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Abstract 

 

The dry reforming of coke oven gases (COG) over an activated carbon used as catalyst 

has been studied in order to produce a syngas suitable for methanol synthesis. The 

primary aim of this work was to study the influence of the high amount of hydrogen 

present in the COG on the process of dry reforming, as well as the influence of other 

operation conditions, such us temperature and volumetric hourly space velocity 

(VHSV). It was found that the reverse water gas shift (RWGS) reaction takes place due 

to the hydrogen present in the COG, and that its influence on the process increases as 

the temperature decreases. This situation may give rise to the consumption of the 

hydrogen present in the COG, and the consequent formation of a syngas which is 

inappropriate for the synthesis of methanol. This reaction can be avoided by working at 

high temperatures (about 1000 ºC) in order to produce a syngas that is suitable for 

methanol synthesis. It was also found that the RWGS reaction is favoured by an 

increase in the VHSV. In addition, the active carbon FY5 was proven to be an adequate 

catalyst for the production of syngas from COG. 
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1. Introduction 

 

Synthesis gas, or simply syngas, is a raw material for the large scale production of 

hydrogen and a wide variety of organic products, consisting mainly of hydrogen and 

carbon monoxide [1,2]. It is basically produced from natural gas and oil, but the limited 

supply of fossil fuels and the fight against climate change and greenhouse gas (GHG) 

emissions have intensified the search for alternative processes of production, such as 

biomass gasification [1] or biogas reforming [3]. 

 

Coke oven gases (COG), which can be considered a byproduct of coking plants, consist 

mainly of H2 (≈55–60%), CH4 (≈23–27%), CO (≈5–8%) and N2 (≈3–5%), along with 

other hydrocarbons, H2S and NH3 in small proportions. Most of this gas is used as fuel 

in the coke ovens and other processes of the steel plant, but very often the excess of 

COG cannot be used in this way and so it is burnt in torches. But this gives rise to 

environmental problems that urgently need to be solved [4–9]. An alternative option for 

the excess COG is for it to be valorized by means of hydrogen separation [8,10,11] or 

syngas production through partial oxidation [12,13], steam reforming [7,12,14,15] or 

dry reforming [4,5,16]. The syngas thus produced can in turn be used for the synthesis 

of different other organic products, mainly methanol. Although most authors have 

concentrated their attention on the steam reforming of COG [7,12,14,15], in the last few 

years the dry reforming of COG has also been investigated [4,5,16], due to the 

numerous advantages that it offers compared to steam reforming, such as the saving of 

energy or CO2 consumption. Another important advantage of the dry reforming of COG 

is the possibility of obtaining a syngas with a H2/CO ratio of about 2, which is the ideal 

proportion for methanol synthesis [17,18], in only one step provided the process is 

carried out under stoichiometric conditions of CH4 and CO2. As can be seen in Fig. 1, 

the process can be considered as a way of ‘‘partial recycling” of CO2 since it consumes, 

at least theoretically, half of the CO2 produced when methanol is burnt. The prospects 

for this technology are far-reaching, since the demand for methanol for vehicle fuel, as a 

source of hydrogen for fuel cells or biodiesel production is rapidly increasing [19]. 
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Fig. 1. Scheme of “partial recycling” of CO2 in the process of dry reforming of COG 

for methanol production. 

 

The main objective of this work is to investigate the dry reforming of COG in order to 

produce a syngas with a ratio of H2/CO suitable for methanol production. The dry 

reforming of COG is carried out over an activated carbon, which has been proven to be 

an effective catalyst for the dry reforming of methane [20]. The influence of the large 

hydrogen amount which is present in the COG on the process of dry reforming and 

other operating conditions, such as temperature or space velocity, are studied. 

 

 

2. Experimental 

 

The dry reforming of COG was carried out in a fixed-bed quartz reactor under 

atmospheric pressure and heated in an electric furnace. The reaction temperature in the 

middle of the catalyst bed was monitored and controlled by means of a type K 

thermocouple. A commercial activated carbon with a high surface area (Filtracarb FY5), 

whose main characteristics are shown in Table 1, was used as catalyst. 

 

In the first test, CH4 and CO2 were fed in at a ratio of 1:1. In the rest of the experiments, 

H2 was added in order to study the effect of the presence of H2 in the feed stream on the 

process of dry reforming of methane. The addition of H2 gave rise to a gaseous ternary 

mixture (GTM) composed of 54% H2, 23% CH4 and 23% CO2 (vol.%), in order that the 

H2/CH4 ratio was within the range characteristic of COG (2–2.7). The CH4 and CO2 

were kept under stoichiometric conditions for the dry reforming of the methane. The 

influence of the CO present in the COG is beyond the scope of this work and will be 
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studied in due course. In order to assess the influence of temperature on the dry 

reforming of the COG, tests were performed at atmospheric pressure and at three 

different temperatures (800, 900, and 1000 ºC). In addition, tests at three different total 

volumetric hourly space velocities, VHSV (0.75, 1, and 1.5 L g-1 h-1, which represent 

0.16, 0.22, and 0.32 L g-1 h-1 for the methane respectively, VHSVCH4 ) were carried out 

with the aim of studying the effect of this variable upon the process and the composition 

of the products. The VHSV was increased by reducing the mass of the catalyst bed. 

 

Table 1. Main chemical characteristics and textural properties of the activated carbon 

FY5 

 

Proximate analysis (wt%) Ultimate analysis (wt%)a 
Moisture Asha Volatile mattera  C H N S  Ob H/C 

6.7 2.8 3.0  95.7 0.5 0.5 0.2 0.3 0.068 
 
Inorganic composition of the ashes (expressed as wt% of metal oxidesa) 

SiO2 K2O Al2O3 Fe2O3 CaO Na2O SO3 MgO TiO2 Ni Co 
39.79 25.40 9.06 9.04 6.4 3.01 2.77 2.71 1.18 n.d.c n.d.c 

 
Textural properties 

SBET (m2/g) Vt (cm3/g)d Vm (cm3/g)e Vs (cm3/g)f    
825 0.34 0.32 0.25    

a. dry basis; b. calculated by difference; c. non detected; d. total specific pore volume ; 
e. specific volume of micropores (pores of internal width < 2 nm); f. specific volume of 
small micropores (pores with internal width < 0.7 nm) 

 

 

Dry reforming reactions were performed in a quartz reactor charged with the carbon 

catalyst, which had previously been dried over night at 110 ºC. Before starting the 

reaction, the system was flushed with N2 (flow rate of 60 mL min-1 for 15 min) and 

then, heated up to a pre-set operating temperature. The gas product was collected in 

Tedlar® sample bags periodically during the experiment. Due to the formation of steam 

in some of the experiments, a condenser was placed after the reactor in order to prevent 

water from reaching the bags. The samples were analyzed in a Varian CP-3800 gas-

chromatograph equipped with a thermal conductivity detector TCD and two columns 

(an 80/100 Hayesep Q and an 80/100 Molesieve 13X) connected in series. The second 

column was bypassed by a six-port valve for the analysis of CO2 and hydrocarbons 

(≤C2). 
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The CH4 and CO2 conversions and the selectivity to H2 were calculated after 

determining the amount of water produced and the composition of the outlet stream by 

means of an iterative procedure based on the Newton method for non-lineal equations 

and using the Solver Microsoft Excel® tool, and closing mass balances within a ± 5% 

error margin. Selectivity to hydrogen gives an approximate idea of the amount of 

methane transformed into H2 or into other species (such as light hydrocarbons, ≤C2, or 

water). The parameters were calculated according to Eqs. (1)–(3): 
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where CH4 in, CO2 in and H2 in, are moles of each gas at the inlet of the reactor and 

CH4 out, CO2 out and H2 out are moles of each gas at the outlet. 

 

3. Results and discussion 

 

In a previous work by our group [20], the reforming of CH4 with CO2 (Reaction 1) 

carried out over the activated carbon FY5 was studied (see Fig. 2). A possible 

mechanism for the dry reforming reaction and the role of CO2 introduced were 

discussed. The experiments were conducted over a period of 6 h, at 800 ºC and 

atmospheric pressure, under stoichiometric conditions of the methane and carbon 

dioxide and at a VHSVCH4 of 0.16 L g-1 h-1 (total VSHV of 0.32 L g-1 h-1) and 

conversions of more than 40% were achieved. 

 

CH4 + CO2 ↔ H2 + CO ΔH = 247.3 kJ/mol (reaction 1) 

 

If the process is carried out introducing the GTM, i.e., in the presence of hydrogen in 

the feed, two different phenomena may take place: (i) the equilibrium is shifted to the 

reactants (see Reaction 1), which results in lower CH4 and CO2 conversions, and (ii) the 
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reverse water gas shift reaction (RWGS) occurs (Reaction 2), giving rise to an increase 

in CO2 conversion and the formation of water [16,21,22]. Both effects result in a 

decrease in hydrogen production. 

 

H2 + CO2 ↔ H2O + CO ΔH = 41.2 kJ/mol (reaction 2) 

 

 
Fig. 2. CH4 and CO2 conversions for the dry reforming of CH4 at 800 ºC, CH4/CO2 = 1, 

VHSVCH4 = 0.16 L g-1 h-1, VHSV = 0.32 L g-1 h-1 and 1 atm (adapted from [20]). 

 

Both phenomena occurred in the case of the dry reforming of the GTM at 800 ºC, and 

led to changes in the CH4 and CO2 conversions resulting from the dry reforming of 

CH4. As can be seen in Fig. 3, methane conversion fell to below 40% from the very 

beginning of the reaction, reaching values of about 20% after 6 h of reaction. The sharp 

decreasing observed during the first minutes may be due to initial instabilities. In 

addition, carbon dioxide conversion was higher than in the case of the dry reforming of 

methane (Fig. 2), which suggests that RWGS had more influence on the process than 

the effect of the shift of the equilibrium. The large amount of water collected in the 

condenser, representing about 8 vol.% of the products of the reaction, reinforces this 

suggestion, which has also been reported by other authors [16]. Besides reducing H2 

production and changing the H2/CO ratio, water could also obstruct the synthesis of 

methanol, since it has a deactivating effect on the Cu catalyst [23]. 
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Fig. 3. CH4 and CO2 conversions for the dry reforming of the GTM at 800 ºC, 

CH4/CO2 = 1, VHSVCH4 = 0.16 L g-1 h-1, VHSV  = 0.75 L g-1 h-1 and 1 atm. 

 

3.1. Effect of the temperature 

 

Fig. 4 shows the dry reforming of the GTM at 900 ºC. As can be seen, CH4 conversion 

is higher than 50% throughout the experiment, a level of conversion never reached in 

tests carried out at 800 ºC. CO2 conversion is also higher than it is at 800 ºC. Since the 

RWGS reaction (Reaction 2) is less endothermic than the dry reforming of methane 

(Reaction 1), an increase in the operating temperature enhances dry reforming, giving 

rise to a higher methane conversion and, therefore, greater hydrogen production, 

whereas the production of water is reduced. In actual fact, the increase in CO2 

conversion may have been due to an enhancement of the dry reforming reaction, and not 

to the RWGS reaction, since the amount of water collected was nearly three times lower 

than that in the experiment at 800 ºC. Other possible explanation to these results is that 

at higher temperatures the steam reforming of methane (Reaction 3) can occur, i.e. the 

water produced in the RWGS could react with the methane. 

 

CH4 + H2O ↔ 3 H2 + CO ΔH = 206.1 kJ/mol (reaction 3) 
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Fig. 4. CH4 and CO2 conversions for the dry reforming of the GTM at 900 ºC, 

CH4/CO2 = 1, VHSVCH4 = 0.16 L g-1 h-1, VHSV  = 0.75 L g-1 h-1 and 1 atm. 

 

However, this mechanism seems less probable since it would lead to similar increments 

in both CH4 and CO2 conversions which did not take place, as can be seen in Fig. 4. 

Nevertheless, the sum of RWGS reaction (Reaction 2) and steam reforming reaction 

(Reaction 3) gives rise to the dry reforming reaction (Reaction 1), which makes difficult 

to distinguish the path followed by the reaction. 

 

Fig. 5 shows the conversion results corresponding to the test carried out at 1000 ºC. 

This increment in temperature results in an increase in the conversions, up to 80% for 

CH4 and 95% for CO2 after 6 h of experimentation. Moreover, no production of water 

was detected at 1000 ºC. Therefore, by working at this temperature, it is possible to 

avoid the occurrence of RWGS, and so maximize the production of hydrogen. 

 

3.2. Effect of the volumetric hourly space velocity (VHSV) 

 

The effect of the VHSV on the process was studied at 900 ºC and 1000 ºC. The 

temperature of 800 ºC was discarded since an increase in VHSV would lead to a further 

decrease in conversions [20] and to the formation of more water, which would make it 

difficult to study the effect of the variation of VHSV and its influence on the process. 

The results of the dry reforming of the GTM at 900 ºC employing three different VHSV 

(0.75, 1, and 1.5 L g-1 h-1, respectively) are shown in Fig. 6. As can be seen, both CH4 
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and CO2 conversions are affected by changes in VHSV. Thus, the levels of conversions 

diminish as the VHSV increases. However, the decrease in the CH4 conversion is 

greater than in the case of CO2. The loss of conversion due to dry reforming reaction 

and to the increase in VHSV is similar both for CH4 and CO2 [20]. Whereas, the 

consumption of CO2 due to the RWGS reaction, which seems to be higher at elevated 

VHSVs, led to a smaller decrease in CO2 conversion. Thus, high amounts of water were 

collected when the VHSV increased (50% higher in the experiment at 1 L g-1 h-1 and 

twice the amount in the experiment carried out at 1.5 L g-1 h-1, compared to the 

experiment at 0.75 L g-1 h-1), owing to the more vigorous RWGS reaction as VHSV 

increased. This may be due to an increase in the CO2 concentration throughout the 

reactor. Since there is a high amount of H2 present, CO2 could be the species which 

limits the RWGS reaction. Consequently, high conversions of CO2 should be avoided in 

order to prevent the side reaction of RWGS. 

 
Fig. 6. Influence of the VHSV on (a) CH4 conversion and (b) CO2 conversion, for the 

dry reforming of the GTM at 900 ºC, CH4/CO2 = 1 and 1 atm. 
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Fig. 7 shows the results of two tests carried out at 1000 ºC and 0.75 L g-1 h-1 and 1.50 L 

g-1 h-1, respectively. As was explained above, no water production was observed at 

1000 ºC and 0.75 L g-1 h-1. When the VSHV was increased to 1.50 L g-1 h-1, some water 

was produced due to the increase in the concentration of CO2 resulting from the 

decrease in the conversion caused by the dry reforming reaction. However, the water 

collected was less than 1 vol.% of the total products, since CO2 conversion was 

sufficiently high at 1000 ºC, despite the increase in VSHV. 

 
Fig. 7. Influence of the VHSV on (a) CH4 conversion and (b) CO2 conversion, for the 

dry reforming of the GTM at 1000 ºC, CH4/CO2 = 1 and 1 atm. 
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In order to specify how much of the hydrogen present in the CH4 is converted into H2 

or into other species, it is necessary to evaluate the selectivity (Eq. (3)). Selectivity to 

H2 for each of the experiments is shown in Table 2. Low values of selectivity were 

obtained at 800 ºC, mainly due to the large amount of hydrogen that reacts with CO2 to 

produce water. The negative values for selectivity, observed at this temperature, were 

caused not only by the low production of hydrogen, but also by the consumption of part 

of the hydrogen in the feed. When water production was lower, at 900 ºC or 1000 ºC, 

selectivity reached higher values, exceeding 90% when no water was produced (1000 

ºC and 0.75 L g-1 h-1), since only light hydrocarbons, which are produced in negligible 

proportions (less than 1%), could have consumed part of this hydrogen. It is clear that 

an increase in VHSV must have affected selectivity, due to the increase in the water 

produced. Thus, at a given temperature, selectivity decreases as VHSV increases, this 

decrease being more marked at 900 ºC than at 1000 ºC. 

 

Table 2. H2/CO ratio, R parameter and selectivity to H2 (S) for the dry reforming of the 

GTM at different temperatures and VHSV 

 
Temperature 

(ºC) 

VHSV 

(L g-1 h-1) 
H2/CO R 

S(1) 

(%) 

800 0.75 3.09 ± 0.05 1.76 ± 0.04 40 to -10 

900 0.75 2.26 ± 0.09 2.09 ± 0.07 85 to 70 

900 1.00 2.35 ± 0.07 2.01 ± 0.05 85 to 65  

900 1.50 2.69 ± 0.07 1.78 ± 0.06 75 to 45  

1000 0.75 2.17 ± 0.02 2.13 ± 0.03 100 to 90 

1000 1.50 2.25 ± 0.04 2.01 ± 0.04 95 to 85 

(1) Range of variation of the selectivity to H2 from t = 0 h to t = 6h  

 

To determine whether a syngas is suitable for methanol production, the H2/CO ratio 

after the process of reforming must be taken into account. The appropriate H2/CO ratio 

for the synthesis of methanol (Reaction 4) is 2 [17,18]. Both steam and dry reforming of 

methane give rise to ratios much higher or much lower than this value (i.e., 3 in the case 

of steam reforming and 1 in the case of dry reforming). It is therefore necessary to 

include other conditioning stages in the process in order to produce an appropriate 

syngas for methanol synthesis [17]. Nevertheless, the presence of hydrogen in COG 

makes it possible to reach values near to the appropriate H2/CO ratio by dry reforming 
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in just one step. Although the H2/CO ratio is the most commonly used factor to evaluate 

the composition of a syngas, some authors have suggested that the influence of the CO2 

in the feed should also be taken into account on the methanol synthesis stage 

[6,17,24,25]. CO2 acts as a promoter of the methanol synthesis reaction (Reaction 4), it 

can react with hydrogen to produce methanol and water (Reaction 5) and it helps to 

maintain the activity of the catalyst. 

 

2H2 + CO ↔ CH3OH ΔH = -90.9 kJ/mol (reaction 4) 

 

3H2 + CO2 ↔ CH3OH + H2O ΔH = -41.1 kJ/mol (reaction 5) 

 

The relation between the proportions of H2, CO, and CO2 in the feed in methanol 

synthesis is evaluated by means of the R parameter, which is defined as follows 

[17,24,25]: 

2

22

COCO
COHR
+

−
=  (equation 4) 

 

where H2, CO2 and CO are moles of each gas in the syngas fed in at the methanol 

synthesis stage. 

 

In order to optimize the process, this parameter needs to be equal to or slightly higher 

than 2 [17,24,25]. If R takes values lower than 2, it leads to an increase in the formation 

of the byproducts during the methanol synthesis stage, whereas when values are higher 

than 2, it is necessary to increase the recycling rate in the methanol synthesis stage due 

to the excess of hydrogen, which makes the process less efficient and more expensive 

[25]. 

 

Table 2 shows the H2/CO ratio and R parameter for the different tests of dry reforming 

of GTM carried out at different temperatures and VHSV. 

 

As can be seen, at 800 ºC, although the conversion of CO2 was considerably higher than 

the conversion of CH4, the H2/CO ratio is higher than 3. This is due to the strong 

influence that the hydrogen in the feed has on this parameter when the conversions are 

low. This influence decreases as the conversions increase (900 ºC and 1000 ºC). 
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Besides, even when the CH4 and CO2 conversions are quite different (900 ºC), the 

H2/CO ratios are close to 2, which is the most suitable value for methanol synthesis. 

 

As for the R parameter, the experiment carried out at 800 ºC produces a syngas with a 

value unsuitable for methanol synthesis. This may be due to the low conversions 

achieved, which lead to high amounts of CO2 in the resulting stream. The R values of 

the syngas produced at 900 ºC and 1000 ºC are slightly higher than 2, which may be 

considered as acceptable for the production of methanol. 

 

The variation in the VHSV influences both the H2/CO ratio and R parameter. The 

H2/CO ratio increases as the VHSV increases, due to the decrease in the conversions. 

This situation might have been expected to lead to a lower H2/CO ratio, since the loss of 

conversion in the case of CH4 is higher than for CO2, i.e., the reduction in hydrogen 

production is greater than in the production of CO. However, as a consequence of the 

decrease in both conversions, the influence of the hydrogen present in the feed 

increases, which gives rise to higher values of H2/CO. In the case of the R parameter, 

the opposite trend can be observed for the H2/CO ratio, since the R parameter decreases 

as the VHSV increases, due to greater amount of CO2 present in the resulting syngas. 

 

4. Conclusions 

 

The main objective of this work was to study the dry reforming of coke oven gases over 

an activated carbon in order to produce synthesis gas suitable for the production of 

methanol. The influence on the process of dry reforming exerted by the high amount of 

hydrogen present in the COG was studied, the most noticeable effect being the Reverse 

Water Gas Shift Reaction. At 800 ºC, this situation, together with the low conversions 

so far achieved, leads to the consumption of part of this hydrogen in the COG producing 

water, As a result, the syngas produces has a high H2/CO ratio and a low R parameter, 

being inappropriate for methanol synthesis. As the temperature increases, the 

conversions become greater, reaching values of over 80% for methane and 95% for the 

carbon dioxide. Consequently water production decreases, until it completely disappears 

at 1000 ºC, when the process is carried out with low VHSV. This situation gives rise to 

a decrease in the H2/CO ratio and an increase of the R parameter. In this way, it is 

possible to produce a syngas suitable for methanol production, with an appropiate 
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H2/CO ratio (2.2), an adequate R parameter (2.13) and high selectivity to H2 (up to 

90%). The influence of VHSV on the process is the other way round, since the 

conversions decrease and water production increase as VHSV raises. In this case, the 

H2/CO ratio increases and the R parameter decreases, the values being too high and too 

low respectively for the methanol production. Thus, it can be concluded that, at high 

temperatures (1000 ºC) and with VHSVs no higher than 1.5 L g-1 h-1, the activated 

carbon FY5 is a good catalyst for the dry reforming of the COG as means to produce 

syngas for the production of methanol. 
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