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Abstract   27 

Thyroid hormones regulate adipogenic differentiation, lipogenic and lipolytic metabolism and 28 

mitochondrial activity in adipose tissue. T3 levels in tissues are regulated by the deiodinase 29 

enzymes.  30 

Objective: To study the activity and mRNA expression of the 5’ outer-ring deiodinases (D1 31 

and D2) and thyroid hormone concentrations in rat white adipose tissue (WAT), where only 32 

D1 activity had been described.  33 

Methods: Control, thyroidectomized and thyroid hormone treated rats were used. D1 and D2 34 

mRNA were determined in WAT by qRT-PCR using Taqman probes, D1 and D2 activities 35 

were determined using rT3 and T4 as substrates. T4 and T3 were measured by 36 

radioimmunoassay in plasma, liver and adipose tissue. 37 

Results: D1 and D2 mRNAs are present in epididymal rat WAT with similar abundance, 38 

which are 7% of the D2 mRNA levels in BAT and 1% that of D1 in liver. The Kms in WAT 39 

are 40 nM T4 for D2 and 0.35 µM rT3 for D1. Both D1 and D2 are regulated in rat 40 

epididymal WAT by thyroidal status. T4 and T3 concentrations in plasma, liver and WAT 41 

decreased after thyroidectomy (Tx) and recovered after treatment with T4+T3. Both D1 and 42 

D2 mRNA increased in WAT from Tx rats and T4+T3 treatment inhibited them, especially 43 

D2 mRNA. D1 activity did not changed with thyroidal status, while D2 activity was inhibited 44 

by T4+T3.  45 

Conclusions: the presence of both deiodinases in WAT suggests important roles in regulating 46 

T3 bioavailability for adipose tissue function and regulation of lipid metabolism and 47 

thermogenesis. 48 

 49 
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List of abbreviations: 52 

BAT: brown adipose tissue; D1: type1 deiodinase; D2: type 2 deiodinase; D3: type3 53 

deiodinase; DTT: dithiothreitol; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; 54 

Km: Michaelis-Menten constant; PCR: polymerase chain reaction; PTU: 6-propyl-2-55 

thiouracil; qRT-PCR: quantitative Real-time PCR; rT3: reverse triiodothyronine; T3: 56 

triiodothyronine; T4: thyroxine; Tx: thyroidectomized; UCP1: uncoupling protein 1; Vmax: 57 

maximal velocity; WAT: white adipose tissue. 58 
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Introduction   64 

Deiodinases are selenoenzymes that regulate thyroid hormone concentrations in tissues. 65 

Two isoenzymes, D1 and D2, catalyze 5’deiodination producing T3 from T4. D1 is present in 66 

liver, kidney and thyroid. D1 Km is 0.2-0.5 µM [1], is inhibited by PTU, increases in 67 

hyperthyroidism and decreases in hypothyroidism, except thyroid D1 which increases in 68 

hypothyroidism, by thyrotropin stimulation [2]. D2 is present in pituitary, brain, BAT and 69 

other tissues, is not inhibited by PTU, its Km in nanomolar range. D2 increases in 70 

hypothyroidism and produces T3 for local needs. D3, the main T3 degradation pathway, 71 

catalyzes inner ring deiodination of T4 and T3, leading to inactive metabolites. 72 

D2 is essential for the regulation of T3 availability during specific events of development, 73 

in the ear, retina, brain or BAT. T3 is required for the differentiation program of adipocytes 74 

[3], regulating the expression of genes involved in the differentiation and metabolism of 75 

adipose tissue. Most studies demonstrating the importance of deiodinases, specifically D2, 76 

have been performed in BAT, where T3, locally produced by D2, is important for full 77 

thermogenesis, UCP1 expression and lipogenesis [4-7]. So far, no studies have been 78 

performed on D1 or D2 abundance in WAT, its hormonal regulation or potential role in 79 

different metabolic processes, though D1 activity in WAT was found when D2 was reported 80 

in BAT [8]. Some studies have shown induction of brown adipocytes in inguinal WAT 81 

depots, using UCP1 and D2 as markers [9, 10]. In this respect epididymal WAT is considered 82 

“pure” WAT, never converted into BAT even under extreme cold exposure, as opposed to 83 

inguinal WAT considered “convertible” adipose tissue [11]. In humans, WAT represents 15-84 

20% of the body weight in lean subjects and this percentage is much higher in obese people 85 

(50%). Thus, WAT might represent one of the largest pools of thyroid hormones.  In addition, 86 

if WAT can be converted into BAT (inducing UCP1), WAT represents a potential therapeutic 87 
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target to increase energy expenditure in obesity. Here we studied the presence and regulation 88 

by thyroid status of D1 and D2 activities and mRNA levels in rat WAT. 89 

 90 

Materials and Methods  91 

Animals and treatments 92 

Protocols following the European Community guidelines were approved by our ethic 93 

Committee. Male Wistar rats were divided in 3 groups: Control, Tx and Tx rats treated with 94 

T4+T3 (2.4 µg T4+0.4 µg T3/day/100 g body weight) as described [12]. Plasma and organs 95 

were dissected out and frozen on dry ice. Epididymal WAT was carefully dissected avoiding 96 

the reproductive male organs.  97 

Analytical procedures 98 

Determination of D1 and D2 activities. D1 and D2 activities were assayed in WAT 99 

homogenates (1:8, weight/volume) using 0.32 M sucrose, 10 mM Hepes and 10 mM DTT. 100 

Homogenates were centrifuged 5 minutes at 1000 rpm to separate the upper lipid cake, the 101 

infranatant was used to measure deiodinase activities.  102 

D1 activity: 60.000 cpm [
125

I]-rT3/sample, 100 nM rT3 and 5 mM DTT, for 1 h at 37 C 103 

using 20-30 µg protein/ 100 µl [13]. D2 activity: 100.000 cpm [
125

I]-T4/tube, 2 nM T4+ 1 104 

µM T3, 20 mM DTT and 1 mM PTU/100 µl, using the same conditions and protein [14]. For 105 

kinetic analysis: 2-500 nM rT3 and 5 mM DTT were used for D1 and 1-50 nM T4 and 20 106 

mM DTT for D2. 107 

D1 and D2 mRNA 108 

Total RNA was extracted using the RNeasy lipid tissue (Quiagen). D1 and D2 mRNAs 109 

were measured by qRT-PCR, using Taqman probes (Rn00572183m1, Rn00581867m1, 110 

Applied Biosystems). After normalization to 18S rRNA, the fold-change in mRNA 111 

expression was calculated by the 2
-Ct

 method. 112 
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Determination of thyroid hormone concentrations.  113 

Thyroid hormone concentrations were determined by RIA in plasma, liver and WAT, after 114 

extraction and purificatio [15]. High specific activity T4, rT3 and T3 labelled with [
125

I] were 115 

synthesized as described [15]. 116 

Statistical analysis 117 

Mean values (±SEM) are given. Significant differences were achieved by one-way 118 

ANOVA analysis.119 

 120 

Results  121 

Presence and characterization of D1 and D2 in epididymal rat WAT 122 

We first identified D1 in WAT, using PCR amplification and gel separation (not shown). 123 

Then, we did tritation curves using qRT-PCR using Taqman probes (Figure 1A), confirming 124 

that D1 and D2 mRNA were present in rat epididymal WAT being D2 mRNA abundance 125 

higher than D1 mRNA (approx. double). WAT D1 mRNA abundance was less than 1% of 126 

liver D1 and WAT D2 mRNA abundance was about 7% of BAT D2 (Figure 1B, 1C).  127 

We then analyzed D1 and D2 activities in WAT. First, the kinetic characteristics were 128 

determined; for D2: Km=40 nM T4 and Vmax= 3 pmol/h/mg protein and for D1: Km= 0.35 129 

µM rT3 and Vmax= 6-18 pmol/h/mg protein (C and Tx rats, respectively). D1 activity was 130 

higher in perirenal WAT; D2 activitiy was similar in perirenal and epididymal WAT and 131 

lower in subcutaneous WAT (results not shown). 132 

Regulation of D1 and D2 in rat WAT by thyroid status 133 

Deiodinases are regulated by thyroid status in most tissues. To study this regulation we 134 

used control, Tx and T4+T3-treated rats. The thyroidal status was checked measuring T4 and 135 

T3 concentrations in plasma, liver and WAT. Figure 2 shows that T4 and T3 decreased after 136 

thyroidectomy in all samples. Treatment of Tx rats with T4+T3 reverted T4 to control values 137 
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in plasma and liver, while WAT T4 doubled the values in control rats, pointing to a 138 

preferential T4 uptake in WAT. The treatment also increased T3 in all cases, reaching control 139 

values in WAT and plasma, while liver T3 concentrations did not fully recovered. 140 

D1 and D2 mRNA increased in WAT from Tx rats (Figure 1D, 1E), and T4+T3 treatment 141 

inhibited them to control values for D1, and to less than 50% of control values for D2 mRNA. 142 

Opposite to the mRNA responses no variation was observed in D1 and D2 activities, except 143 

for D2 activity that was inhibited in the T4+T3 group. 144 

 145 

Discussion  146 

D1 activity was identified in WAT in 1983 together with D2 activity in BAT [8], 147 

establishing clear differences between BAT and WAT. Then, a full UCP1 expression was 148 

associated to T3 produced by D2 in BAT [4] and this was recently confirmed in the D2 149 

knockout mice [7].  150 

Herein, we describe that D2 is also present in WAT, both at mRNA and activity levels. We 151 

used epididymal WAT, the purest of all WAT locations, never converted into BAT under cold 152 

exposure; in contrast, inguinal fat, is considered “convertible” adipose tissue, that is 153 

transformed into BAT under several stimuli [11, 16]. Other WAT locations (perirenal, 154 

periuterine) are considered a mix of BAT and WAT in terms of UCP1 induction [17]. UCP1 155 

levels in epidydimal WAT are near detection limits by qRT-PCR and less than 5% those in 156 

inguinal WAT (unpublished). Therefore it is unlikely that D2 could come from residual BAT 157 

cells present in epidydimal WAT. 158 

Despite the 1983 report, WAT D1 had not been further studied, possibly because lipids 159 

cause technical difficulties, which we solved by improving the RNA isolation using a specific 160 

kit to avoid lipids and specific Taqman probes. Regarding D1 and D2 activities, we 161 
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characterized them in terms of their kinetic characteristics which were in the same ranges as 162 

in other tissues [1].  163 

Thyroid status, a main regulator of deiodinases, was studied in this work. Both deiodinases 164 

mRNAs were up-regulated in hypothyroidism. WAT D2 increased as expected in 165 

hypothyroidism. WAT D1 also  increased, responding to hypothyroidism as thyroid D1 [2]. 166 

Regarding deiodinase activities, WAT D2 followed a pattern similar to D2 mRNA, as it 167 

tended to increase in hypothyroidism and decreased in T4+T3-treated rats, reflecting the high 168 

WAT T4 concentrations. We showed recently increased D2 mRNA in parallel to D2 activity 169 

levels in human subcutaneous fat [18]. D1 activity did not changed among groups in our 170 

study. Other studies have shown discrepancies between D1 and/or D2 mRNA and activity 171 

levels [19], probably due to posttranscriptional modifications. 172 

Recently, D1 activity in WAT was related to adiposity, increasing by high-fat diets and by 173 

leptin, and decreasing under caloric restriction [20]. Other possible regulators (hormones, 174 

nutrients) remain to be identified, as we have only explored the role of thyroid hormones. D1 175 

and D2 may have distinct functions in WAT, regulating lipogenesis and lipolysis or the 176 

expression of genes and providing the T3 required for specific functions, including the 177 

conversion of WAT into BAT under specific conditions, which would increase energy 178 

expenditure. Each enzyme may have specific functions.  179 

Conclusions 180 

D1 and D2 activities and mRNAs are present in rat WAT. Thyroidal status regulates D1 181 

and D2 mRNA in vivo, both increasing in hypothyroid rats. No changes are found in 182 

deiodinase activities, except for the D2 inhibition by T4+T3.  183 
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Legends to Figures  194 

 195 

Figure 1. Ct values for 18S rRNA, D1 and D2 mRNAs from epididymal rat WAT (panel 196 

A). Relative expression of D1 (panel B) and D2 mRNAs (panel C) versus liver D1 and BAT 197 

D2 mRNAs, respectively. Panels D to G show D1 and D2 mRNAs and activities in WAT 198 

from control (C), thyroidectomized (Tx) and T4+T3 treated thyroidectomized rats. Values 199 

are means ± SEM. * P<0.05 vs C, # P<0.05 vs Tx. (n=4-5/ group). 200 

  201 

Figure 2. T4 and T3 concentrations in plasma, liver and epididymal WAT from control 202 

(C), thyroidectomized (Tx) and T4+T3 treated thyroidectomized rats. Values are means ± 203 

SEM. *P<0.05 vs C, #P<0.05 vs Tx. (n=4-5 /group) 204 

 205 

206 
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