNT composites with 

superior characteristics. 

 

2. Experimental 

2.1. Materials 

Commercial multi-walled carbon nanotubes (MWCNTs, type NC7000) kindly provided by Nanocyl 

S.A., were employed for this work. Four surfactants, namely sodium dodecylbenzenesulfonate 

(SDBS), lithium dodecylsulfate (LDS), hexadecyltrimethylammonium bromide (HAB), and octyl 

phenol ethoxylate (Triton X-100), and three polymer dispersants, namely Tween-60, Pluronic F68 

and Polyvinylpyrrolidone (PVP) were purchased from Sigma-Aldrich and used without further 

purification.  Polymer matrix: Poly(vinyl alcohol) (PVA) (Sigma Aldrich), with an average 

molecular weight (MW) of 146000 - 186000 g/mol was used as polymer matrix. 

2.2. Preparation of CNT dispersions  

For each dispersant, a progressive sequential protocol has been developed, consisting of several 

successive steps, in which only one dispersion parameter was varied, while the others were kept 

constant. Dispersant solutions were prepared dissolving the adequate amount of dispersant in 

distilled water until complete solution. The dispersions were obtained adding MWCNTs into the 

dispersant solution followed by ultrasonication with a high-power sonication tip processor (model 

Hielscher DRH-UP400S applying an output power of 250 W at an on-off cycle frequency of 12 

kHz). Dispersions were centrifuged and supernatants decanted for further analysis. In case of 

dispersant mixtures: the first dispersant was dissolved in water and the required amount of 

MWCNTs was added employing the optimized conditions for the first dispersant. Subsequently, the 
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second dispersant was added under the optimized conditions for the second dispersant. This resulted 

in a homogeneous and stable dispersion.  

2.3. Characterization of the dispersions 

Zeta potential and particle sizing (hydrodynamic radius) measurements of MWCNT aqueous 

dilute dispersions were carried out with a Malvern Zetasizer Nano system (UK) with irradiation 

from a 633 nm He-Ne laser. If not otherwise stated, all measurements were performed at a controlled 

temperature of 25 ºC and repeated 5 times for each type of dispersion. This technique is based on 

dynamic light scattering, and calculates the zeta potential by measuring the electrophoretic mobility, 

µ, using the Smoluchowski approximation [23], µ= ςεmV/4πηD, where V is the applied voltage, η is 

the solution viscosity, εm is the dielectric constant of the medium, and D is the electrode separation 

(in SI units). This approximation is rigorously valid only for spherical particles, and may 

overestimate in some cases the actual zeta potential [24]. Nevertheless it has been successfully 

applied to nanotube dispersions to qualitatively understand the influence of the surface charge on 

dispersion quality [25, 26]. Furthermore, it is worthwhile mentioning that the resulting “particle” 

dimensions from this type of measurements refer to the hydrodynamic diameter of spherical objects. 

In the case of dispersed MWCNTs these are conceptually understood in terms of a “particle sphere” 

composed by aggregated MWCNTs. UV-Vis absorbance was recorded on a Shimadzu U2401-PC 

spectrometer. Concentration of MWCNTs, before and after centrifugation, was calculated from the 

absorbance at a fixed wavelength (660 nm) in order to determine the fraction of aggregates removed 

by centrifugation. 

2.4. Composite preparation and characterization 

Poly(vinyl alcohol) (PVA) reinforced composites were prepared by dissolving a controlled amount 

of PVA in distilled water. Once the PVA was completely dissolved the necessary volume of the 

analyzed dispersions were incorporated to obtain different loadings of MWCNT (0.1 to 2 wt. % with 

respect to PVA). The corresponding solution was mixed with a magnetic stirrer during at least 30 

min. MWCNT/PVA nanocomposites films were obtained by drop casting and further characterized.   
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Glass transition temperatures (Tg) of the prepared composites were determined by differential 

scanning calorimetry (DSC). A Mettler DSC-823E apparatus calibrated using an indium standard 

(heat flow calibration) and an indium-lead-zinc standard (temperature calibration) was used. 

Dynamic heating was performed from room temperature to 200 ºC at a rate of 20 ºC/min to 10 mg of 

sample (exactly weighted) placed into standard 40 mL aluminum crucibles, under a 100 mL/min 

flow of nitrogen. The glass transition temperature (Tg) was taken as the inflection point of the 

heating DSC traces. The morphology of the composite films and the formation of aggregates and 

their distribution was probed by optical microscopy (Zeiss AX10). 

3. Results and discussion 

3.1. Dispersion optimization using zeta potential and average particle size 

The aim of this work is to prepare enhanced composite materials based on a water-soluble polymer 

matrix, PVA, and MWCNT using a combination of two surfactants. To this end, first we have 

developed a sequential dispersion protocol to ensure an effective MWCNT dispersion. Seven 

common dispersants were used in this work and the dispersion conditions for each dispersant 

adjusted to achieve an optimal dispersion quality for each case. This refers to the stability of the 

dispersions with respect to MWCNT concentration and the formation of MWCNT aggregation. The 

criteria for the dispersion stability are established from zeta-potential and average particle size 

measurements under different environmental conditions. This is completed by UV-Vis spectroscopy 

in order to provide a classification of the dispersing ability of the different dispersants, independent 

of their intrinsic nature. 

The initial step of the study relates to the determination of the optimum MWCNT/dispersant ratio. 

Thereto we used a fixed concentration of MWCNTs (1mg/mL), and a variable dispersant 

concentration (0.5, 1, 2, 5, 10, and 20 mg/mL). All dispersions were prepared using the following 

initial conditions: sonication for 15 min and centrifugation at 3500 rpm for 30 min. Zeta-potential 

and particle size measurements were performed in order to assess the quality of the dispersions. Fig. 

1a shows the zeta-potential and particle size values for the dispersions obtained with increasing 

SDBS concentration. The zeta-potential is high for all the assayed concentrations, and increased with 
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SDBS concentration reaching -53 mV at 20 mg/mL of SDBS, clear indication of the high dispersion 

stability achieved with this surfactant. It is widely accepted that stable dispersions are obtained when 

the absolute value of the zeta potential is larger than 15 mV [27]. At these conditions the smaller 

particle sizes also underline good dispersion quality, despite the fact that this parameter barely varies 

with SDBS concentration. 

Next, the effect of the centrifugation was evaluated, and dispersions at different centrifugation 

speeds (1000, 3500, 5000, and 10000 rpm) were prepared, keeping the rest of parameters constant: 

MWCNT concentration (1mg/mL), sonication (15 min), SDBS concentration (20mg/mL, optimized 

in the former step). Fig. 1b shows the particle size and zeta potential values for these experiments. 

No clear tendency was observed for both parameters, indicating similar stabilities for all the studied 

conditions. We chose 5000 rpm as the best compromise between stable MWCNT dispersions and 

adequate final nanotube concentration.  Subsequently, the sonication time was analyzed for the 

dispersion process. Dispersions of MWCNTs (1mg/mL) with SDBS (20 mg/mL) were prepared at 

different ultrasonication times (5, 15, 30, 60 minutes). All the dispersions were centrifuged at 5000 

rpm for 30 min. The light scattering analysis (Fig. 1c) shows a small increase of zeta potential and 

decrease of particle size with sonication time. Sonication time of 30 minutes was chosen for SDBS 

dispersions since longer sonication times do not result in further improvement of the dispersion 

quality. The fact that neither centrifugation nor sonication essentially affect zeta potential and 

particle size underlines that the critical factors are rather related to finding an adequate surfactant 

and concentration range. 

Dispersions with different nanotube concentrations (0.25 to 2 mg/mL) were also prepared. The 

optimal conditions for SDBS were applied, and results from the dynamic light scattering analysis 

collected in Table S1 (see Supplementary materials). Absolute values of the zeta–potential increased 

with nanotube concentration, up to 55 ± 2 mV at a MWCNT concentration of 2 mg/mL. On the 

contrary, particle size increases with MWCNT concentration for concentrations above 1 mg/mL, 

resulting in formation of visible aggregates that may negatively influence the quality of the 

dispersion. Thus we established an upper MWCNT concentration limit of 1mg/mL for which stable 
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dispersions of MWCNTs can be achieved using SDBS as surfactant. Higher nanotube concentrations 

will require further optimization effort.  

The stability with pH and temperature of the optimized dispersions was also monitored (see Fig. 

S1, Supplementary materials), and results indicate high dispersion stability in a wide range of pH (3-

10) and temperature (2 to 50 ºC). 

An identical protocol was applied for all the dispersants detailed in the experimental section, and 

the optimal conditions established for each one are summarized in Table 1.  

At this point the obtained results can be summarized as follows: i) Absolute zeta potential values 

significantly higher than 15 mV were obtained for all the used dispersants, underlining the excellent 

dispersion stability achieved by applying our progressive sequential protocol. ii) Average particle 

sizes around 200 nm were found for most dispersants. Only polymer dispersants show significantly 

larger particle sizes and lower zeta potentials. iii) Different dispersant/MWCNT ratios and 

sonication times were obtained for all systems. iv) Centrifugation speed was found to have little 

effect on light scattering parameters. v) Optimal dispersion conditions were established for MWCNT 

concentrations up to 1 mg/mL. Larger aggregates were visible at higher concentrations. Thus, further 

optimization at these concentrations becomes necessary. vi) Optimal dispersion conditions 

elaborated for one dispersant do not necessary apply for another dispersant. vii) Order of dispersing 

ability according to light scattering techniques: For surfactants: SDBS≈HAB > LDS > Triton X-100. 

For polymer dispersants: PVP > Pluronic F-68 > Tween-60. 

As a next step we analyzed the stability of the optimized aqueous MWCNT dispersions over time. 

During the period of one month we measured the zeta-potential and average size in order to evaluate 

the dispersion stability. Surprisingly, both values showed very little variation over time. After one 

month, zeta-potential value changed from -55 ± 2 mV to -52 ± 2 mV, and average particle size 

showed no significant differences (180 ± 5 nm); additionally, no visible aggregates were observed 

during this period. These results show that by applying a progressive optimization protocol using 

dynamic light scattering parameters (zeta-potential and average particle size) as criteria for the 
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dispersion quality stable aqueous dispersions of MWCNTs with different dispersants can be 

successfully elaborated. 

3.2. Classification of dispersing ability of dispersants using UV-Vis absorption spectroscopy  

Although dynamic light scattering is a valuable tool for assessing the stability of aqueous MWCNT 

dispersions, this technique does not allow a direct comparison of the dispersion ability of dispersants 

of different nature. While excellent MWCNT dispersions can be obtained with both, surfactants and 

polymer dispersants, the polymer systems usually exhibit lower zeta potentials and larger particles 

sizes. In order to classify the dispersing ability of dispersants independent of their intrinsic nature, 

dynamic light scattering measurements were complemented by performing UV-Vis absorption 

spectroscopy on MWCNT dispersions.  

Assessing nanotube dispersion quality by UV-Vis spectroscopy is based on the assumption that 

beyond 300 nm (a) the employed dispersants do not contribute to the UV-Vis absorption, and (b) 

any remaining absorption is linked to the presence of dispersed nanotubes. In the case of single-

walled carbon nanotubes the presence of specific Van-Hove singularities between 630 and 660 nm 

facilitates a quantitative evaluation of the dispersion quality by UV-Vis spectroscopy [17, 25, 28]. 

However, this methodology can be equally employed for MWCNT dispersions, which are 

characterized by a featureless absorption in the above mentioned wavelength range. Thereto we 

measured the absorbance of the various optimized MWCNT dispersions at 660 nm for different 

MWCNT concentrations before and after applying an additional centrifugation step. For all the 

employed dispersants the absorbance data linearly increase with the MWCNT concentration over the 

whole concentration range assayed. Thus, eventually existing aggregates must have absorption 

coefficients similar to those of dispersed MWCNTs. Linear fits and application of Lambert-Beer 

provided values for the apparent molar extinction coefficient (ε) for MWCNTs. 

An extinction coefficient of 3947 mLmg-1m-1 was obtained for the dispersion with SDBS, in good 

agreement with the reported ε values for SWCNTs, ranging from 3000 to 4000 mLmg-1m-1 [29, 30]. 

Different molar extinction coefficients for MWCNTs were obtained for each dispersion system, 

indicating different dispersion abilities for each dispersant. A higher extinction coefficient usually 
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points to improved dispersion quality attributed to the disaggregation of nanotube bundles or an 

enhanced presence of individual nanotubes [30]. Considering the molar extinction coefficient as a 

parameter to define the dispersion quality the following trend was established: SDBS > HAB > 

Tween 60 > LDS ≈ Pluronic > PVP > Triton X-100. With respect to the surfactants, the trend is 

coincident with the one observed by light scattering analysis, indicating that both techniques are 

adequate to define quality of nanotube dispersion for this type of dispersants. However, polymer 

dispersants exhibit a different trend than the one observed by light scattering. Since the absorption 

data from UV-Vis measurements are independent of the type of dispersant (they do not contribute to 

the absorption at 660 nm) this technique thus should provide a reliable measure for comparing 

surfactants with polymer dispersants, i.e. dispersants of different intrinsic nature. Parameters like 

different molecular size of the polymer, and different ionic character (most times non-ionic, 

therefore non-charged) may have more weight on the obtained values of zeta potential, and average 

particle size than on the dispersion ability. Nevertheless, for our progressive sequential protocol, 

light scattering measurements have proven to be a fast and effective method to assess the quality of 

MWCNT dispersions.  

Additional information can also be extracted from the UV-Vis analysis by studying dispersions 

after centrifugation. Lower absorption values, compared to the ones obtained for the non-centrifuged 

samples, were obtained, indicating removal of aggregates by centrifugation. Moreover, the 

difference on absorbance values, before and after centrifugation, became more significant at 

increasing nanotube concentration. In the case of SDBS, both absorption values are almost 

coincident for nanotube concentrations up to 0.05 mg/mL (Fig. 2). This clearly reveals a high 

stability of the nanotube dispersion and a reduced presence of aggregates at this concentration range, 

otherwise the centrifuged dispersion would exhibit much lower absorbance. On the other hand, for 

Triton X-100 the absorption values diverge above 0.025 mg/mL (Fig. 2), indicating larger amounts 

of aggregates removed by centrifugation beyond this MWCNT concentration.  

We have used this information to define the “dispersion limit” of the dispersant, i.e. the nanotube 

concentration above which larger aggregates, removable by centrifugation, can be detected (see 
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Table S2 in Supplementary materials). Two groups could be distinguished with respect to the 

dispersion limit: (a) SDBS, HAB, Tween 60 and Pluronic, with dispersion limits above 0.05 mg/mL, 

and 2) dispersants such as LDS, PVP, and Triton X-100 with dispersion limits below 0.025 mg/mL. 

Calculating now the fraction of aggregates removed by centrifugation according to Equation (1) 

[28],  

χagg = (ABC - AAC)/ABC,     (1) 

where ABC and AAC define the absorbance at λ = 660 nm before and after centrifugation, 

respectively, and plotting χagg versus the initial MWCNT concentration (Fig. 2), we can be clearly 

seen that the SDBS dispersion, over the whole MWCNT concentration range, contains the lowest 

amount of aggregates being indicative of its high dispersing ability. With the highest number of 

aggregates over the whole MWCNT concentration range, the lowest dispersion ability is established 

for Triton X100. Finally, it is worth to mention here that the amount of aggregates observed for all 

our dispersions is lower than the one found for single-walled carbon nanotubes [30], which once 

more underlines the efficiency of our dispersion methodology.  

3.3. Preparation of PVA composites  

In the previous sections, we have shown that stable aqueous MWCNT dispersions can be 

successfully prepared, and their dispersion degree quantified by light scattering, and UV-vis 

spectroscopy techniques. The latter technique has allowed us to classify dispersants according their 

ability to produce stable nanotube dispersions independent of their nature. In the following, in order 

to demonstrate the benefits of applying the developed sequential protocol, we study the preparation 

of composites based on water-soluble poly(vinyl alcohol) as polymer matrix and optimized aqueous 

MWCNT dispersions. Two types of MWCNT dispersants were used: SDBS, chosen among all the 

surfactants for its high MWCNT dispersing ability and PVP with good chemical compatibility to 

PVA which should contribute to enhanced interactions between MWCNTs and the PVA matrix. 

Four series of MWCNT dispersions were prepared: (1) MWCNT/SDBS, with SDBS as dispersant, 

(2) MWCNT/PVP with PVP as dispersant, (3) MWCNT/SDBS+PVP dispersing first the nanotubes 

with SDBS, and then with PVP, and (4) MWCNT/PVP+SDBS, adding the dispersants in inverse 
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order to the nanotubes, i.e. first PVP, and second SDBS. We applied the sequential protocol 

developed in previous sections to prepare the four MWCNT dispersions, which were also 

characterized by measuring their zeta-potential and average size. Results are summarized in Table 1.  

Mono-dispersant dispersions exhibited the characteristics previously described. SDBS, with a 

better dispersion performance, produced dispersions with smaller average particle size and higher 

zeta-potential, and PVP larger particle sizes and lower zeta-potential values. When PVP was used in 

combination with SDBS no significant changes in the average size with respect to the SDBS 

dispersions were observed, indicating that no aggregation occurred and the stability of the 

dispersions was maintained. On the other side lower absolute values of the zeta-potential were 

observed when PVP was used. However, the dispersions were maintained for long periods of time 

without sedimentation or aggregation, indicating their high stability. Interestingly, for dispersant 

mixtures the order of dispersant addition apparently, had no influence on the dispersion quality, and 

both dispersion mixtures showed acceptable quality, according their zeta-potential, and particle size 

values. 

Subsequently, the four different MWCNT dispersions were used to prepare MWCNT/PVA 

composites with MWCNT loadings from 0.1 to 2 wt. % with respect to PVA. Composites were 

analyzed by differential scanning calorimetry, and the effect of the MWCNTs estimated from the 

polymer Tg values, is shown in Fig. 3. The evaluation of the Tg values of the composites provides us 

with an indirect and fast method to determine both the dispersion and the effective transference of 

properties from the MWCNTs to the polymeric matrix. The Tg value of the neat PVA was 

determined to be approximately 75 °C. Blank samples of PVA containing only SDBS and PVP 

showed no significant differences in the Tg values. Composites prepared with MWCNT/SDBS 

dispersions showed similar Tg to the original PVA, independent of the MWCNT content, indicative 

of a low enhancing effect of nanotubes on the composite, in spite of the high quality dispersions 

obtained with this surfactant. A slight increase of the Tg for MWCNT loadings above 1 wt. % was 

observed when PVP was the dispersant. Importantly, mixtures of dispersants lead to notable 

enhancement of the composite characteristics with respect to the mono-dispersant systems. Here the 
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order of dispersant addition certainly had a significant influence on the final composite properties. 

Although both dispersant mixtures showed similar dispersion quality, addition of SDBS first, 

followed by PVP resulted in a significant increase of Tg up to 87 ºC for composites loaded with 2 wt. 

% of MWCNTs. Choi et al. described in their study [31] an increase of 6 ºC in the Tg values  of PVA 

reinforced with 2 wt. % of MWCNTs. Our results point to an improved integration and dispersion of 

MWCNTs through the polymer matrix when surfactant/polymer dispersion mixtures are used. While 

SDBS favors a high degree of MWCNT dispersion in the PVA matrix the presence of PVP in the 

outer layer of the dispersed MWCNTs is ultimately responsible for efficient transfer of properties 

from the MWCNTs to the polymer matrix. Although the sizes of the aggregated MWCNTs in 

dispersions are in the range of 200 nm, in the composites, the PVA polymer chains easily may 

diffuse into the MWCNT aggregates and establish proper nanoscale interactions. The efficiency of 

this process depends on the compatibility of the dispersants with the polymer matrix. 

Optical microscopy of the MWCNT/PVA composite films for the different dispersants at a fixed 

MWCNT loading fractions of 0.5 wt. % illustrates this situation (Fig. 4). The appearance of 

homogeneously distributed 1 µm-sized “dot-like” objects in the PVA composites, typically observed 

when SDBS dispersant is present and in direct contact with PVA, indicates the formation of self-

associated structures (micelles) in the composite. However, when PVP dispersant is present and in 

direct contact with PVA dot-like structures do not form and a rather smooth composite morphology 

is observed. When MWCNT-containing mixtures of SDBS and PVP are used it becomes evident 

that the composite morphology is influenced by the “second” i.e. “outer” dispersant layer covering 

the MWCNTs and thus by the sequence order for mixing the two dispersants: MWCNTs dispersed 

in PVP and mixed with SDBS show the 1 µm “dot-like” morphology typical for SDBS in contact 

with PVA. On the contrary, MWCNTs dispersed in SDBS and mixed with PVP show the smooth 

morphology typical for PVP in contact with PVA. Thus, optical microscopy, in combination with 

the results form DSC measurements provides the following conclusions: (a) SDBS homogeneously 

disperses MWCNTs, (b) PVP acts as an efficient coating layer on the well-dispersed SDBS-covered 

MWCNTs, and (c) the PVP coating layer on the SDBS-covered MWCNTs provides a high 
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compatibility with the PVA matrix characterized by a smooth composite morphology, free of dot-

like aggregates, favoring effective interaction with the PVA matrix as expressed by an enhanced 

glass transition temperature. These observations point out the important role of the outer layer. It 

defines the appearance in optical microscopy and it is accountable for an effective transfer of 

MWCNT properties to the polymer matrix. On the contrary, the inner layer apparently is responsible 

for the dispersion degree of MWCNTs in the matrix system. MWCNT dispersion mixtures 

consisting of a surfactant, providing a high MWCNT dispersion degree, to which a polymer 

dispersant compatible with a given polymer matrix system is added thus is a highly efficient strategy 

to elaborate tailored aqueous MWCNT dispersions. Once incorporated into the polymer matrix, a 

corresponding homogeneous MWCNT composite with enhanced properties is obtained.  

4. Conclusions 

We have developed tailored MWCNT dispersions based on a combination of a surfactant and a 

polymeric dispersing agent to obtain MWCNT/PVA composites with enhanced thermal properties. 

A significant increase of the glass transition temperature of PVA by 12 ºC has been achieved using a 

loading fraction of only 2 wt% of MWCNT, well dispersed in a mixture of SDBS-PVP. While 

SDBS alone appeared as the most efficient dispersing agent in the PVA matrix it did not result in the 

enhancement of its properties. However, SDBS in combination with PVP, facilitated the additional 

interaction between matrix and MWCNTs and improvement of its properties. Thus, the approach 

towards improved composites contains two essential steps: First, establishing for a given nanotube 

system the most efficient dispersant in a progressive sequential protocol with the help of zeta-

potential and UV-Vis spectroscopy. Second, choosing an additional dispersant with a high affinity to 

the polymer matrix in question and combine it with the selected dispersing agent in an sequential 

order that allows establishing efficient transfer of properties between nanotubes and a given polymer 

matrix. The presented dispersion strategy is straightforward and thus may provide a fast, reliable and 

general guide for fabricating nanotube composites with improved performance.  
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Fig. 1. Average size and zeta- potential of the MWCNT dispersions prepared with SDBS. (a) effect 

of SDBS concentration, (b) effect of centrifugation process and (c) effect of sonication time. Zeta 

potential and particle sizes are indicated by ▲ and ☐, respectively. 

 

 

 

Fig. 2. (a) UV Vis absorption at 660 nm vs. MWCNT concentration of optimized dispersions: SDBS 

(  before,  after centrifugation); Triton X-100 ( before, ○ after centrifugation). (b) Content of 

aggregates in MWCNT aqueous dispersions for different dispersants. Individual dispersants are 

indicated by the following symbols:  SDBS,  Pluronic,  Tween 60,▲LDS, Δ HAB, ○ PVP and 

⊕ Triton X-100. 
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Fig. 3. Representation of the Tg values of the PVA/MWCNT composites obtained using as 

dispersants SDBS and PVP, and mixtures thereof. Numbers refer to the used MWCNT 

concentration. 

 

 

 

 

Fig. 4. Optical microscopy images of PVA/MWCNT composites at MWCNT loading of 0.5 wt% 

for different dispersants: (a) SBDS, (b) PVP, (c) PVP-SDBS, and (d) SDBS-PVP. 
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Table 1. Conditions for optimized MWCNT dispersions for all dispersants and mixtures. 

Surfactant 

MWCNT 

conc. 

(mg/mL) 

Surfactant 

conc. 

(mg/mL) 

Sonication 

time 

(min) 

Centrifugation 

speed 

(rpm) 

Average 

size 

(nm) 

Zeta-

potential 

(mV) 

SDBS 1 20 30 5000 160 ± 5 -55 ± 2 

Triton X-100 1 1 5 10000 180 ± 6 -30 ± 1 

HAB 1 5 15 5000 180 ± 5 60 ± 4 

LDS 1 10 15 5000 200 ± 6 -54 ± 3 

Tween-60 1 10 15 5000 221 ± 20 -15 ± 2 

Pluronic F-68 1 5 15 5000 235 ± 6 -20 ± 5 

PVP 1 5 15 5000 300 ± 11 -25 ± 3 

*SDBS/PVP 1/0 20/5 30/15 5000/5000 166 ± 1 -14 ± 1 

*PVP/SDBS 1/0 5/20 15/30 5000/5000 186 ± 8 -16 ± 1 

*For mixtures: The first component refers to an aqueous dispersion containing MWCNTs prepared 

according to the optimized conditions for the corresponding dispersant (first value). The second 

component refers the second dispersant added to the prepared MWCNT dispersion according to the 

optimized conditions for the second dispersant (second value).  
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Combination of two dispersants as a valuable strategy to prepare improved Poly(vinyl 

alcohol)/carbon nanotube composites  
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Particle size and zeta potential for MWCNT dispersions prepared with SDBS in a 

concentration range ranging from 0.25 to 2 mg/mL 

 

Table S1. Effect of the MWCNT concentration on average size and zeta-potential of the MWCNT 

dispersions prepared with SDBS under the optimal conditions established. 
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MWCNT conc. 

(mg/mL) 

Particle size 

(nm) 

Zeta potential 

(mV) 

0.25 240 -46 

0.5 160 -51 

1 160 -55 

2 280 -55 
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Average size and zeta-potential at different pH values and temperatures  

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Average size and zeta-potential of the optimal MWCNT dispersions obtained with SDBS 

a) at different pH values and b) effect of temperature. Zeta potential and particle sizes are indicated 

by ▲ and ☐, respectively. 

 

Fig. S1 shows the variation of average size and zeta-potential of the optimal MWCNT dispersions 

obtained with SDBS with pH and Temperature. Zeta potential exhibits a slight increase with pH, 

being the highest absolute value of zeta potential found at pH = 6. Smaller particles are also obtained 

at this pH and beyond, indicating enhanced dispersion stability in neutral to alkaline range, as can be 

expected from the anionic character of the surfactant. However, the high zeta-potentials values 

measured are indicative of good dispersion stability over the whole pH range from 3 to 10. In what 

concerns the temperature, the stability of the dispersion increases as the temperature decreases from 

65 to 2 ºC, being -85 mV the highest zeta potential found (at 2 ºC). The low mobility of the 

dispersed MWCNTs at low temperature ensures a good stability. At high temperatures the mobility 

increases and leads to an enhanced number of collisions among MWCNTs. This results in larger 
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nanotube aggregates, which tend to precipitate. Consequently, less stable dispersions are obtained at 

elevated temperatures.  

Nevertheless, at the highest temperature assayed (65 ºC) the zeta-potential with a value of -40 mV 

still indicates a very good MWCNT dispersion degree. For the temperature range between 20 and 50 

ºC values for zeta- potential and particle size remain almost constant underlining high dispersion 

stability for this important working range. 

 

Extinction coefficients and dispersion limits for the used dispersants 

Table S2. Extinction coefficients and dispersion limits for all dispersions prepared. 

Surfactant 
ε 

(mL/mg/m) 

Dispersion limit 

(mg/mL) 

SDBS 3947 0.05 

TRITON X-100 1599 0.025 

HAB 3287 0.05 

LDS 2938 0.025 

TWEEN-60 3184 0.05 

PLURONIC F-68 2915 0.05 

PVP 2274 0.025 

 

 


