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1 Institut de Ciències del Mar, Consejo Superior de Investigaciones Cientı́ficas, Barcelona, Spain, 2 Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands

Abstract

Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling
from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such
as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of
food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on
trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative.
Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-
sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue d13C and d15N isotope
ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean
Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources
were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic
matter utilization processes showed an intermediate position between surface and deep benthic components. These results
shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further
investigation.
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Introduction

Heterotrophic, bottom-up controlled, food webs are the most

abundant ecosystem structure on the planet; i.e. they are the most

frequent food webs found in the deep sea, which is the largest

biome on Earth [1,2]. Deep-sea systems thrive on a downward flux

of particulate organic matter, the marine snow, which provides the

main food source for the benthos [3]. Recent advances in benthic

ecology identified that deep-sea food webs present a complex

trophic structure, with a high number of trophic levels and various

processes of niche adaptation [4–7]. Organic matter input and its

availability at the seafloor have also been shown to control benthic

standing stock, community composition, and diversity [8,9]. This

process of organic matter deposition – its magnitude decreasing

with increasing depth – is essential in regulating how species

interact with food sources and between them [10].

The Mediterranean Sea is geographically divided into three

basins (Figure 1): the western, central and eastern, with important

variations in primary productivity and organic matter availability

between them [11]. The eastern basin is the most oligotrophic area

in terms of organic matter input to bathyal depths [12] while, in

the western basin, high fluvial inputs, increased surface produc-

tivity and other mesoscale oceanographic events generate a higher

quantity of organic matter reaching the deep seafloor [13,14]. It

follows that the carbon fluxes of the western basin at similar depths

are two orders of magnitude higher than those in the eastern basin

[11]. The central basin presents intermediate environmental

conditions between the west and the east, and its continental

slope hosts a diverse benthic megafaunal community, more similar

to the one present in the western basin [15]. This gradient spans

the entire Mediterranean region and thus provides an interesting

benchmark to test for macro-ecological patterns in numerous

processes such as biodiversity and trophic relationships.

In marine systems, depth is also considered another major

driver of benthic processes, such as species distribution [16]. Depth

provides an additional gradient of food availability and quality at

the bottom, because the amount of degradation of organic matter

during its fall is correlated with the height of the water column

[17]. Generally speaking, water depth thus negatively correlates

with energy availability at the seafloor [10]. In all, the

Mediterranean Sea offers two dimensions of organic matter input,

i.e. bathymetric and longitudinal, that can be used to study the

control of organic matter input on an important component of the

benthic food web, namely megabenthos.

Megabenthic communities of the continental margins and deep

basins of the Mediterranean Sea, dominated by fishes and

decapod crustaceans in terms of abundance and biomass, present

strong biomass reductions that follow the gradients of productivity

and food arrival at the seafloor [18]. However, how megafauna

respond to a gradient in organic matter input is still a matter of

speculation. Studies conducted until now have not managed to

disclose the actual process modulating these adaptations [19,20].
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Deep-sea Mediterranean studies on dietary habits, niche

overlap, and more generally, trophic dynamics, were conducted

traditionally by stomach content analyses [19,21]. However,

existing collection methods for fish fauna at high bathyal depths

do not permit the retrieval of an acceptable number of useful

dietary samples, mostly because of the high number of everted

stomachs caused by decompression shock. Other issues impair

completeness in dietary studies of deep-sea species, namely (i)

extremely scant information about ingestion rates, (ii) overestima-

tion of preys that leave hard structures such as fish otoliths or

cephalopod beaks, and (iii) relatively low number of samples for

diet descriptions to be credible.

In the last decades, the use of stable isotopes (especially d13C

and d15N values) has become an important tool in marine

ecosystem studies [22]. Because of the isotopic discrimination in

metabolic processes, the nitrogen isotope ratio increases by 2.3 to

5% with each trophic step, while the carbon isotope ratio of a

consumer is only slightly enriched (between 0 and 1.5%) with

respect of that of its food [23–25]. As a result, the carbon isotope is

an indicator of the sources of organic matter, while the nitrogen

isotopes ratio informs on the trophic position of the individual in

the food web [26–28].

As carbon and nitrogen stable isotopes are indicators of both the

sources of organic matter and the structure of the food web, they

provide two dimensions of observation that are linkable with the

trophic niche concept [29]. A trophic niche is defined as an n-

dimensional hyper-volume representing the role of a particular

species in the trophic web [30]. Carbon and nitrogen stable

isotope ratios are usually plotted in an isotopic bi-space, in which

the variability has been demonstrated to be an indicator of the

trophic niche width of the analysed individuals [31]. Quantitative

metrics based on the geometric distribution of carbon and nitrogen

isotopes ratios in the 2-dimensional space, have been recently

developed to evaluate community-wide trophic dynamics such as

vertical structuring, species packaging and niche diversification

[32,33]. Species that adapt to organic matter scarcity by

specialising would show a decrease in their occupied area in the

bi-space, and an increase of their distance from the other species

(i.e. reduced packaging). By contrast, generalisation should be

evidenced by a broadening of the carbon isotope signature, and by

an increase of their occupied area.

In the present study, carbon and nitrogen stable isotopic

analyses were applied to address 2 objectives: (a) to reveal how

trophic niches develop along depth and productivity gradients in

the deep Mediterranean Sea, and (b) to reveal the contribution of

marine snow in diets of deep-sea food webs. The results will

strengthen the connections between surface processes and benthic

trophic niche adaptations.

Materials and Methods

Sampling Procedures
All samples were collected in June 2009 in the three basins of

the deep Mediterranean Sea (western, central, and eastern basins)

at three depths (1200, 2000, and 3000 m) in each of the three

basins (Figure 1). In the western basin, we sampled the southern

Balearic region (code W), in the central basin we sampled the

western Ionian Sea (code C), while the southern Cretan Sea was

considered for the eastern basin (code E). Permission for sampling

was obtained by the Spanish Ministry of Education and Science

for the W site, and by the Spanish Ministry of External Affairs in

collaboration with the consulates of Italy and Greece for the C and

E sites.

Nektobenthic and benthopelagic megafauna were captured with

an otter-trawl Maireta system (OTMS), while strictly benthic

species were captured with an Agassiz dredge [1,34]. Both gears

employed a stretched net mesh size of 12 mm, and were used in

parallel because of their sampling complementarity [18]. The

duration of the trawls ranged between 0.7 and 2.0 h. Every

individual collected was identified to species level. Muscle samples

without skin (in the case of fishes) and without exoskeleton (in the

case of crustaceans) from individuals of all collected species were

Figure 1. Bathymetric map of the study area. Map of the Mediterranean Sea, with bathymetry and showing the location of sampling sites. WM:
Western Mediterranean (southern Balearic), CM: Central Mediterranean (western Ionian), EM: Eastern Mediterranean (south of Crete).
doi:10.1371/journal.pone.0063796.g001
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immediately retrieved after sorting on board and were immedi-

ately frozen at -20uC until their isotopic determination. All

individuals arrived on the deck already dead. They were treated

according to the current Spanish national regulations on

vertebrate research, which do not require any specific permit to

work with trawl samples, and procedures were internationally

approved by the European Science Foundation (ESF). None of the

collected species is currently in protection status.

At the same sampling stations, pelagic microplankton (size

range: 53–200 mm) and mesozooplankton (size range: 200–

2000 mm) samples were also collected by using WP2 plankton

nets in vertical hauls from 200 m depth to the surface. Plankton

samples were filtered on board, on G/FC glass microfiber filters.

Macroplankton from the deep scattering layer (identified by echo

sounding) was additionally collected with an Isaaks-Kidd Mid-

water Trawl (IKMT), and selected species from each sample were

pooled together. Similarly to megafauna samples, all plankton

samples were stored frozen at 220uC until their isotopic

determination.

Isotopic Analysis
Stable isotopes analyses were conducted at the dedicated facility

of the Netherlands Institute for Sea Research (NIOZ), in Yerseke,

The Netherlands. In the laboratory, all samples collected were

freeze-dried for 48 hours and grounded to a fine powder. Drop-by-

drop acidification with diluted HCl (0.1 M) was performed only on

suprabenthos and plankton samples, with no water rinsing

afterwards, to remove the calcium shells [35]. Stable isotope

ratios 13C/12C and 15N/14N, and organic carbon and nitrogen

content were measured simultaneously on a Flash EA 1112

coupled to a DeltaV Advantage IRMS (Thermo Electron

Instruments). Monitoring of CO2 (m/z = 44 and 45) and N2 (m/

z = 28 and 29) ion currents of samples against standards with

known C and N content allowed accurate measurement of organic

carbon and nitrogen contents to determine C/N ratios. d13Corg

and d15Ntot values are expressed relative to Vienna Pee-Dee

Belemnite and air and normalized to d13C and d15N of USGS40

and USGS41. All measurements were corrected for blanks, and

NIOZ laboratory standards were run alongside each 96-samples

plate. Values of d13C and d15N were pooled by species, and

considered separately in each of the sampled sites.

Isotopic Metrics and Trophic Levels
Due to their differences in displacement capabilities and

behaviour, the analysed megafauna was split between fish and

invertebrate (mainly crustaceans) species. The community-wide

metrics applied are described and validated in detail by Layman

et al. [32]. Briefly, the following indices were considered:

N d15N range (dNR): expresses the distance between the most
15N-enriched and the most 15N-depleted samples in the

community, and is an indicator of its vertical structuring (i.e.

trophic length).

N d13C range (dCR): the equivalent of dNR considering 13C,

provides an indicator of the diversity of basal food resources.

N Total convex hull area (TA): the area of the smallest convex

polygon containing all species in the isotopic bi-space. TA is

correlated with the total niche amplitude of the food web.

N Mean distance to centroid (CD): the average Euclidean

distance of each species to the d13C - d15N centroid (which

is the mean d13C and d15N value of the entire food web). It

correlates positively with the trophic niche amplitude and with

the spacing between species.

Community-wide indices were calculated using the SIAR

package for the R statistical language (‘‘Stable Isotope Analysis

in R’’; [36]). As sample sizes differed among sites, a Bayesian

approach was adopted to propagate uncertainty in the mean

values of the metrics using 104 randomly calculated communities

[33]. Bayesian isotopic ellipses (SEA) for each site were calculated,

considering only benthic megafauna.

The trophic level (TLconsumer) of each individual was estimated

using the equation:

TLconsumer~TLbasalz d15Nconsumer{d15Nprey

� ��
Dd15N

d15Nprey and d15Nconsumer were, respectively, the isotopic values of

microplankton and individual fish or crustacean obtained in the

present study (at each site). A basal trophic level (TLbasal) of 1.5

was applied, assuming that microplankton (mostly composed by

phytoplankton) possesses a trophic level between 1 of the primary

producers and 2 of micro- and mesozooplankton [37]. A value of

Dd15N = 3.5% was used as the isotopic discrimination factor for

nitrogen [38].

Environmental Variables
A series of environmental variables, collected at exactly the

same sites than the megafauna samples, were recorded also.

Values for these variables were taken directly from the study by

Tecchio et al. [18], and the variables considered were: benthic

temperature (uC), benthic salinity, benthic turbidity (Formazin

turbidity units, FTU), surface fluorescence (relative fluorescence

units, RFU), sediment grain size (% of coarse fraction, .63 mm),

sediment particulate organic carbon (POC, % of mass), micro-

plankton biomass (mg m23), and mesozooplankton biomass (mg

m23). The mean values of fluorescence between 0 and 150 m

depth were used as an estimator of surface primary production, as

the data were collected with the same CTD and protocols

throughout the sampling phase. Biomass of microplankton and

mesozooplankton was integrated between 0 and 200 m depth in

the water column.

Statistical Analyses
Two-way ANOVA tests and pair-wise Tukey’s HSD post-hoc

tests were applied to test for differences between depths and sites

simultaneously in d13C, d15N and trophic level values. Non-

parametric Kruskal-Wallis tests were used to compare means of

isotopic metrics between depths and basins. Spearman rank

correlation tests were used to identify correlations between

environmental variables and d13C and d15N means, and isotopic

metrics.

Results

The collected megafauna was mainly composed by Actinopter-

ygii fishes and decapod crustaceans, and the number of specimen

analysed in each site ranged from 33 to 108 (Table S1).

Microplankton and mesozooplankton occupied the lower portion

of the bi-isotopic space in all sites, segregated from the species in

the benthic domain (Table 1 and Figure 2). Mesozooplankton

values of d15N were higher than microplankton values in the same

basin, showing the natural isotopic enrichment with trophic level

(Figure 2). This pelagic enrichment was not visible at the Eastern

site at 1200 m depth, which could be caused both by the reduced

number of samples and by their location: samples were collected

both in the north (1200 m depth) and south (2000 and 3000 m

depth) of the island of Crete, thus with potentially two differing

Deep-Sea Megafauna Trophic Dynamics
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food input regimes. Macroplankton from the deep scattering layer

was always positioned between the surface planktonic components

and the deep benthos isotopic values (Figure 2).

d13C values did not differ significantly between the three basins,

when considering the whole assemblage (2-way ANOVA,

F2,353 = 0.48, p = 0.61). d13C values showed significant differences

between the shallower site (1200 m depth) and the deeper layers of

2000 to 3000 m depth (Tukey HSD, p = 0.006), which grouped

together (Tukey HSD, p = 0.06). Considering assemblages as a

whole, d15N values significantly changed between the 3 basins,

decreasing from the Eastern to the Western basins (2-way

ANOVA, F2,353 = 52.46, p,0.001), while d15N values did not

differ significantly between depths (F2,353 = 52.46, p = 0.11) in any

basin (depth6basin interaction; F2,353 = 1.78, p = 0.13). Fish d13C

values showed similar values between basins (F2,185 = 0.35,

p = 0.71) and differed significantly between the shallower site

(1200 depth) and the deeper layers of 2000 to 3000 m

(F2,185 = 7.61, p = 0.001; Tukey HSD, p,0.05). Fish d15N values

showed similar values between depths (F2,185 = 52.46, p = 0.12)

and were significantly higher in the Western basin, than in both

the Central and Eastern basins (F2,185 = 0.12, p,0.0001; Tukey

HSD, p,0.05 for W-C and p,0.001 for W-E). Crustacean d13C

values did not differ between basins (F2,168 = 1.11, p = 0.33) and

depths (F2,168 = 2.31, p = 0.11). Crustacean d15N mean values

were significantly higher in the Western basin, than in both the

Central and Eastern basins (F2,168 = 39.32, p,0.0001; Tukey

HSD, p = 0.005 for W-C and p,0.001 for W-E), and did not

differ between depths (F2,168 = 0.48, p = 0.66).

The estimated TL of the whole assemblage did not differ

significantly between depths (F2,119 = 0.52, p = 0.72). However, the

TL of the western basin were significantly higher than the TL of

Central and eastern basins (F2,119 = 4.58, p = 0.01; Tukey HSD,

p = 0.01). The estimated trophic level (TL) of fish assemblages did

not show any significant differences with depth (F2,64 = 0.49,

p = 0.61) and regions (F2,64 = 2.08, p = 0.13). The TL of the

crustacean assemblages did not differ between depths (F2,55 = 0.17,

p = 0.95) but was higher at the western and eastern basins than

those of the central basin (F2,55 = 0.71, p = 0.95; Tukey HSD,

p,0.05).

Community-wide metrics (Table 1) were calculated with both

traditional (exact, no variability) and Bayesian methods. Values of

all metrics obtained by Bayesian estimation showed no significant

differences between sites (Kruskal-Wallis test, p , 1.00 for all

contrasts). d15N ranges (dNR) showed the highest values in the

Western Mediterranean shallowest site (W-1200, dNR = 7.42%),

while in the other sites they ranged from 5.43%to 7.04%.

Ranges of d13C (dCR) for benthic megafauna were comparable

between sites, with all Bayesian ellipses contained between values

of 219% and 216.5%. Values of dCR ranged from 3.15% to

7.85% across the whole Mediterranean Sea. By contrast, the

absolute values of d15N were lower in the Eastern basin (3.42% –

10.26%) than in the other basins (Western basin was 7.00% –

12.95%, Central was 4.03% –19.87%). Values of the mean

centroid distance (CD) were always higher in the deepest sites than

in the slope sites, suggesting an increase of the distance of species

niches with increasing depth. This can be related to the difference

in the TA, which, in the central basin, was the highest of the

dataset.

The area of Bayesian isotopic ellipses did not show any

appreciable pattern with depth and basin, although when

considering fish alone, areas were the lowest in the shallowest

sites of each basin (i.e. at 1200 m depth, see Figure S1). The same

is true for the traditional equivalent, the total convex hull area

(TA). As these values did not include a variance expression,

statistical testing was not possible; however, we can consider TA

Table 1. Isotopic parameters for pelagic and benthic compartments.

WM-1200 WM-2000 WM-3000 CM-1200 CM-2000 CM-3000 EM-1200 EM-2000 EM-3000

Plankton

Microplankton d13C 222.93
60.41

222.44
60.40

220.45
60.38

222.41
60.39

222.04 223.06
60.03

221.92
60.44

222.48
60.42

222.55
60.27

Microplankton d15N 3.31
60.62

3.59
60.56

4.21
60.57

3.44
60.26

3.34 2.136

0.50
0.85
60.20

0.74
60.71

1.49
60.08

Mesozooplankton d13C 221.96
60.38

221.96
60.36

221.19
60.39

221.54
60.09

222.0160.07 222.24
60.43

222.16
60.44

221.74
60.46

221.91
60.27

Mesozooplankton d15N 4.44
60.57

4.56
60.14

5.37
60.56

5.21
60.15

4.0160.04 3.16
60.42

2.016

0.08
2.37
60.01

1.84
60.04

DSL Macroplankton d13C 221.16
60.67

219.88
61.99

220.52
60.88

DSL Macroplankton d15N 5.63
61.63

5.81
60.93

3.21
60.62

Community metrics

d15N range (dNR) 7.42 6.33 6.13 6.68 7.04 5.98 5.43 6.21 4.94

d13C range (dCR) 6.13 7.85 3.83 3.28 4.55 4.94 3.15 3.86 2.03

Total hull area (TA) 24.79 35.87 12.84 12.87 22.95 20.83 8.47 15.71 3.90

Mean distance to centroid (CD) 1.52 1.78 1.60 1.45 2.02 2.28 1.55 1.83 1.19

Mean nearest neighbour distance (NND)0.43 0.44 034 0.35 0.50 0.72 0.32 0.48 0.86

Isotopic ratios (mean 6 S.D.) for carbon and nitrogen in microplankton, mesozooplankton, and macroplankton of the deep scattering layer (DSL, available only by basin)
and values of calculated community metrics in the 3 zones of the Mediterranean Sea (Western, Central, and Eastern basins) at 3 different depths.
doi:10.1371/journal.pone.0063796.t001
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and the area of Bayesian ellipses to convey the same ecological

meaning.

Pearson correlation tests yielded no significant relationships

between SEA ellipse areas of each depth and locality and any

environmental variable. The total hull area of the assemblages

(TA) and the range of dCR of each depth and site were positively

correlated with both surface microplankton biomass (TA:

R2 = 0.55, p = 0.02. dCR: R2 = 0.58 and p = 0.01; Figure 3) and

surface fluorescence (TA: R2 = 0.49, p = 0.03; dCR: R2 = 0.57,

p = 0.01; Figure 3).

Discussion

The Mediterranean Sea presents a distinct environment in each

of its three basins, which renders it particularly interesting to test

ecological hypotheses across environmental gradients [11,12]. The

continental slope areas in the Mediterranean are considered

oceanographically dynamic, influenced by local-scale surface

events such as river input and coastal atmospheric events

[14,39]. By contrast, the deepest areas considered in the present

study (2000–3000 m depth) are subject to a considerably lower

nutrient input and are thus more oligotrophic [13,40]. This factor,

Figure 2. Isotopic biplots for the deep Mediterranean Sea. Mean d13C and d15N values for megafauna and plankton components in the 3
basins of the Mediterranean Sea at 3 different depths. Isotopic ellipses for each site are drawn separately for fishes (green) and crustaceans (brown) of
benthic megafauna. Colour codes for points: yellow – microplankton, red – mesozooplankton, green – mesopelagic macroplankton, grey – demersal
megafauna.
doi:10.1371/journal.pone.0063796.g002
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coupled with the longitudinal gradient, leads to two axes of food

availability, which have been addressed here.

The collected megafauna was a fair representation of the

majority of the species in the deep Mediterranean Sea, both in

terms of species and densities. The number of specimens analysed

in each site was proportional to the decreasing gradient of

megafaunal density found in the Mediterranean along both depth

and west-to-east axes [15,18]. The species analysed included

nektobenthic fishes (such as Macrourids and Morids), species that

perform vertical benthic-pelagic migrations (e.g. the shrimps

Acanthephyra spp. and Aristeus antennatus, and various components

of macroplankton such as myctophids and gonostomatiids) and

less-mobile and sessile species, which are strictly connected to the

sea floor (i.e. the reptantian crustaceans and non-crustacean

invertebrates). Thus, the deep community analysed here can be

considered an image of the benthic domain and of the overlying

nektobenthic compartment.

The species that perform wide-ranging vertical migrations in the

water column (i.e. the benthopelagic fishes and decapod crusta-

ceans) play a major role in the downward benthopelagic coupling: the

transfer processes from the pelagic domain to the benthos, and the

responses of the latter [41]. As stated above, megafauna

assemblages of the deep Mediterranean Sea primarily consist of

nektobenthic and benthopelagic species, mainly fishes and

decapod crustaceans [42]. Strictly benthic species (such as many

molluscs and other low-motility non-crustacean invertebrates) are

speciose but not abundant in the deep Mediterranean [15,43].

The predominance of benthopelagic species may enhance levels of

carbon transfer along the water column and towards the deep

seafloor, with respect to the outer Atlantic and, thus, strengthen

the downward coupling. In addition, the presence of nektobenthic

species also increases the quantity of carbon laterally transported

from the adjacent deep seafloor [44].

Deep benthic systems in the Mediterranean Sea are mainly

linked to surface productivity, both primary and secondary, and to

mesopelagic processes [18,45]. In deep-basin areas, the main input

of nutrients is performed by direct vertical sinking of organic

carbon, while, on continental slopes, lateral advection and riverine

input processes can also contribute significantly to the quantity of

carbon reaching the seafloor [46]. In all sites examined in the

present study, the isotopic positions of planktonic components (i.e.

microplankton, mesozooplankton, and deep macroplankton) were

evidently connected. This indicates a strong link, both in carbon

sourcing and feeding relations, between the water-column domain

and the demersal compartment. Furthermore, the positioning of

the deep-layer macroplankton between surface and benthic

components indicates a direct participation of this mesopelagic

assemblage in the vertical organic matter sinking.

The microplankton fraction, as sampled in this study, is

constituted by both phytoplankton and zooplankton species [37].

The amplitude of benthic community niche and the spectrum of

carbon sources were positively correlated with both microplankton

biomass and surface fluorescence, the latter being an indicator of

primary production. Phytodetritus arrival at the deep sea plays a

major role in well-studied areas of the northeast Atlantic Ocean

[47,48] or the Pacific Ocean [49,50], where deposit feeders (such

as holothurians which primarily feed on phytodetritus) dominate

the benthic community. In the deep Mediterranean Sea,

megafauna has been observed ignoring patches of phytodetritus

that were experimentally delivered to the seafloor [51]. It is thus

not clear how the highly-mobile benthic megafauna in the

Mediterranean are adapted to process the phytodetritus input

from the surface. In our case, the diversity of basal resources

(estimated by the d13C range, dCR) varied between depths and

basins relative to the levels of primary and secondary surface

productions. This may reflect slightly different sources of organic

matter from the surface, generating a wider spectrum of types of

carbon reaching the deep seafloor and, consequently, a wider

niche space to be filled.

Two distinct carbon pathways were observed especially in the

Western basin (see Figure 2). The more carbon-light pathway

consists mainly of benthopelagic species (i.e. the smooth-head

Alepocephalus rostratus), exploiting suprabenthos and gelatinous

plankton, especially the jellyfish Pelagia noctiluca [21]. The other

pathway comprises demersal species and includes all macrourid

fish and benthic crustaceans. This suggests a split of the deep

benthic food-web at the suprabenthic level, with a benthic detritus-

based chain and a more pelagic-linked one. This phenomenon has

been observed also in the deep Pacific Ocean [52]. It seems that A.

rostratus is not constrained to feeding in the benthic food web but

rather it is short-circuiting the bentho-pelagic coupling, feeding

directly on plankton migrating from the water column. High

quantities of gelatinous plankton that reach the lower slope [53]

may be the reason for the dominance of A. rostratus in the demersal

Figure 3. Surface modulation of deep trophic dynamics.
Scatterplots showing the correlation between surface microplankton
biomass (A) and surface productivity (B, estimated by fluorescence)
against benthic trophic parameters: community niche width (TA, filled
circles) and food sources diversity (dCR, open circles).
doi:10.1371/journal.pone.0063796.g003
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community between 1200 and 1350 m depth, in the western

Mediterranean basin.

Also noteworthy are the high levels of carbon isotope

enrichment with shifts to more positive values in the benthic

megafauna with respect to basal components (i.e. surface

zooplankton and mesopelagic macroplankton). The enrichment

per trophic level stands on the higher end of the ranges usually

considered in the literature [54]. An explanation of this

phenomenon might be that, as particulate organic matter (POM)

sinks in the water column, pelagic components and bacteria

perform a metabolic degradation that shifts the carbon isotopic

ratio to heavier levels [55]. If this is the case, then it would be

accentuated by the high and constant water temperatures found in

the Mediterranean Sea below 200 m depth (13–14uC), which

increase the levels of prokaryotic degradation of organic matter

[56]. This enrichment was not found in other studies in the deep

Mediterranean [51,57]. In our dataset, C:N values for fishes were

generally low, thus also suggesting an increased utilization of

isotopically-light compounds such as fatty acids, e.g. for repro-

duction.

The isotopic bi-space did not show any particular pattern over

depth and longitude, neither with fishes nor with crustaceans.

These results confirm the complexity of the food webs of the deep

benthonic and supra-benthonic communities, and that these are

not only strictly dependent by vertical detritus input. It is still a

matter of speculation whether the changing trophic conditions

over large geographic scales may modulate the response of the

whole deep-sea benthic communities. In a study conducted at the

Porcupine Abyssal Plain in the deep Atlantic ocean, it is explained

that competition may be reduced by either increasing niche

specialization or by vertically expanding the trophic structuring

[4]. In the case of the Mediterranean Sea, it remains to be proven

whether the increase in generalist trophic habits of the benthos

would help to reduce competition for resources.

Conclusions
Deep-sea ecosystem structure and functioning have been related

to seasonality, mainly determined by intra-annual variations of

surface primary productivity and climate-driven atmospheric

events. This is the first study to directly address the patterns of

niche width in the deep-sea benthos over such a large spatial scale.

We conclude that (i) no clear pattern of trophic niches can be

observed over large spatial scales for the deep Mediterranean

megabenthos, and (ii) both surface primary and secondary

productions clearly modulate the trophic niche width and the

amplitude of primary carbon sources in the deep Mediterranean

megabenthos.
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