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Abstract

Climatic and environmental shifts have had profound impacts on faunal and floral assemblages globally since the end of the
Miocene. We explore the regional expression of these fluctuations in southwestern Europe by constructing long-term
records (from ,11.1 to 0.8 Ma, late Miocene–middle Pleistocene) of carbon and oxygen isotope variations in tooth enamel
of different large herbivorous mammals from Spain. Isotopic differences among taxa illuminate differences in ecological
niches. The d13C values (relative to VPDB, mean 210.361.1%; range 213.0 to 27.4%) are consistent with consumption of
C3 vegetation; C4 plants did not contribute significantly to the diets of the selected taxa. When averaged by time interval to
examine secular trends, d13C values increase at ,9.5 Ma (MN9–MN10), probably related to the Middle Vallesian Crisis when
there was a replacement of vegetation adapted to more humid conditions by vegetation adapted to drier and more
seasonal conditions, and resulting in the disappearance of forested mammalian fauna. The mean d13C value drops
significantly at ,4.223.7 Ma (MN14–MN15) during the Pliocene Warm Period, which brought more humid conditions to
Europe, and returns to higher d13C values from ,2.6 Ma onwards (MN16), most likely reflecting more arid conditions as a
consequence of the onset of the Northern Hemisphere glaciation. The most notable feature in oxygen isotope records (and
mean annual temperature reconstructed from these records) is a gradual drop between MN13 and the middle Pleistocene
(,6.320.8 Ma) most likely due to cooling associated with Northern Hemisphere glaciation.
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Introduction

Profound paleoenvironmental and paleoclimatic events in the

late Cenozoic affected life on Earth and gave rise to modern

climate regimes and biomes. Progressive cooling, which began in

the middle Miocene (14-13.8 Ma), ultimately led to the onset of

Northern Hemisphere glaciation ,2.7 Ma [1–3]. This cooling

was not monotonic, however. For example, reorganized ocean

circulation, perhaps associated with initial restriction of circulation

between the Pacific and Atlantic, contributed to the Pliocene

Warm Period between ,4.7 and 3.1 Ma [4]. Shifts in temperature

and ocean circulation were associated with shifts in the global

water budget, though impacts varied by region. Furthermore,

terrestrial environments were transformed from the end of the

Miocene to the beginning of the Pliocene (,8-3 Ma) by the

worldwide expansion of C4 plants [5–6]. C4 plants evolved

repeatedly from C3 plants, most likely as a response to low

atmospheric pCO2, higher temperatures and increasing water-

stress [7].

In southern Europe, our focus here, tectonic closure of the

Mediterranean Basin reduced circulation from the Atlantic, likely

exascerbated by a drop in sea level associated with increased

Antarctic ice volume, culminating with the formation of thick

evaporite deposits (Messinian Salinity Crisis or MSC) between

,6.0 and 5.3 Ma [8–9].

As one of the few locations in southern Europe with a relatively

complete (albeit low resolution) late Cenozoic stratigraphic

succession, a number of recent investigations have reconstructed

regional paleoclimatic and paleoenvironmental conditions on the

Iberian Peninsula. Based on the bioclimatic analysis of Plio-

Pleistocene fossil rodent assemblages, Hernández Fernández et al.

[10] argued there was a cooling trend, from subtropical

temperatures in the early Pliocene to temperate conditions for
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the rest of the studied period. Study of palynological records from

different Iberian sections led Jiménez-Moreno et al. [11] to suggest

that warm temperatures of the Early to Middle Miocene gave way

to progressively cooler temperatures in the remainder of Miocene

and Pliocene. By the end of the Pliocene and beginning of the

Pleistocene, the Iberian palynological record showed the develop-

ment of steppes, coincident with cooler and drier conditions at the

start of glacial-interglacial cycles in the Northern Hemisphere.

Van Dam [12] investigated precipitation rates in the Iberian

Peninsula using micro-mammal community structure. The most

striking features are a decrease of mean annual precipitation

(MAP) in the beginning of the Late Miocene (,1128.5 Ma), an

increase in MAP in the middle part of the Late Miocene

(,8.526.5 Ma) and a drop in MAP between the end of the Late

Miocene and the Late Pliocene (,6.523 Ma). Böhme et al. [13]

reconstructed MAP using herpetological assemblages between the

end of the Early Miocene and the Early Pliocene in the Calatayud-

Daroca Basin. Their MAP record differed from that of van Dam

[12], with an increase in MAP at the beginning of the Late

Miocene (,1129.7 Ma), a sharp decrease at , 9.7 Ma, a

progressive increase in MAP up to the middle Late Miocene

(,8.3 Ma) and a gradual decrease until the beginning of the

Pliocene (,5.4 Ma).

Mammalian tooth enamel is a reliable source of isotopic data

that can be used to explore past environmental and climatic

changes. Here, the stable carbon and oxygen isotope compositions

of fossil tooth enamel from different genera of herbivorous

mammals spanning from late Miocene to middle Pleistocene

(,11.1-0.8 Ma) were analyzed. Our objectives are twofold: 1) to

infer the paleoecology of the selected taxa over the study interval,

and 2) to reconstruct paleoenvironmental and paleoclimatic trends

in Iberia from the late Miocene to the middle Pleistocene.

Materials and Methods

The Iberian Cenozoic basins (Fig. 1) were formed as a

consequence of Alpine compression between the African and

Eurasian tectonic plates [14–15]. Most of the basins are located on

basement comprising Precambrian and Paleozoic metasediments

or granitoids and Mesozoic detrital and carbonate rocks. These

basins constitute 40% of the total surface area of the Iberian

Peninsula and they offer a complete sedimentary record that spans

most of the Cenozoic. Most fossil sites selected for this study (La

Roma 2, Ması́a de la Roma 604B, Puente Minero, Los Mansuetos,

Cerro de la Garita, El Arquillo 1, Las Casiones, Milagros, La

Gloria 4) are in the Teruel Basin in the northeastern Iberian

Peninsula. The name, age and taxonomic composition for

localities in the Teruel Basin and other Neogene and Quaternary

sites are supplied in Table 1.

The stable carbon and oxygen isotope composition of tooth

enamel was analyzed for proboscideans, suids, giraffids, cervids,

bovids, and equids from 18 localities from the Iberian Peninsula

spanning from 11.1 to 0.8 Ma (late Miocene-middle Pleistocene)

(Table S1). Chronological ages of the studied localities are from

Domingo et al. ([16] and unpublished data). Although ages are

assigned for each fossil site, the MN (Mammal Neogene)

biochronology is used in order to allow comparisons among

localities [17–21]. Since all the basins studied here belong to the

same biogeographic province [22], the use of the MN units to

aggregate fossil sites is assumed to be an appropiate approach,

despite the fact that the Mammal Neogene biochronological

system has been challenged as a true biozonation at larger scales

[22–24].

Tooth enamel was sampled using a rotary drill with a diamond-

tipped dental burr. Fossil teeth for this study are housed in the

Museo Nacional de Ciencias Naturales-CSIC (Madrid, Spain) and

Fundación Conjunto Paleontológico de Teruel-Dinópolis (Teruel,

Spain), after being recovered in excavations carried out with

public funding. Sampling was performed with the permission of

both institutions.

Measurement of d13C values of fossil tooth enamel allows for

characterization of the diet of extinct taxa, providing a means to

reconstruct past landscapes and habitats [25–31]. For herbivorous

mammals, the d13C value of tooth enamel (d13Cenamel) has a direct

relationship to the d13C value of the diet (d13Cdiet), which varies

depending on plant photosynthetic pathways (C3, C4, CAM), as

well as ecological factors (aridity, canopy density, etc.) that affect

fractionation during photosynthesis [32–33]. The d18O values in

the carbonate and phosphate fractions of mammalian tooth

enamel record the d18O value of body water (d18Obw), which in

turn is a reflection of oxygen uptake (inspired O2 and water vapor,

drinking water, dietary water, oxygen in food dry matter) and loss

(excreted water and solids, expired CO2, and water vapor) during

tooth development [34–35]. Carbon and oxygen isotope results

are reported in d-notation dHXsample = [(Rsample–Rstandard)/Rstan-

dard]61000, where X is the element, H is the mass of the rare,

heavy isotope, and R = 13C/12C or 18O/16O. Vienna Pee Dee

Belemnite (VPDB) is the standard for d13C values, and d18O

values are reported relative to Vienna Standard Mean Ocean

Water (VSMOW).

Tooth enamel samples (n = 149) were analyzed for the carbon

and oxygen isotope composition of carbonate in bioapatite (d13C

and d18OCO3, respectively). Carbonate analyses were conducted at

the stable isotope laboratories of the University of California Santa

Cruz using a ThermoScientific MAT253 dual inlet isotope ratio

mass spectrometer coupled to a ThermoScientific Kiel IV

carbonate device and of the University of Minnesota using a

ThermoScientific MAT252 dual inlet isotope ratio mass spec-

trometer coupled to a ThermoScientific Kiel II carbonate device.

Approximately 5–6 mg of tooth enamel were sampled and treated

with 30% H2O2 for 24 h. Samples were rinsed 5 times in

deionized (DI) water and soaked for 24 h in 1 M acetic acid

buffered to ,pH 5 using Ca acetate solution. After 5 rinses with

Figure 1. Situation of the studied fossil sites. Cenozoic basins
of the Iberian Peninsula (dark grey) and situation of the basins where
the fossil sites are located. 1–Teruel Basin, 2–Duero Basin, 3–Calatayud-
Daroca Basin, 4–Cabriel Basin, 5–Tajo Basin, 6–Guadix-Baza Basin,
7–Sarrión-Mijares Basin.
doi:10.1371/journal.pone.0063739.g001
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DI water, the resulting solid was freeze-dried at 240uC and at a

pressure of 2561023 Mbar for 24 h. The standards used were

Elephant Enamel Standard (EES, d13C = 27.8% and d18O =

1.6%), Carrara Marble (CM, d13C = 1.97% and d18O = 21.61%),

NBS218 (d13C = 25.03% and d18O = 223.01%) and NBS-19

(d13C = 1.95% and d18O = 22.20%). The standard deviations for

repeated measurements of EES (n = 5), CM (n = 18), NBS-18

(n = 11) and NBS-19 (n = 6) were 0.06%, 0.03%, 0.04% and

0.08% for d13C, respectively, and 0.19%, 0.10%, 0.05% and

0.08% for d18O, respectively. Duplicate analyses were carried out

for ,10% of the samples (n = 15). The average absolute

differences for d13C and d18OCO3 values were 0.04% and

0.38%, respectively, and the standard deviations of these average

differences were 0.15% and 0.29% for d13C and d18OCO3 values,

respectively.

The d18O values of phosphate in bioapatite (d18OPO4) were

measured on 149 enamel samples. Analyses were performed at the

stable isotope laboratories of the University of California Santa

Cruz using a ThermoFinnigan Delta plus XP IRMS coupled to a

ThermoFinnigan High Temperature Conversion Elemental An-

alyzer (TCEA) and of the University of Kansas using a Thermo

Finnigan MAT 253 IRMS coupled to a ThermoFinnigan TCEA.

The chemical treatment is described in ONeil et al. [36] and

Bassett et al. [37]. Between 1.5 and 2 mg of tooth enamel were

recovered and dissolved in 100 ml of 0.5 M HNO3. 75 ml of 0.5 M

KOH and 200 ml of 0.36 M KF were added to neutralize the

solution and to precipitate CaF2 and other fluorides, respectively.

Samples were then centrifuged and after removing the resulting

solid, 250 ml of silver amine solution (0.2 M AgNO3, 0.35 M

NH4NO3, 0.74 M NH4OH) was added and the samples were

maintained at 50uC overnight to precipitate Ag3PO4. The

resulting Ag3PO4 crystals were recovered by centrifugation and

rinsing with DI water (5 times), after which vials were placed in an

oven overnight at 50uC. The standards used were Fisher standard

(d18O = 8.4%), Ellen Gray-UCSC High standard (d18O = 19.0%),

Kodak standard (d18O = 18.1%) and NIST 120c (d18O = 21.8%).

The standard deviations for repeated measurements of Fisher

Standard (n = 48), Ellen Gray-UCSC High standard (n = 16),

Kodak standard (n = 11) and NIST 120c (n = 15) were 0.5%,

0.4%, 0.7% and 0.4%, respectively. Duplicate d18OPO4 analyses

were carried out on , 30% of the samples. The average absolute

difference for d18OPO4 was 0.09% and the standard deviation of

this average difference was 0.23%.

To construct d13C, d18OCO3 and d18OPO4 temporal trends, we

have grouped our localities by MN and we calculated the weighted

mean of isotopic values according to the following equation:

XMN~ xa|nað Þz xb|nbð Þz:::ð Þ= naznbz:::ð Þ ð1Þ

where XMN is the mean isotopic value (d13C, d18OCO3, d18OPO4)

for each MN, xa and xb are mean isotopic values for taxa a and b,

and na and nb are the number of selected teeth for taxa a and b.

We opted to use the weighted mean since the number of analyzed

teeth differs among taxa and therefore, they do not contribute

equally to the final average. The application of the weighted mean

when constructing temporal trends allows to avoid biases due to

differences in physiological and ecological traits among taxa.

MAP was estimated following the work of Kohn [38] after a

modern equivalent of diet composition (d13Cdiet, meq) had been

calculated using the following equation:

d13Cdiet,meq~d13Cleaf z d13CmodernatmCO2{d13CancientatmCO2

� �
ð2Þ

where d13Cleaf =d
13Ctooth –14.1% [39], d13Cmodern atmCO2 is

28%, and d13Cancient atmCO2 is the mean d13CatmCO2 values

from Tipple et al. [40] considering the following time bins: late

Miocene, Pliocene and Pleistocene (Table S2).

The d18O value of the water (d18Ow) ingested by fossil mammals

was calculated using fossil mammal tooth enamel d18OPO4 values

and equations established for modern mammals (Table S3).

Equations were selected according to the closest living relative

of the fossil taxa assuming there were no significant differences

in the d18OPO4-d18Ow fractionation between modern and fossil

mammals.

Finally, we used a regression equation between MAT and

weighted d18Ow estimated using meteorological data included in

Rozanski et al. [41]:

MAT( Cu )~ d18Ow(VSMOW )z12:68
� �

=0:36 R2~0:72
� �

ð3Þ

Equation 3 was selected because it uses data from meteorolog-

ical stations worldwide, hence all existing climate regimes are

represented. Tectonic reorganization including the closure and

opening of sea gateways (e.g., closure of the Panama Isthmus and

the passage between the Indian Ocean and the Tethys, opening of

the Drake passage and Bering Strait), the uplift of mountain chains

(e.g., Himalaya, Andes, Alps) along with shifts in the orbital cycles

have exerted an important control on global ice volume and

distribution as have perturbations in the atmospheric CO2

concentration and, by extension, in the carbon cycle. These

factors have given rise to different climate regimes since the late

Miocene and have culminated in modern climate configuration. In

general, Cenozoic climates were globally warmer than at present

as corroborated by different proxies [1,42–44]. Warmer conditions

have also been recorded in Western Europe during the Miocene

and most of the Pliocene based on palynology, vertebrate fossils

and General Circulation Models [11,42,45–46] with the definitive

establishment of the Mediterranean climate regime at some point

between 3.4 and 2.5 Ma [10–11]. Hernández Fernández et al. [10]

and van Dam [12] highlighted the migration of the atmospheric

cells, with the subtropical high pressure belt (between the Ferrel

and Hadley cells) fluctuating since the late Miocene and

profoundly affecting the distribution of Iberian ecosystems. Biome

analyses carried out in the Iberian Peninsula between the Miocene

and Pleistocene based on macro- and micro-mammals assemblag-

es [10,47–48] detected a shift in biomes from tropical deciduous

woodland, savanna and subtropical desert during the Miocene and

Early Pliocene, to nemoral broadleaf deciduous forest for the Late

Pliocene, to the modern Mediterranean conditions characterized

by schlerophyllous woodland-shrubland since the end of the

Pliocene. Due to the different climate regimes and biomes that

existed in the Iberian Peninsula during the period under study (late

Miocene-middle Pleistocene), it is necessary to use a MAT-d18Ow

relationship that considers data from a wide range of climate

regimes and biomes.

Statistical analyses were performed using SPSS PASW Statistics

18.0 software. Analysis of covariance (ANCOVA) was used to

compare linear regressions. Analysis of variance (ANOVA) and

Student-t tests were used to detect significant differences in isotopic

data among taxa within MN intervals, whereas ANOVA and post-

hoc Tukeys analyses were used to analyze the variability of the

isotopic record among MNs.

Neogene-Quaternary Paleoenvironment in Spain
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Results and Discussion

Diagenesis
The potential for diagenetic alteration should be assessed before

accepting paleoecological or paleoenvironmental interpretations

based on stable isotope results from fossil bioapatite. Here, only

tooth enamel was analyzed, as it is the mineralized tissue least

likely to experience isotopic alteration during diagenesis [49].

Phosphate oxygen is more resistant to inorganic isotopic exchange

than carbonate oxygen, but carbonate oxygen is more resistant to

microbially-mediated exchange [50].

Modern, unaltered bioapatites exhibit a linear relationship

between d18OCO3 and d18OPO4 with a consistent difference

(d18OCO3 - d18OPO4 = ?18OCO3-PO4) of 8.6–9.1% for co-occurring

CO3
22 and PO4

23 formed in isotopic equilibrium with body

water at a constant temperature [51–53]. In this study, the mean

?18OCO3-PO4 was 8.261.3% (VSMOW), close to the expected

value. Figure 2 shows the d18OPO4-d18OCO3 regression from this

study. Zazzo et al. [50] suggested that the slope of the regression

line between d18OCO3 and d18OPO4 is close to 1 in modern

(unaltered) bioapatite. Slopes higher than unity suggest more

extensive alteration of d18OCO3 by inorganic mechanisms,

whereas slopes lower than unity indicate a higher degree of

microbially-mediated isotopic exchange of phosphate. Our slope is

close to unity, but slightly higher (1.07). This slope is not as high as

those observed by Zazzo et al. [50] in samples affected by intense

diagenesis (see their Fig. 4) and no significant differences were

detected by an ANCOVA test between our d18OPO4-d18OCO3

regression line and those proposed by Bryant et al. [52] and

Iacumin et al. [53] (F = 0.473, p = 0.874).

These results suggest that our samples have experienced

minimal isotopic alteration of either phosphate or carbonate

oxygen. There are no comparable tests for carbon isotopes, but the

fact that species cluster in bivariate isotope space, and that the

relative positions of these clusters are consistent for some taxa,

suggest that animal paleobiology, and not diagenesis, is the main

driver of isotopic variation.

Paleoecology of the Iberian Fossil Mammalian Taxa
In terrestrial settings, the dominant control on the d13C value of

plants is photosynthetic pathway [54–58]. Plants following the C3

or Calvin-Benson photosynthetic pathway (trees, shrubs, forbs and

cool-season grasses) strongly discriminate against 13C during

fixation of CO2, yielding tissues with d13C values averaging

227% (VPDB) (ranging from 236 and 222%). The most

negative d13C values of this range (236 to 230%) reflect closed-

canopy conditions due to recycling of 13C-depleted CO2 and low

irradiance. The highest values (225 to 222%) correspond to C3

plants from high light, arid, or water stressed environments. C4

plants (Hatch-Slack photosynthetic pathway) comprise grasses and

sedges from areas with a warm growing season and some arid-

adapted dicots. C4 plants discriminate less against 13C during

carbon fixation, yielding mean d13C value of 213% (ranging from

217% to 29%). Crassulacean acid metabolism (CAM) is the least

common pathway, occurring chiefly in succulent plants. CAM

plants exhibit d13C values that range between the values for C3

and C4 plants. Using the expected d13C ranges for C3 and C4

plants and a typical diet-to-enamel fractionation of +14.160.5%
[39], we can estimate the expected d13C values for pure C3 feeders

in different habitats (closed-canopy, 222 to 216%; woodland-

mesic C3 grassland, 216 to 211%; open woodland-xeric C3

grassland, 211 to 28%) and pure C4 feeders (23% to +5%).

Enamel d13C values between 28% and 23% represent mixed

C3–C4 diets. When considering fossil taxa, however, it is necessary

to account for shifts in the d13C value of atmospheric CO2 (the

source of plant carbon), including anthropogenic modification due

to fossil fuel burning, which has decreased the d13C value of

atmospheric CO2 from 26.5 to 28% since onset of the Industrial

Revolution [59–60]. Using isotopic data from marine foraminif-

era, Tipple et al. [40] reconstructed the d13C value of the

atmospheric CO2 since the Cretaceous. In order to calculate

vegetation d13C end-members, we considered the following time

bins: late Miocene, Pliocene and Pleistocene. Table 2 shows a

summary with d13CatmCO2 and d13C cut-off values for the

transition between diets composed of different types of vegetation

Figure 2. Regression line for mean d18OCO3 and d18OPO4 (%
VSMOW) values. Each point represents mean isotopic value for each
taxon per locality.
doi:10.1371/journal.pone.0063739.g002

Table 2. d13C of atmospheric CO2 (d13CatmCO2) and mammalian enamel d13C (d13Cenamel) cut-off values between different
environments in the late Miocene, Pliocene and Pleistocene.

Late Miocene Pliocene Pleistocene

d13CatmCO2 26.2 26.3 26.5

d13Cenamel closed canopy forest , 214.2 , 214.3 , 214.5

d13Cenamel woodland to woodland-mesic C3 grassland 214.2 to 29.2 214.3 to 29.3 214.5 to 29.5

d13Cenamel open woodland-xeric C3 grassland 29.2 to 26.2 29.3 to 26.3 29.5 to 26.5

d13Cenamel mixed C3–C4 grassland 26.2 to 21.2 26.3 to 21.3 26.5 to 21.5

d13Cenamel C4 grassland . 21.2 . 21.3 . 21.5

d13CatmCO2 values are from Tipple et al. [40], d13Cenamel have been calculated using a diet-to-enamel fractionation of 14.1% from Cerling & Harris [39]. All values are in %
VPDB.
doi:10.1371/journal.pone.0063739.t002
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for the late Miocene, the Pliocene and the Pleistocene. The

absolute cut-off d13C value between woodland-mesic C3 grassland

and open woodland-xeric C3 grassland is difficult to determine,

but our threshold values are in agreement with previous studies. In

this sense, Kohn et al. [61] suggested a threshold value of 29%
between woodland and more open conditions when investigating a

North American Pleistocene fossil site. Our C3 range also agrees

well with Feranec et al. [62] who proposed a range of pure C3 d
13C

values between 219.5% and 26.5%, in a study focused on a

Spanish Pleistocene fossil site. Matson et al. [63] compiled plant

d13C values from different types of modern ecosystems and our

cut-off d13C values for open woodland-xeric C3 grassland fit well

with d13C values for C3 trees, shrubs and grasses found mainly in

Mediterranean forest, woodland and scrub, tropical and subtrop-

ical dry broadleaf forest, and desert and xeric shrubland, therefore

pointing to some degree of aridity for that range of d13C values.

Figure 3 presents biplot d18OCO3- d13C graphs for each MN.

Table 3 shows mean isotopic values for each taxon and their

inferred dietary behaviour according to previous studies based on

tooth morphology, microwear and isotopes. The whole isotopic

dataset and statistical analyses are shown in Tables S1 and S4,

respectively.

Late Miocene (Cerro del Otero, MN7/8–Venta del Moro,
MN13)

Among Miocene proboscideans, Gomphotherium angustidens had

brachyo-bunodont dentition, suggesting a browsing behaviour,

which is in agreement with d13C values pointing to consumption of

woodland or woodland/C3 grassland vegetation. The gom-

phothere Tetralophodon longirostris replaced Gomphotherium angustidens.

Tetralophodon was larger and more hypsodont than Gomphotherium,

but also probably a browser [64]. Its d13C values shift from lower

values similar to Gomphotherium in older localities (Nombrevilla and

Los Valles de Fuentidueña, MN9) to ,0.5% higher values in

younger sites (Puente Minero, MN11 and Cerro de la Garita,

MN12). The mammutid Zygolophodon turicensis from the Cerro de la

Garita locality had a zygodont dentition with sharp, transverse

ridges and d13C values similar to those for the youngest

Tetralophodon. Overall, the slight trend of increasing d13C values

toward the end of the Miocene in these proboscideans points to

consumption of plants from increasingly open, drier habitats.

Since proboscideans are obligate drinkers [34,65], the difference in

d18OCO3 and d18OPO4 values likely reflects a change in the

isotopic composition of ingested d18Ow spatially or temporally. In

this case, Z. turicensis has the lowest isotopic values, with

intermediate values for T. longirostris and the highest values for

G. angustidens. This might be indicating differences in the source of

ingested water with G. angustidens drinking in more open settings

(Fig. 3, Table 3).

In the case of Miocene bovids, the boselaphine Tragoportax is the

best-represented genus. It had relatively long limbs suggesting

cursorial adaptations and preference for open habitats [64].

Microwear studies performed on the teeth of this bovid suggest it

was a mixed feeder with strong grazing habits [66–67]. This is

consistent with its d13C values, which are the highest for any taxon

in all the MNs in which Tragoportax occurs (Fig. 3), and in most

MNs are close to values expected for animals foraging in open

Figure 3. d18OCO3 (% VSMOW) versus d13C (% VPDB) for mammalian taxa in each MN and middle Pleistocene. Mean and standard
deviation values are provided. Dashed grey line indicates the cut-off d13C value between woodland-mesic C3 grassland and open woodland-xeric C3

grassland. CdO = Cerro del Otero, Nom1 = Nombrevilla 1, VdF = Los Valles de Fuentidueña, LR2 = La Roma 2, MR604B = Ması́a de la Roma 604B,
PM = Puente Minero, LM = Los Mansuetos, CG = Cerro de la Garita, Arq1 = El Arquillo 1, LC = Las Casiones, MIL = Milagros, VM = Venta del Moro,
LG4 = La Gloria 4, Lay = Layna, Hue3 = Huéscar 3, Hue = Huélago, PdV = La Puebla de Valverde, Hue1 = Huéscar 1. n is the number of sampled teeth.
doi:10.1371/journal.pone.0063739.g003
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woodlands or dry C3 grasslands. In the MN13 fossil sites,

Tragoportax d13C values were ,1–2% lower, most likely due to a

shift towards more humid conditions (see next section and Fig. 4).

Using dental microwear, Merceron et al. [68] showed that a

species of the bovid Hispanodorcas from the Neogene of northern

Greece (H. orientalis) had strong similarities to extant browsers and

mixed feeders; that reconstruction is also consistent with the d13C

values of H. torrubiae from Los Mansuetos (MN12; Fig. 3).

According to Merceron et al. [69], Tragoportax was likely an

obligate drinker based on a low inter-individual d18O variability

among species, and therefore its high d18OCO3 and d18OPO4

values when compared to the rest of taxa (including the bovid H.

torrubiae) in MN10–12 (Fig. 3, Table 3) are consistent with

ingestion of evaporated water in open environments.

Cervids have the lowest d13C values of the late Miocene

mammalian assemblage (Fig. 3), consistent with membership in

the browsing guild as indicated by tooth morphology and

microwear analyses [64,70] (Table 3). The very low values for

the cervids in MN12 and MN13 (between 212 and 213%) point

to foraging in a denser woodland, but not a closed canopy forest.

Cervid d18OCO3 and d18OPO4 values yield different results with

intermediate d18OCO3 values (relative to other mammals), but

consistently low d18OPO4 values (Table 3). Cervids likely drank in

the closed environments in which they foraged (which would yield

low d18O values). Therefore, the intermediate d18OCO3 values

point to some degree of alteration.

Like modern giraffes, although with a shorter neck, the giraffid

Birgerbohlinia schaubi was likely a browser; this interpretation is

supported by d13C values indicative of woodland foraging. The

very high d18OCO3 and d18OPO4 values in B. schaubi relative to

other mammals from the Puente Minero (MN11) locality (and

most other late Miocene mammals) (Fig. 3, Table 3) may indicate

that this sivatherine obtained much of its water from highly

evaporated leave water as suggested by Cerling et al. [71] for the

extinct Palaeotragus and Levin et al. [65] for modern giraffids.

Finally, the suid Microstonyx major has intermediate d13C values

in the Puente Minero (MN11) and Cerro de la Garita (MN12)

fossil sites. Suids are more omnivorous and according to Agustı́

and Antón [64], M. major had a cranial morphology suggesting a

strong and highly mobile muzzle disk (like in modern pigs)

interpreted as an adaptation to digging roots and tubers, although

other sources of dietary intake such as fruits, insects and even

carrion cannot be discarded, the combination of which may have

given rise to the observed intermediate d13C values.

Pliocene (La Gloria 4, MN14–Huélago, MN16)
The gomphothere Anancus arvernensis has d13C values indicative

of browsing in a woodland to woodland-mesic C3 grassland (Fig. 3),

which is consistent with observations by Agustı́ and Antón [64]

and Tassy [72] who argued that its dentition was similar to that of

other tetralophodont gomphotheres. Low d18OCO3 and d18OPO4

values may relate to ingestion of water in closed areas or flowing

water not subject to significant evaporation (Fig. 3, Table 3).

The Pliocene bovids Gazella and Protoryx were ubiquitous taxa as

far as occupancy of different habitats is concerned and are

considered browsers to mixed feeders [67–68,70,73–74]; the

relatively low d13C values for these taxa are more supportive of

a browsing habitat (Fig. 3, Table 3). Rivals and Athanassiou [70]

argued that the antelope Gazellospira torticornis was a mixed feeder

that grazed on seasonal or regional basis. Although this antelope

has ,1 to 1.5% higher d13C values than Gazella and Protoryx, these

values are consistent with woodland browsing and do not point to

a substantial proportion of grass in the diet. The bovid cf.

Hesperidoceras merlae has similar d13C values to G. torticornis (Fig. 3,

Figure 4. d13C and d13Cdiet, meq (% VPDB) values across time bins. A) Mean and standard deviation d13C (% VPDB) values in each MN. Letters
indicate Tukeys homogeneous groups. B) Mean and standard deviation d13Cdiet, meq (% VPDB) in each MN with mean annual precipitation (after Kohn
[38]). Chronology according to 1Domingo et al. ([16], unpublished data), 2Agustı́ et al. [89], 3the onset of the Quaternary according to the chronology
confirmed in 2009 by the International Union of Geological Sciences. The ages of the global/regional events are not absolute, but approximate
according to the MN chronology. MCR = Mediterranean Climate Regime, NHG = Northern Hemisphere glaciation, PWP = Pliocene Warm Period,
MSC = Messinian Salinity Crisis, MVC = Middle Vallesian Crisis.
doi:10.1371/journal.pone.0063739.g004
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Table 3), supporting also woodland browsing. Pliocene bovid

d18OCO3 and d18OPO4 values show a slight decrease towards

younger sites related to a change in global conditions in the

Pliocene (Table 3), but d18O values agree well with the ingestion of

non-evaporated waters.

The cervid Eucladoceros senezensis has the lowest d13C value of the

mammalian assemblage from the Huélago locality (MN16),

although that value is still typical of a woodland and not of a

closed canopy forest. Eucladoceros was a large-sized deer and,

according to Croitor [75], it had an oportunistic feeding behaviour

that allowed it to occupy more open environments as well as the

more closed habitats typically used by cervids. Pliocene cervids

from Huélago have similar d18OCO3 and d18OPO4 values to

bovids, indicating a similar source of ingested water.

Pleistocene (La Puebla de Valverde, MN17–Huéscar 1)
Filippi et al. [76] and Palombo et al. [77] studied microwear on

Elephas antiquus of the Middle Pleistocene and suggested a browsing

to mixed feeding behaviour; our d13C data are consistent with

woodland browsing but do not point to a substantial proportion of

grass in the diet (Fig. 3). Mammuthus meridionalis has been

considered to be a mixed feeder to grazer based on microwear

and previous stable isotope analyses [78–80]. Our M. meridionalis

d13C value is more indicative of a mixed feeder occupying a

woodland (Fig. 3).

The bovid, Gallogoral meneghini from La Puebla de Valverde

(MN17) has higher d13C values, close to those expected for an

animal foraging in an open woodland (Fig. 3, Table 3). According

to Guérin [81], Agustı́ and Antón [64] and Brugal and Croitor

[82], G. meneghini was a mixed feeder with a robust skeleton and

short limbs adapted to locomotion on mountainous uneven areas

similar to modern gorals from Asia. Fakhar-i-Abbas et al. [83]

studied the feeding preferences of the gray goral and found out

that it relies mainly on grasses, although it can browse too; this is in

agreement with our G. meneghini d13C values situated towards the

high cut-off for open woodland and mesic C3 grassland. Lower

d13C values in the case of Gazella borbonica are similar to those for

this bovid in the Pliocene and again these values are consistent

with woodland browsing and do not point to a substantial

proportion of grass in the diet.

The cervid Croizetoceros ramosus also shows low d13C values

indicative of a woodland. The equid Equus stenonis has higher d13C

values near those expected for animals feeding in an open

woodland (Fig. 3). This might be indicating ingestion of C3 grasses

not subject to water stress. Slightly higher d18OCO3 and d18OPO4

values for the equid E. stenonis and the cervid C. ramosus in

comparison to the elephantids and bovids may suggest ingestion of

water in more open areas (in the case of the equid) or consumption

of more evaporated water in leaves (in the case of the cervid)

(Fig. 3, Table 3).

Changes in d13C Values
Figure 4 shows d13C and modern equivalent d13C values

(d13Cdiet, meq), which can be related to MAP (see material and

methods section and Table S2) between MN7/8 and the middle

Pleistocene.

A prominent faunal turnover event, known as the Middle

Vallesian Crisis (ca. 9.6 Ma) [84] occurred in Western Europe

between MN9 and MN10. This event is recognized by the

replacement of humid-adapted taxa with taxa more adapted to

drier conditions, and is associated with the replacement of

evergreen subtropical woodlands by a seasonally adapted decid-

uous woodland as observed by Agustı́ and Moyà-Solà [85] and

Agustı́ et al. [84] in the Vallès-Penedès Basin (North Eastern

Iberian Peninsula). This event coincides with the Mi7 positive shift

in benthic foraminifera d18O values interpreted to reflect global

cooling [86–87]. In Figure 4A, d13C values of herbivorous

mammals in the Iberian Peninsula increase between MN9

(Nombrevilla 1 and Los Valles de Fuentidueña) and MN10 (La

Roma 2 and Ması́a de la Roma 604B), which may be related to a

change towards drier conditions. d13Cdiet, meq values mirror tooth

enamel d13C values, with an increase observed between these MNs

(Fig. 4B). MAP values (estimated after Kohn, [38]) dropped from

,410 mm/yr to ,200 mm/yr between MN9 and MN10. Böhme

et al., [13]), who used the ecophysiological structure of herpeto-

faunas in the Calatayud-Daroca Basin of Spain to estimate

changes in MAP over the Miocene, also recognized a decrease in

precipitation at 9.7–9.6 Ma. However, the decrease in the study of

Böhme et al. [13] is greater than 1000 mm/yr in comparison with

the ,200 mm/yr decrease estimated here. The explanation for

this large difference is unclear, but we note that the Kohn [38]

method has relatively large error.

During MN13, the Messinian Salinity Crisis (MSC) in the

Mediterranean Basin resulted from a sharp decrease in the marine

water circulation from the Atlantic and culminated in the

formation of thick evaporite deposits [8]. The lack of significant

differences in mammal tooth enamel d13C values between MN12

and MN13 (t = 21.285, p = 0.204) suggests that the MSC did not

cause substantial modifications to terrestrial ecosystems, although

a post-hoc Tukeys test places the MN13 in groups a, b, c, and d

(versus groups c and d for MN12) pointing to more humid

conditions. However, and since we cannot unequivocally deter-

mine the synchrony between the chronology assigned to the

MN13 localities considered in this study and the MSC, we regard

this conclusion as preliminary pending more accurate datings.

Ongoing paleomagnetic analyses in the MN13 Venta del Moro

fossil site may modify the current chronology, which places this

locality as contemporaneous to the MSC (J. Morales, pers. comm.

2013). Fauquette et al. [88] carried out an analysis of 20 pollen

sequences in the Mediterranean realm and found no differences

when comparing data before, during and after the MSC.

Mean tooth enamel d13C values decrease sharply from MN13

to MN14, and the mean value in MN15 is lower still (Fig. 4A). The

statistically significant drop in d13C values during MN14 and

MN15 may be related to the Pliocene Warm Period which began

at ,5 Ma and brought about more humid conditions in Europe

[1,64]. Figure 4B also shows a drop in d13Cdiet, meq, which

corresponds to an increase in MAP values of ,400 mm/yr

between MN13 (, 410 mm/yr) and MN14 and MN15 (,
800 mm/yr). The decrease in d13C values in MN14 and MN15 is

not biased by the type of taxa sampled, since in La Gloria 4 and

Layna ubiquitous taxa such as Gazella and Protoryx were chosen

and therefore, an isotopic change in these generalistic bovids [67–

68,70,73–74] points towards real paleoenvironmental variations.

After MN15, d13C values increase in MN16, MN17 and middle

Pleistocene, but do not reach values as high as those observed in

MN10, MN11 and MN12 (Fig. 4A). This increase in d13C values

corresponds to global and regional climatic changes and to faunal

and environmental changes in Europe. The beginning of MN16

(,3.2 Ma) [89] predates the onset of Northern Hemisphere

glaciation [1,90]. At that time, the modern Mediterranean climatic

regime was established and aridity in Europe was enhanced, which

led to changes in mammalian fossil assemblages in such a way that,

according to Agustı́ et al. [89], the Villanyian mammal turnover

occurred at this time with an increase in grazers, the appearance of

morphological features associated with a highly cursorial lifestyle

in some ungulates, and the diversification of pursuit carnivores. All

of these changes point towards the development of prairies and

Neogene-Quaternary Paleoenvironment in Spain
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grasslands in Europe [64,89]. Fortelius et al. [91] estimated

hypsodonty index in mammalian herbivores between the Late

Miocene and the Pliocene in Eurasia and found out that browsing

taxa in MN15 were replaced by grazers in MN16 and MN17.

Another important event occurred at ,2.6 Ma, when there was a

replacement of forests by tundra-like vegetation in northern and

central Europe, while in northwestern Africa, savanna biome

shrunk in favour of desert biome [64]. The Iberian Peninsula also

experienced a shift towards the development of more herbaceous

vegetation, such as the well-documented increase of Artemisia

[11,92]. The increase in mammal tooth enamel d13C values

observed in MN16, MN17 and the middle Pleistocene may reflect

this episode.

Temperature Record
Figure 5 shows the variations in tooth enamel d18OCO3 and

d18OPO4 values (Fig. 5A), and d18Ow values and mean annual

temperature (MAT) (Fig. 5B) estimated using the taxon-specific

relationships (Table S3) and equation (3) from Rozanski et al. [41].

The Mi7 cooling event associated with the Middle Vallesian Crisis

(between MN9 and MN10) is not evident in the tooth enamel

d18O values. Instead, d18O values increase between MN9 and

MN10, suggesting an increase in MAT (Fig. 5B). Based on pollen

assemblages from the Iberian Peninsula, Jiménez-Moreno et al.

[11] estimated that MAT during the Tortonian (MN7/8 to the

middle of MN12) was 19uC. The mean MAT estimate from

MN7/8 to MN12 in our study is slightly warmer, 21.863.2uC.

Van Dam & Reichart [93] analyzed d18OCO3 values on equid

tooth enamel to estimate d18Ow and MAT. They obtained a mean

MAT of 15.462.1uC between MN9 and MN12, substantially

lower than the values estimated here.

Jiménez-Moreno et al. [11] argued that during the Messinian,

there were not major variations in climate before, during and after

the MSC. The pollen assemblage from the Carmona section

suggests a MAT between 20.5uC and 22.5uC during the Messinian

in southwestern Spain. In our study, MN13 fossil sites that

correspond to the Messinian suggest a warmer MAT of

23.865.0uC (Fig. 5B). Matson & Fox [94] estimated MAT using

equid tooth enamel d18OPO4 values and found an increase from

15.5uC for MN12 sites (Los Mansuetos and Concud) to 21.4uC for

MN13 sites (Venta del Moro, Librilla, Molina de Segura and La

Alberca). Van Dam & Reichart [93] obtained MAT values of

12.9uC for MN13, again much lower than other studies.

Fauquette et al. [88,95] estimated MAT using pollen assem-

blages in the Mediterranean realm from the early Pliocene

(,MN14). Assemblages from the Andalucı́a G1 section indicate a

MAT of 21uC. Tooth enamel d18O values from MN14 localities in

our study yield a comparable MAT of 20.963.7uC. Hernández

Fernández et al. [10] used the bioclimatic analysis of Pliocene and

Pleistocene rodent assemblages in the Iberian Peninsula and

estimated a MAT of 19.3u during MN14, slightly lower than the

estimates based on pollen assemblages and our data. The lowest

MAT estimates for MN14 were from the isotopic studies by

Matson & Fox [94] and van Dam & Reichart [93], who suggested

MAT values of 16.1uC and 14.1uC, respectively.

Our estimate of MAT during MN15 is 19.667.5uC, in good

agreement with that based on pollen from the Tarragona E2

section (17 to 25uC from 5.32 to 3 Ma) [11]. The estimates of

Hernández Fernández et al. [10] based on rodent assemblages

from MN15 (,19uC) are also in good agreement.

After MN15, MAT values decrease, reflecting global cooling

with the onset of the Northern Hemisphere glaciation at ,2.7 Ma.

Tooth enamel d18O values from MN16 and MN17 in our study

supplied MAT values of 17.666.0uC and 16.867.2uC respective-

ly, slightly warmer than MAT values estimated by Hernández

Fernández et al. [10] between MN16 (15.3uC) and MN17

(15.9uC). Once again, van Dam & Reichart [93] obtained the

lowest MAT record for MN17 of 8.9uC. Nevertheless, the

comparison of MAT values among studies that considered

different fossil sites with ages younger than ,2.7 Ma might be

Figure 5. d18OCO3 and d18OPO4 (% VSMOW) values across time bins. A) Mean and standard deviation d18OCO3 (black circles) and d18OPO4

(white circles) (% VSMOW) values. Letters indicate Tukeys homogeneous groups. B) Mean and standard deviation d18Ow (% VSMOW) and MAT (uC)
values calculated by applying the equation (3) of Rozanski et al. [41]. MAT values based on pollen and micro-mammal data are from Fauquette et al.
[88,95], Hernández Fernández et al. [10] and Jiménez-Moreno et al. [11]. Chronology according to 1Domingo et al. ([16], unpublished data), 2Agustı́
et al. [89], 3the onset of the Quaternary according to the chronology confirmed in 2009 by the International Union of Geological Sciences. The ages of
the global/regional events are not absolute, but approximate according to the MN chronology. MCR = Mediterranean Climate Regime,
NHG = Northern Hemisphere glaciation, PWP = Pliocene Warm Period, MSC = Messinian Salinity Crisis, MVC = Middle Vallesian Crisis.
doi:10.1371/journal.pone.0063739.g005
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complicated by glacial-interglacial dynamics, which may have

produced large shifts in temperature in relatively short periods of

time.

Overall, the MAT values estimated here using mammalian

tooth enamel are in good agreement with data from palynology

and rodent assemblage analyses. Other isotopic studies on

mammal tooth enamel from the Iberian Peninsula [93–94]

showed consistently lower MAT values compared to those

obtained here. This may be due to the use of different equations

relating MAT and d18Ow. We use the equation (3) of Rozanski

et al. [41], whereas Matson & Fox [94] and van Dam & Reichart

[93] applied MAT-d18Ow equations from meteorological stations

near the location of the fossil sites. As previously highlighted,

during the span of time considered in this study (late Miocene-

middle Pleistocene), climate regimes shifted, and the modern

Mediterranean regime was established at some point between

,3.4 and 2.5 Ma. Hence, a worldwide meteorological MAT-

d18Ow equation integrating data from a range of climate regimes

may constitute a better basis for estimating MAT than equations

integrating a narrower range of climate regimes derived from local

meteorological MAT-d18Ow data. However, the differences in

reconstructed MAT based on d18O values of mammalian

bioapatite for the same intervals highlight the sensitiviy of these

reconstructions to both sampling and the assumptions behind the

reconstructions.

Absence of C4 Vegetation in Southwestern Europe
Our d13C record offers no evidence of the high d13C values

typical of C4 consumers (Figs. 3 and 4, Table 2) and the

calculation of the percentage of C4 vegetation points to a low C4

dietary intake (,20%) in most of the analyzed taxa. This

percentage of C4 vegetation may reflect either an actual small

fraction of C4 plants in mammal diets or it may be an artifact

related to the ingestion of C3 plants from open areas subject to

water stress (which therefore have higher d13C values). The lack of

a significant expansion of C4 plants in the Iberian Peninsula is

intriguing. The expansion of C4 plants took place between 9 and

2 Ma in different regions [6]. C4 photosynthesis is favored under

conditions of low atmospheric CO2, when growing seasons

experience high temperature (i.e., summer rainfall), in arid

regions, or in soils with high salinity. The combined effects of

fires and herbivory may also lead to open environments where C4

grasses may thrive. Given the high temperatures suggested by our

isotopic analyses (Fig. 5) and other proxy data, conditions in the

late Miocene and early Pliocene would seem conducive to a

regional C4 expansion if habitats were relatively open and there

was adequate summer precipitation.

Palaeoclimatic studies of Iberian mammalian assemblages from

late Miocene to middle Pleistocene (,11.1 to 0.8 Ma) indicate that

the most likely biomes at some of the fossil sites studied here

(Puente Minero, Los Mansuetos, Cerro de La Garita, El Arquillo,

Venta del Moro, La Gloria 4, Layna and Huéscar 1) were tropical

deciduous woodland with perhaps occasional savanna and

subtropical desert environments, prior to the development of the

sclerophyllous woodland-shrubland at the start of the Pleistocene

[10,48]. By definition, a woodland supports woody cover of .40%

and ,80% with the remaining patches often dominated by

grasses, either C3 or C4 [96–97]. In a study of the isotopic

composition of individual pollen grains from ,20 to 15 Ma in the

Rubielos de Mora Basin, Urban et al. [98] showed that while the

overall abundance of grass pollen was low and in the range

expected for a woodland (10–15%), C4 grasses comprised 20–40%

of the grains. Since there are no isotopic studies on pollen grains in

the time interval selected for our study, we assume that C4 grasses

were potentially present in the flora of the Iberian Peninsula since

at least the Early Miocene.

While a detailed analysis of the ultimate cause/s for the low

abundance of C4 plants in southwestern Europe after their

expansion elsewhere is beyond the scope of this paper, there are

several potential explanations. At middle latitudes, only regions

with summer rainfall are suitable for C4 grasses. A seasonality of

rainfall similar to the modern Mediterranean precipitation

pattern, with precipitation occurring chiefly during the winter,

would lead to very low abundance of C4 plants on the Iberian

Peninsula. Several studies have questioned the age of 3.4 and

2.5 Ma for the onset of the Mediterranean climate and proposed

that such a climate regime may have been present much earlier

(e.g., [99]). For example, Axelrod [100] studied fossil leaves in the

Mediterranean area and argued that sclerophyllous evergreen

woodlands with chaparral undergrowth were present throughout

the Miocene. Yet there is no way to determine if these species were

dominant on the landscape, and Axelrod ([100]: p. 325) himself

noted that sclerophyllous species might constitute part of the

tropical-subtropical woodlands understory but that the ‘‘existence

of chaparral and macchia over wide areas as climax vegetation in

the Tertiary seems unlikely’’.

Tzedakis [99] reviewed evidence for the onset of the Mediter-

ranean climate regime and noted that seasonality similar to the

summer-dry and winter-wet pattern may have appeared intermit-

tently before the onset of the ‘‘true’’-Mediterranean climate

regime. The occasional occurrence of Mediteranean-like climate

in the Iberian Peninsula in the early Pliocene has also been

suggested by studies of rodent faunas and has been linked to the

presence of bimodal precipitation regimes, which may produce a

short summer dry season in addition to the winter dry season

typical of tropical climates [10]. The prevalence of these short

summer dry periods is probably not sufficient to explain the

absence of C4-dominated landscapes.

An alternative is that C4 plants were somewhat more abundant,

but that mammals selectively foraged on C3 plants, perhaps

avoiding C4 plants because of their lower nutritional value [101].

Paleoecological studies from other regions suggest that this

explanation is unlikely. In North America, South America, Asia

and Africa (see a review in Strömberg [6]), when C4 plants became

available (as determined by soil carbonates and other lines of

evidence), they came to comprise a substantial part of the diet of at

least some mammalian grazers. Indeed, once C4 grass became

abundant, different taxa began to specialize on them. There is no

reason to assume that some genera of Miocene mammals (e.g.,

Tragoportax, a mixed feeder with strong grazing habits) in the

Mediterranean region would not have used a new dietary resource

such as C4 grasses had they been abundant.

It seems that the most likely cause for a limited C4 vegetation

development may be related to the biome configuration of the late

Miocene-Pliocene in the Iberian region. Pollen records indicate

low percentages (10–15%) of grasses, belonging to the Poaceae

family, during the late Miocene and the Pliocene (Jiménez-

Moreno, pers. comm. 2012). Pollen analyses are not able to

distinguish between C3 and C4 grasses, but if we assume that the

percentage of C4 plants estimated by Urban et al. [98] for the early

Miocene Rubielos de Mora Basin (20–40%) was maintained in the

late Miocene and Pliocene, the final percentage of C4 grasses may

have not been enough as to be recorded on mammalian tooth

enamel d13C values.

Conclusions
Long stratigraphic sequences of isotopic data from mammalian

tooth enamel are not frequently analyzed due to gaps in the

Neogene-Quaternary Paleoenvironment in Spain
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terrestrial fossil record. Such studies are important since they can

reveal modifications in paleoenvironmental and paleoclimatic

factors in terrestrial settings during critical intervals in Earth

history. Here, we used stable isotope analysis of a succession of

mammals from 18 localities in Spain ranging in age from 11.1 to

0.8 Ma to reconstruct environmental and climatic changes during

the late Neogene and early Quaternary. In general, tooth enamel

d13C values indicate that analyzed taxa may have occupied

woodland to mesic C3 grassland and in some cases, open

woodland to xeric C3 grassland, with no evidence of significant

C4 consumption in any of the genera we studied. An increase in

d13C values between MN9 and MN10 appears to correspond to

the Middle Vallesian Crisis, a faunal turnover that led to the

replacement of humid-adapted taxa by taxa more adapted to drier

conditions. A significant decrease in d13C values during MN14

and MN15 is probably linked to the Pliocene Warm Period (with

an associated increase in moisture), whereas the higher d13C

values from MN16 onwards may have been a consequence of the

increased aridity in Europe related to the onset of Northern

Hemisphere glaciation. The MAT pattern estimated using tooth

enamel d18OPO4 values agrees well with the thermal trend based

on palynological records, rodent assemblage structure, and other

isotopic studies from the Iberian Peninsula, with a gradual drop in

MAT from MN13 onwards in response to the progressive cooling

observed since the Middle Miocene and culminating in the

Northern Hemisphere glaciation.
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Pérez (Museo Nacional de Ciencias Naturales-CSIC, Madrid) for

kindly providing access to the studied material. S. D. Matson

(University of Minnesota, now at Boise State University), and D.

Andreasen, J. Lehman and J. Karr (University of California Santa

Cruz) are acknowledged for help with isotopic analyses. We are
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