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Abstract: The catalytic ozonation of the herbicide metolachlor (MTLC) was tested using 

carbon nanomaterials as catalysts. Multiwalled carbon nanotubes were used in semi-batch 

experiments and carbon nanofibres grown on a honeycomb cordierite monolith were 

tested in continuous experiments. The application of the carbon catalyst was shown to 

improve the mineralization degree of MTLC and to decrease the toxicity of the solution 

subject to ozonation. Degradation by-products were also followed in order to compare the 

two processes. The application of the carbon coated monolith to the continuous ozonation 

process was shown to have potential as it improved the TOC removal from 5% to 20% and 

decreased the inhibition of luminescent activity of Vibrio Fischeri from 25% to 18%.  

Keywords: catalytic ozonation, monolith, carbon nanomaterials, metolachlor, emerging 

organic micropollutants 

INTRODUCTION 
The use of pesticides in modern agriculture, including herbicides, is considered essential 

to avoid loss of cultures by infestations, which would render the large scale exploration 

impracticable. However, since the 1960s, preoccupations have escalated regarding the 

negative effects of such agents on human health and on the ecosystems. 

Metolachlor (MTLC) is a chloroacetanilide selective herbicide extensively used in various 

cultures, and elevated concentrations in surface and groundwater have been reported, as 

well as some of its degradation products [1-5]. The structure of the molecule can be found 

in Figure 1Figure 1. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36114816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jegarcia@icb.csic.es


 

Figure 1 - Structure of the metolachlor molecule. 

Currently, this pesticide is listed on the Contaminant Candidate List 3 (CCL3) by USEPA, 

together with its main degradation by-products [6]. The World Health Organization 

drinking water quality guideline suggests a value of 10 µg/L as a limit for MTLC [7]. 

Additionally, the pesticide and its aniline metabolites are suspected or confirmed 

carcinogens [1]. 

Conventional treatments are rather effective in the removal of MTLC from water [8, 9]. 

However, these processes are not capable of completely mineralizing the pesticide, 

yielding several by-products, including several organic acids and aromatic compounds. It 

has been shown that these compounds may present a more severe harmful effect to the 

environment [1]. Thus, it is important to study novel treatment processes aiming at the 

complete mineralization of this type of water contaminants. 

Recently, research in Advanced Oxidation Processes (AOP) has been target of attention 

from the scientific community due to their potential to further mineralize organic 

pollutants [10-15], and some studies have been published regarding MTLC [16-19]. These 

processes consist in the enhancement of the oxidation potential of conventional oxidants 

by producing other compounds that are capable of further mineralizing water 

contaminants. Catalytic ozonation is included in this category and is the focus of this study. 

Conventional ozonation treatment consists in the oxidation of organic compounds and in 

the elimination of microorganisms present in wastewater or drinking water [20]. On the 

other hand, the catalytic ozonation process consists in the enhancement of the oxidation 

potential of ozone by the production of highly-reactive radicals, namely hydroxyl radicals 

(OH.), which is achieved by the application of a catalyst. In the present study, the catalysts 

selected were Multiwalled Carbon Nanotubes (MWCNT) and Carbon Nanofibers (CNF), 

which have already been reported to be effective for this type of reaction [21, 22]. 

The mechanism of catalytic ozonation in the presence of carbon materials has been 

described as a combination of bulk and surface reactions [23-25]. A similar mechanism 



should occur when nanocarbon materials (NCM) are used as catalyst [21, 26]. The 

mechanism for the formation of highly-reactive radicals and how they react with the 

organic pollutants has been described in the literature [23, 25, 27, 28]: 

In aqueous solution ozone decomposes into hydroxyl radicals, process that is initiated by 

the presence of OH- (eq. 1).  

  
   

→       (1) 

In the presence of carbon materials, the organic pollutant can be adsorbed (eq. 2). 

Dissolved ozone either reacts with the surface of the catalyst to yield free radical species 

released to the solution (eq. 3), which will react with the organic pollutant in the bulk (eq. 

4), or ozone is adsorbed on the surface of the catalyst, yielding active surface groups (eq. 

5), which will in turn react with the adsorbed pollutant (eq. 6). 

 (2) 

  
   
→      (3) 

 (4) 

          (5) 

         (6) 

It is also viable that the adsorbed pollutants react with aqueous species (eq. 7 and 8). 

   (7) 

                            (8) 

The application of a monolithic catalyst for reactions simultaneously involving gas and 

liquid phase has been subject to recent attention [29-33]. The two-phase flow through the 

monolith channels, under expected hydrodynamic conditions, develops into Taylor flow 

hydraulic regime. This regime is characterized by the formation of gas slugs, or long 

bubbles, of length several times larger than the diameter of the channels. Between these 

gas slugs and the walls of the monolith a thin film of liquid is formed (typically between 5 

and 50 µm, depending on the viscosity of the fluid and the bubble velocity). The increased 

interfacial area and the short diffusion path greatly increase the mass transfer from the 



gas phase to the solid phase. The films are renewed by the movement of the bubbles and 

the mixing inside the liquid slugs [34-38].  

Most studies focusing in carbon materials as ozonation catalysts used powder catalysts. In 

the present study the potential of the carbon materials is transposed onto a 

macrostructure as a prospective solution for practical application in water treatment 

facilities. Besides the potential to enhance the oxidation potential of catalytic ozonation by 

facilitating mass transfer across the different phases, the ease of operation of a 

macrostructure is seen as a very important advantage of this technology. The process 

eliminates the need for filtration of catalyst particles, while reducing pressure drop when 

compared to packed bed reactors. The mechanisms for ozone decomposition and 

reactions with organic pollutants are expected to be similar to the described above [22]. 

The growth of CNF on the surface of a ceramic monolith has already been reported in the 

literature [39, 40], as well as the application of the system to catalysis, including catalytic 

ozonation [22, 39]. 

In summary, this study focuses on the development of a system for the oxidation of the 

herbicide Metolachlor using CNF grown on a honeycomb ceramic monolith under 

continuous operation. The main goal is to improve the mineralization of the pollutant, 

while reducing the acute toxicity. Semi-batch experiments were also made in a stirred tank 

reactor to gather data about the degradation mechanisms. 

EXPERIMENTAL 

MATERIALS AND CHEMICALS 
Commercial Multiwalled Carbon NanoTubes (MWCNT) were used as supplied (Nanocyl 

3100). Monolithic catalysts (see Figure 2Figure 2) were prepared to fit inside the bubble 

column used for the catalytic tests. They consist of a commercial honeycomb cordierite 

structure, upon which carbon nanofibers (CNF) were grown after coating the monolith 

with an alumina wash coat impregnated with nickel, which acts as a catalyst for the carbon 

growth. CNF were formed under a gas flow of ethane and hydrogen (50:50). The detailed 

preparation method is described elsewhere [40]. The specific monolith used for the 

experiments here described had a diameter of 22 mm and a height of 60 mm, with square 

channels of 1 mm diameter. The loading of CNF on the catalyst was 10.22 wt%, and the 

total mass was 10.2 g. 



 

Figure 2 - Honeycomb monolith covered with CNF. 

Metolachlor was acquired from Sigma-Aldrich (PESTANAL Analytical Standard). Oxalic 

(≥99%), oxamic (≥99%) and pyruvic acids (≥98%) were also acquired from Sigma-Aldrich. 

SEMI-BATCH OZONATION WITH MULTIWALLED CARBON NANOTUBES 
The semi-batch ozonation experiments were made in a conventional stirred tank reactor 

presented in a previously published paper [22]. A volume of 700 mL of solution was used, 

with 20 ppm of MTLC prepared with milliQ ultrapure water. Ozone was generated from 

pure oxygen using a BMT 802X ozone generator and bubbled into the bulk of the solution 

using a diffusor (total flow rate= 150 cm3/min; ozone concentration =  50 g O3/m3). Ozone 

in the gas phase was analyzed using a BMT 964 ozone analyzer. The powdered catalysts 

were introduced (100 mg) into the solution before ozone and kept suspended using a 

stirrer at 200 rpm. Blank (no catalyst) and adsorption (no ozone) tests were also 

performed. In the adsorption experiment pure oxygen was kept flowing to maintain the 

mixing conditions of the ozonation tests.  

 

CONTINUOUS OZONATION WITH MONOLITHIC CATALYST 
Continuous experiments were performed in a bubble column reactor with internal loop, 

presented in a previously published paper [22], inside which a monolithic catalyst can be 

lodged. Ozone was fed through a diffuser in the bottom of the column, and MTLC solution 

(20 ppm) was introduced near the bottom using a peristaltic pump. The monolith is placed 



inside the column and both the gas phase and the liquid phase go through the channels, co-

currently in upflow. Experiments were made using 1 and 4 monoliths in series, thus 

varying the contact time with the catalyst between approximately 1.9 min and 7.6 min 

respectively. A biphasic experiment was made by placing the monolithic catalyst inside the 

reactor’s internal loop, thus separating the gas-liquid interface from the liquid-gas 

interface. 

Liquid phase was pumped at 12 cm3/min and the gas phase at 15 cm3/min. Ozone was 

generated from pure oxygen at 50 g O3/m3 using a BMT 802N ozone generator.  The 

internal recirculation loop was kept at 60 cm3/min using a peristaltic pump. 

These conditions were optimized in order to obtain the best homogeneous distribution 

through the channels of the monolith. For large bubble sizes (2-3 mm diameter) it was 

found that the bubbles coalesced beneath the monolith, eventually breaking through the 

channel that offered a smaller pressure drop. However, for bubble sizes with diameters 

inferior to the channel diameter, a bubbly flow develops inside the channels of the 

monolith, putting away any advantage in using a three-phase system [36]. Thus, a bubble 

size with approximately the diameter of the monolith channels was chosen as a 

compromise between the two situations. The mean superficial liquid velocity (~0.30 

cm/s) and the bubble rise velocity (~10 cm/s [41]) used should place the hydrodynamic 

regime as Taylor flow [36, 38, 42]. The bubble column has a diameter of 22 mm and the 

liquid column has a height of 60 cm, leaving free head room inside the column. 

. 

ANALYTICAL METHODS 
Several different techniques were used to obtain data from the ozonation experiments. 

The removal of MTLC was followed by HPLC, using a Hitachi Elite LaChrom apparatus 

equipped with a diode array detector. The separation of MTLC was achieved using a 

Lichrocart C18-RP Puroshper Star (250 mm × 4.6 mm, 5 μm) column and an isocratic 

60%ACN-40%H2O mobile phase at 1 mL/min. Quantification of MTLC was made at 198 

nm.  Likewise, the formation and concentration of organic acids, typical end-of-chain 

degradation products, was followed using a Hitachi Elite LaChrom HPLC equipped with an 

UV-Vis detector. Separation of the organic acids was achieved using an Alltech OA-1000 

chromatography column using an isocratic 5mM H2SO4 mobile phase at 0.5 mL/min. 

Quantification of the organic acids was made at 200 nm.  

The release of ionic compounds into the solution was followed using a HPLC system 

equipped with a conductivity detector to measure both anions and cations. The separation 



was achieved witha Dionex ICS-2100 Ion Chromatography System using a Dionex IonPac 

AS11-HC column (250 mm × 4 mm), under an isocratic elution with a solution of NaOH 30 

mM at a flow rate of 1.5 mL/min, and a Dionex DX-120 Ion Cromatography System using 

an IonPac CS12A column (250 mm × 4 mm) working with a solution of methanesulfonic 

acid 20 mM as the mobile phase at a flow rate of 1.0 mL/min, for anions and cations 

respectively. The system was equipped with a conductivity detector, which performance 

was improved by electrolyte suppression using ASRS 300 or CSRS ULTRA II self-

regeneration suppressors for anions and cations, respectively. 

Acute toxicity analyses were performed using an Azure Environment Microtox apparatus 

and procedure ISO/DIS 11348-3. The microorganisms used were the lumniscient bacteria 

Vibrio Fischeri from Hach Lange, which is used as representative of aquatic environments 

[17, 43]. The bacteria were exposed to samples after activation and 15 minutes incubation 

at 15 ºC, and the decrease in activity as function of the luminescence was measured after 

30 minutes. The standard index used to evaluate acute toxicity, the EC50, was not 

calculated because, at the concentrations used in this study, a large number of the samples 

did not reach 50% of inhibition of the luminescent activity. Instead, the inhibition of 

activity measured is presented. 

Total organic carbon, measured with a Shimadzu TOC-5000A apparatus, was used to 

assess the mineralization of MTLC. 

RESULTS AND DISCUSSION 

SEMI-BATCH OZONATION OF METOLACHLOR 
In Figure 3Figure 3the evolution of the dimensionless concentration of MTLC during the 

semi-batch catalytic ozonation experiment, together with the results obtained for the 

blank and the adsorption tests, are presented. 



0 60 120 180 240 300 360 420 480
0.0

0.2

0.4

0.6

0.8

1.0

C
/C

0

t (min)

 O3

 O3+MWCNT

 O2+MWCNT

 

Figure 3 - Dimensionless concentration of Metolachlor during semi-batch ozonation experiments. 

 

It is noticeable that the addition of MWCNT did not accelerate the decomposition of the 

pesticide when compared with single ozonation, which suggests that the degradation of 

MTLC is mainly due to the direct reaction with ozone. The formation of the non-selective 

hydroxyl radicals might have a negative effect on the degradation of the parent pollutant, 

since less ozone is available to directly react with MTLC. However, the difference between 

the two experiments is negligible when only the parent compound is considered.  

Although adsorption on MWCNT is rather extensive, as seen in the experiment with no 

ozone (¡Error! No se encuentra el origen de la referencia.Figure 3Figure 3), the main 

mechanism for the catalytic ozonation of metolachlor is by oxidation. Furthermore, there 

are several operational setbacks for adsorption processes, namely it is a water treatment 

process where the pollutant in just transferred from liquid to solid. In this study, we are 

trying to achieve the mineralization of the pollutant. 

Although MTLC is easily degradated, total mineralization is not readily achieved, as can be 

seen in Figure 4Figure 4, where the dimensionless TOC concentration is shown.  
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Figure 4 - Evolution of dimensionless TOC concentration during the semi-batch ozonation experiments. 

In Figure 4Figure 4 it is noticeable the influence of the presence of MWCNT. Further 

mineralization of the organic carbon in solution is attributed to hydroxyl radicals,, which 

production is enhanced by the presence of the catalyst. However, it is noticeable that the 

degradation of the organic matter slows down after 60 minutes of reaction. This occurs 

because the by-products of the oxidation of MTLC are less reactive with the oxidants in 

solution than MTLC. However, there is also a contribution of the powder material to TOC 

concentration that cannot be disregarded [25]. Additional tests (without pollutant) were 

carried out, but this contribution was found to be dependent on the composition of the 

solution. Then, it was not possible to discount the mentioned effect on TOC values. 

The decrease in the value of TOC for the experiment without ozone corresponds to the 

adsorption of MTLC, while for the ozonation experiments it corresponds to the 

mineralization of pollutant and its by-products. 

The evolution of three identified organic acids is presented in ¡Error! No se encuentra el 

origen de la referencia.Figure 5 (oxalic acid), ¡Error! No se encuentra el origen de la 

referencia. Figure 6 (pyruvic acid) and ¡Error! No se encuentra el origen de la 

referencia.Figure 7 (oxamic acid), for ozonation and catalytic ozonation.  
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Figure 5 - Concentration of oxalic acid measured during the semi-batch ozonation experiments. 

It is known that the catalytic ozonation process, using carbon materials, greatly improves 

the oxidation of oxalic acid when compared to single ozonation [21, 23]. In Figure 5Figure 

5 there seems to be a constant increase in the concentration of oxalic acid in both 

experiments. Furthermore, the concentration of this acid was higher for the catalytic 

ozonation experiment. This indicates that the accumulated TOC during the ozonation 

experiments is due to more complex organic compounds, which are formed between the 

primary degradation of MTLC and the appearance of low molecular weight organic acids.  

The more extensive degradation of these products during catalytic ozonation increases the 

amount of oxalic acid found in solution [16, 17, 44-46]. Oxalic acid is probably 

accumulated due to a combination of its continual formation with the competition with the 

several other organic compounds present in solution. Since the pH of solution decreases 

during the semi-batch experiments (from ~6 to ~4 in 3 hours), the production of hydroxyl 

radicals due to the natural decomposition of ozone in water also decreases [44]. Thus, the 

degradation of the formed intermediates during single ozonation is slowed down. 
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Figure 6 - Concentration of pyruvic acid measured during the semi-batch ozonation experiments. 

The formation of pyruvic acid, depicted in Figure 6Figure 6, is in accordance with what is 

proposed above for oxalic acid. In this case, after 6 hours of reaction, a decrease in the 

concentration during the catalytic ozonation experiment is observed. For the single 

ozonation experiment the acid accumulated continuously during the 8 hours of reaction, 

as mentioned above for oxalic acid. 
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Figure 7 - Concentration of oxamic acid measured during the semi-batch ozonation experiments. 

Oxamic acid is also recalcitrant to direct ozonation. However, the reaction with the highly-

reactive radicals produced during the catalytic ozonation experiment is not as fast as for 

oxalic and pyruvic acids [23], which explains why it accumulates in solution during single 



and catalytic ozonation, as seen in Figure 7Figure 7. It is noticeable that the amount 

detected in solution is far smaller when compared to the other quantified acids. 

In Table 1 the mass balance of the carbon measured in the quantified organic compounds 

in relation to the measured TOC value is presented. The values of inorganic carbon in 

solution were residual and are negligible in this case. The identified TOC was calculated 

following equation 9. Mineralized carbon (TOCmineralized) was calculated from the removal 

of TOC from solution. 

                                                        (9) 

Table 1 - Mass balance of TOC measured in solution during the semi-batch ozonation 

experiments. 

t (min) TOCMTLC (mg/L) TOCorganic acids (mg/L) TCidentified/TOC0 

    

 O3 O3+MWCNT O3 O3+MWCNT O3 O3+MWCNT 

       

0 9.2 9.1 0 0 1 0 

30 0.14 0.44 0.0049 0.013 0.05 0.18 

60 0 0 0.0063 0.011 0.07 0.23 

120 0 0 0.0076 0.020 0.14 0.27 

 

Observing Table 1, it is noticeable that there is a large percentage of organic carbon not 

detected. In fact, it is expected that large amounts of organic compounds are still present  

in solution, even after 8 hours of reaction [16, 17, 44-46]. In addition, other peaks were 

detected in the chromatogram resulting from the analysis by HPLC-UV. However, since it 

was not possible to unmistakably identify the corresponding compounds, they were not 

quantified in this study. It is, however, important to notice in Table 1 that the contribution 

of unidentified TOC to what is measured in solution is decreasing after the first 60 

minutes, when the parent compound is completely degradated. For the first 60 minutes, 

the larger contribution to the quantifiable TOC is from the MTLC still present in solution. 

This suggests that, for longer reaction times, a larger amount of the total organic carbon is 

present in the end-of-chain degradation products [16, 17]. A slightly larger increase in the 

fraction of identified TOC is seen in the catalytic ozonation experiment. This difference 

between the two experiments indicates that the catalytic ozonation experiment is 

degrading the top-of-chain formed intermediates at a faster rate, yielding a larger amount 

of carbon containing organic acids. This, combined with a larger portion of the initial TOC 



mineralized, justifies the more extensive increase in identified TOC in the case of the 

catalytic ozonation experiments. 

Figure 8Figure 8 and Figure 9Figure 9 present the concentration of inorganic ions found 

during semi-batch ozonation experiments. 
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Figure 8 - Concentration of chloride  and nitrate during the semi-batch ozonation experiments. 
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Figure 9 - Concentration of ammonium and nitrite during the semi-batch ozonation experiments. 

The release of ions during the experiments is very similar whether the catalyst is present 

or not. The main difference regards the production of ammonium and nitrite. The catalytic 



ozonation experiment produced a larger amount of nitrite, while decreasing the amount of 

released ammonium. This may be due to the different reaction pathways followed by 

ozone and hydroxyl radicals to degraded organic compounds. 

A mass balance of chlorine and nitrogen quantified during the semi-batch ozonation 

experiments is presented in Figure 10Figure 10. The concentration of chlorine was 

calculated by adding the mass of chlorine in the measured MTLC and what was found in 

solution by ion chromatography. The concentration of nitrogen was calculated by adding 

the mass of nitrogen in the measured MTLC with that found in solution by ion 

chromatography as nitrite, nitrate and ammonium and with the mass of nitrogen in the 

measured oxamic acid. 
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Figure 10 - Dimensionless concentration of quantified chlorine and nitrogen during semi-batch 

ozonation experiments. 

It is noticeable in Figure 10Figure 10 that all chlorine present in MTLC is very quickly 

released to the solution. The initial decrease indicates that the primary  degradation of 

MTLC does not involve dechlorination. In fact, a large part of chlorine is present in the 

intermediates formed in the beginning of the degradation of MTLC. However, it is clear 

that these chlorine containing compounds are oxidized directly by ozone, since this 

appears to occur similarly in both experiments [17]. After 120 minutes, the chlorine 

contained in MTLC was completely released into solution. Nitrogen presents a similar 

behaviour to chlorine, suddenly decreasing in the beginning of the reaction, due to the 

degradation of MTLC, and then gradually increasing during the experiments. This suggests 

that intermediate nitrogen containing by-products are being formed and slowly being 

mineralized. However, nitrogen increases much slower throughout the experiments. In 



fact, a great part of the expected by-products formed contain nitrogen in their 

structure[16, 17].  

The measurements of acute toxicity in terms of inhibition of the luminescent activity of the 

bacteria are presented in Figure 11Figure 11. 

 

 

Figure 11 - Inhibition of luminescent activity of Vibrio Fischeri during the semi-batch ozonation 

experiments. 

The oxidation of the parent compound results in by-products, which are more toxic for 

Vibrio Fischeri than MTLC itself. The possibility of a synergistic effect among the by-

products cannot be excluded [1, 17, 43]. Nevertheless, the presence of the catalyst 

diminishes the effect of ozonation on toxicity. This may be due to a smaller amount of 

compounds toxic to this bacteria presented in solution due to a more complete and less 

selective oxidation of MTLC [17]. 

 CONTINUOUS OZONATION OF METOLACHLOR 
Since the system is being operated continuously, several samples were taken at steady 

state (after 2 hours) and the average values are presented with the respective standard 

deviations (see Table 2). These include the removal of MTLC and TOC, as well as the 

release of inorganic ions and organic acids into the liquid phase. 
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Table 2 - Characterization of the outlet at steady state for continuous ozonation experiments. 

Effluent at steady state Single Ozonation Catalytic Ozonation 

Tcontact (min) n/a 1.9 7.6 

Removal of MTLC (%) 73.4 ± 0.1 81.9 ± 0.1 78.0 ± 0.1  

Removal of TOC (%) 5 ± 1 20 ± 1 35 ± 1 

Coxalic acid (mg/L) 0.195  ± 0.001 0.139  ± 0.001 0.111 ± 0.001  

Cpyruvic acid (mg/L) 0.079 ± 0.001 0.206 ± 0.001 0.255 ± 0.001 

Coxamic acid (mg/L) 0.0280 ± 0.0003 0.0298 ± 0.0003 0.057 ± 0.0003 

CCl- (mg/L) 0.7 ± 0.2 0.6 ± 0.2 0.8 ± 0.2 

CNO2-(mg/L) <LOQ* <LOQ* <LOQ* 

CNO3- (mg/L) 0.55 ± 0.01 0.43 ± 0.01 0.32 ± 0.01 

CNH4+ (mg/L) 0.091 ± 0.007 0.127 ± 0.007 0.11 ± 0.007 

TOCidentified/TOC0 0.52 ± 0.03 0.58 ± 0.03 0.84 ± 0.03 

Quantifiable N/N0 0.2475 ± 0.0002 0.1992 ± 0.0002 0.1791 ± 0.0002 

Quantifiable Cl/Cl0 1.0 ± 0.3 0.70 ± 0.3 0.9 ± 0.3 

*below the limit of quantification 

In ¡Error! No se encuentra el origen de la referencia.Table 2 a trend similar to that 

found during the semi-batch ozonation experiments is observed for the removal of MTLC 

and its mineralization.  In this case, since the carbon material is well fixed to the 

structured support (previously tested by ultra-sonication), the TOC measurements were 

not affected by the release of carbon material to the solution. Thus, the difference between 

the single ozonation and the catalytic ozonation experiments, regarding the TOC values, is 

accentuated, when compared to the semi-batch experiments. The percentage of identified 

TOC clearly rises with the inclusion of the monolithic catalyst. This percentage is further 

increased when the contact time is risen. This agrees with the trend that was found during 

the semi-batch experiments. 

Additional tests were made using a biphasic system by putting the catalyst inside the 

internal loop of the reactor. It was seen that the TOC removal decreased from25 % to 17%. 

This decrease is due to the improvement of the mass transfer between the different phases 



when the triphasic system is used. This type of system allows the operation of the reactor 

under flow conditions, namely Taylor flow, that enhance the mass transfer between the 

phases, and thus the effectiveness of the catalytic process [30, 31]. 

An important difference is found in the organic acids and inorganic ions released into 

solution when compared to those found in the semi-batch ozonation experiments. It is 

likely that, given the residence (~20 minutes) and contact times (~1.9 minutes) at which 

the system is being operated, the mineralization of MTLC is still in its early stages, as can 

be attested by the values of the parent compound still present in the effluent. It is known 

that the hydroxyl radicals produced during catalytic ozonation are less selective than 

ozone [25]. It is probable that ozone is attacking specific locations of the molecule, which 

would explain the larger amounts of oxalic acid and chloride released into solution during 

the single ozonation experiment. Nevertheless, the high relative errors associated with the 

measurement of chloride suggest that the occurrence of different concentrations of this 

ion might be due to  experimental errors. 

 

 

 

Figure 12 - Inhibition of luminescent activity of Vibrio Fischeri in the continuous ozonation 

experiments. 

The toxicity values obtained at steady state (Figure 12Figure 12) corroborate the 

suggestion that the compounds formed present higher toxicity for Vibrio Fischeri than the 

pesticide being studied [1, 17].The presence of the monolithic catalyst during the reaction 

reduced the toxicity values when compared to the single ozonation experiment. Longer 

contact times with the catalyst produced further reduced toxicity levels. OIn the other 
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hand, the placing of the catalyst as to operate under biphasic conditions diminished the 

reduction of the toxicity when compared to the triphasic system. 

CONCLUSIONS 
The catalytic ozonation of the herbicide Metolachlor was studied in a semi-batch 

conventional stirred tank reactor, using MWCNT in powder form and in a continuous 

bubble column reactor, using CNF grown on the surface of honeycomb cordierite 

monoliths. 

The degradation of MTLC was easily achieved with or without the application of a catalyst. 

However, it was shown that it was not the case for the mineralization of the pollutant. In 

fact, large quantities of organic matter are still present in solution even after 8 hours of 

reaction in the semi-batch reactor. The presence of MWCNT in solution catalyzed the 

oxidation of the organic matter. The mineralization degree achieved in semi-batch 

reactions was higher, and the reaction was shown to be placed further down on the 

degradation chain of the herbicide when compared with the single ozonation experiments.  

The application of a structured catalyst in the continuous ozonation experiments was 

shown to have potential as a solution for practical applications. The presence of the 

catalyst enhanced the mineralization of the organic matter in solution. The increase of the 

contact time with the catalyst further increased the mineralization of the organic matter in 

solution. 

The ozonation of MTLC was shown to increase the toxicity to the bacteria used to simulate 

the effect on an aquatic environment of the effluents produced in this study. However, it 

was shown that the addition of a catalyst to the system reduces the impact of the 

ozonation process. 

The application of CNF grown on a structured support was shown to be a potential 

solution for the mineralization of MTLC. 
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