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Pediatric Cardiology

Fetal Growth Restriction Results in Remodeled and Less
Efficient Hearts in Children

Fàtima Crispi, MD; Bart Bijnens, PhD; Francesc Figueras, MD; Joaquim Bartrons, MD;
Elisenda Eixarch, MD; Ferdinand Le Noble, PhD; Asif Ahmed, PhD; Eduard Gratacós, MD

Background—Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased
cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming
leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and
hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes
that persist into childhood.

Methods and Results—Within a cohort of fetuses with growth restriction identified in fetal life and followed up into
childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched
for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age
of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal
diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups,
stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in
severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak
velocities) and diastolic changes (increased E/E� ratio and E deceleration time). Children with FGR also had higher
blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the
severity of growth restriction.

Conclusions—These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased
predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial
effects on cardiac remodeling should be explored in children with FGR. (Circulation. 2010;121:2427-2436.)
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Cardiovascular disease is the main cause of death in
adults. Most factors that lead to chronic cardiovascular

disease are already present in childhood.1,2 Epidemiological
evidence has long suggested a link between low birth weight
and increased cardiovascular mortality in adulthood.3 This
association is essentially mediated through fetal growth
restriction (FGR),4 a condition defined as a birth weight
below the 10th percentile for gestational age that affects 5%
to 10% of all newborns.5 The mechanistic pathways under-
lying the relationship between FGR and cardiovascular risk
are poorly understood.6 A number of studies support that it
might be explained in part by fetal metabolic programming
leading to diseases associated with cardiovascular disease,

such as obesity, diabetes mellitus, and hypertension6; how-
ever, it remains unclear whether FGR induces primary
changes in the heart that might predispose to cardiovascular
dysfunction later in life.

Clinical Perspective on p 2436

It has long been known that intrauterine growth retardation
is associated with dilated cardiomyopathy–like changes in
utero.7 Recent studies have demonstrated that fetuses8,9 and
newborns10 with severe forms of growth restriction have
significant changes in fetal cardiac function parameters and
natriuretic peptides. In addition, newborns with FGR have an
increase in aortic intima-media thickness,11 which supports
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the existence of vascular remodeling. Experimental studies
suggest that subclinical cardiovascular abnormalities in fe-
tuses exposed to growth restriction persist into adulthood,12

but it is unknown whether this effect occurs in humans.
In the present study, we evaluated the hypothesis that

adaptation to growth restriction induces persistent cardiovas-
cular changes in children. From a prospective perinatal
registry, we selected a cohort of FGR children classified into
categories as having mild or severe growth restriction, as well
as a cohort of normally grown children matched for gesta-
tional age at delivery. We evaluated the association between
FGR and echocardiographic structural and functional mea-
surements in childhood.

Methods

Study Populations
The study design was a prospective cohort study that included 80
case subjects with FGR and 120 control subjects with birth weight
appropriate for gestational age identified in fetal life and followed up
into childhood. The source population comprised all pregnancies
cared for from January 2002 to October 2007 at a tertiary referral
university hospital in Barcelona, Spain, which covers an inner city
area of approximately 0.6 million inhabitants, who were registered in
a database prospectively constructed at the time of delivery
(n�25 350). Case subjects were considered noneligible in the
presence of any of the following: Congenital malformations or
chromosomal defects, evidence of fetal infection, or multiple mono-
chorionic pregnancy. Eligible case subjects were infants with a birth

Figure 1. Flow diagram of children in the study groups. AGA indicates control subjects; UAD, umbilical artery Doppler.

2428 Circulation June 8, 2010

 by guest on May 19, 2013http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


weight below the 10th percentile according to local standards13 for
whom full prenatal information was available, including umbilical
artery Doppler. For the purposes of the present study, FGR was
classified as mild when umbilical artery Doppler was normal
(pulsatility index �2 SDs) and severe FGR when it was abnormal
(pulsatility index �2 SDs).5 From the eligible population of 837
fetuses with growth restriction identified in fetal life and followed up
into childhood, case subjects were randomly sampled and invited to
participate in the study until a final study population of 40 case
subjects with mild FGR and 40 with severe FGR was completed, in
accordance with the sample-size requirements. A reference cohort of
children born with a normal birth weight (�10th percentile) ran-
domly sampled from pregnancies delivered at our institution were
selected as a control group. Noneligibility criteria for control
subjects were the same as for case subjects. Control subjects were
matched 2-to-1 with mild FGR case subjects and 1-to-1 with severe
FGR case subjects according to gender, birth date (�6 months), and
gestational age at delivery (�1 week), calculated by first-trimester
crown–rump length measurement. The study protocol was approved
by the Hospital Clinic Ethics Committee, and written parental
consent was obtained for all study participants. Figure 1 shows a
flow diagram of the study population.

Study Protocol and Follow-Up
The study protocol consisted of a medical examination, echocardi-
ography, and ultrasound carotid assessment. A blood sample extrac-

tion was also proposed, but if parents rejected it, the case subject was
not excluded from the study. Anthropometric data, including each
child’s height, weight, and body mass index, were gathered at the
time of the study examination, and their percentiles were calculated
according to local reference values.

Cardiac Morphometry and Function
All echocardiographic examinations were performed according to a
standardized protocol with a Siemens Sonoline Antares ultrasound
system (Siemens Medical Systems, Malvern, Pa) with a 2- to
10-MHz phased-array transducer. An ECG was registered continu-
ously during echocardiography. A complete 2-dimensional,
M-mode, and Doppler echocardiographic examination was per-
formed initially to assess structural heart integrity and morphometry.
Linear measurements of base-to-apex length and basal diameter of
left and right ventricles were determined from 2-dimensional images
from an apical 4-chamber view at end diastole (Figure 2) according
to a standardized protocol, and sphericity index was calculated as
base-to-apex length/basal diameter.14 Left ventricular end-diastolic
septum and posterior wall thicknesses were measured by M-mode
echocardiography from a parasternal long-axis view. Relative wall
thickness was calculated as (posterior�septal wall thickness)/end-
diastolic cavity diameter. Left ventricular ejection fraction (%) was
obtained from 2-dimensional apical 4-chamber and 2-chamber views
and calculated by Simpson’s rule. Left cardiac output was calculated
as follows: Cross-sectional aortic annulus area�aortic flow velocity

Figure 2. Echocardiographic images in a control
subject and an FGR case subject. Top, Two-
dimensional apical 4-chamber views at end diasto-
le illustrating the more globular cardiac shape in
FGR and showing the left ventricular longitudinal
and transverse diameter measurement. Bottom,
Spectral and tissue Doppler waves illustrating the
increase of mitral early diastolic (E) deceleration
time and E/E� ratio, as well as the decrease of
early diastolic (E�) and systolic (S�) myocardial
peak velocities in FGR compared with control
subjects.
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integral�heart rate per minute. The internal diameter of the aortic
annulus (with open valve) was measured from the 2-dimensional
image in the parasternal long-axis view. The ascending aortic
flow-velocity integral was measured with pulsed Doppler from an
apical 5-chamber view. Peak early (E) and late (A) transvalvular
filling velocities, E/A ratio, and deceleration time of E velocity were
measured from mitral and tricuspid inflow velocities from an apical
4-chamber view. Isovolumic left ventricular relaxation time was

measured from the end of the aortic wave to the beginning of the
mitral early-filling wave. Mitral and tricuspid longitudinal motion
was assessed by M-mode echocardiography from an apical
4-chamber view. Tissue Doppler imaging was applied in the spectral
Doppler mode to record systolic (S�) and early diastolic (E�) peak
myocardial velocities at the mitral lateral and septal annulus and the
tricuspid lateral annulus from an apical 4-chamber view and mea-
sured in real time during the echocardiographic study. Mitral lateral

Table 1. Baseline Characteristics of the Study Groups

Characteristic Controls (n�120) Mild FGR (n�40) Severe FGR (n�40) Linear Tendency P

Male sex, % 46 40 38 0.560

White race, % 95 98 90 0.342

Low socioeconomic level, % 3 0 8 0.406

Familial early cardiovascular history, %† 17 10 27 0.121

Maternal characteristics

Age, y 33�4 33�4 32�5 0.417

Height, cm 163�55 160�68* 162�74 0.209

Weight, kg 62�11 57�6* 65�12 0.313

BMI, kg/m2 22 (21–25) 22 (20–24) 23 (21–27) 0.077

Smoking, cigarettes/d 0 (0–3) 0 (0–10) 0 (0–7) 0.904

Primiparity, % 64 73 70 0.539

Paternal characteristics

Age, y 35�5 35�4 35�6 0.882

Height, cm 177�67 174�55 174�80 0.134

Weight, kg 79�11 77�11 79�12 0.668

BMI, kg/m2 25 (24–27) 25 (24–27) 26 (24–28) 0.376

Smoking, cigarettes/d 0 (0–10) 0 (0–5) 4 (0–15) 0.011

Pregnancy complications

In vitro fecundation 4 3 5 0.845

Preeclampsia 1 3 38* �0.001

Gestational diabetes 3 15* 3 0.016

Prenatal glucocorticoid exposure

Born preterm, % 85 ‡ 88 0.378

Born at term, % 0 0 ‡

Prenatal ultrasound

Umbilical artery pulsatility index, z scores 0 (�1–1) 0 (�1–1) 6 (4–8)* �0.001

Middle cerebral artery pulsatility index, z scores 0 (�1–1) �1 (�1–1)* �3 (�3–�2)* �0.001

Ductus venosus pulsatility index, z scores 0 (�1–1) �1 (�1–0) 1 (0–2) 0.241

Gestational age at delivery, wk 38 (34–40) 40 (39–40)* 32 (30–34)* �0.001

Birth weight, g 3150 (2300–3550) 2630 (2505–2738)* 1065 (875–1402)* �0.001

Birth weight percentile 55 (31–81) 3 (1–3)* 0 (0–0)* �0.001

Umbilical artery pH 7.30 (7.25–7.35) 7.24 (7.17–7.28)* 7.24 (7.17–7.27)* 0.002

Days in neonatal intensive care unit 0 (0–5) 0 (0–3) 30 (27–60)* �0.001

Major neonatal morbidity, %§ 7 0 34* �0.001

Breastfeeding, mo 4 (2–8) 5 (2–11) 4 (4–6) 0.927

Postnatal corticoid exposure, % 4 8 8 0.585

Postnatal growth hormone treatment, % 0 0 3 0.997

BMI indicates body mass index.
Data are mean�SD or median (interquartile range).
*P�0.05 compared with controls, calculated by linear or logistic regression.
†Defined as early cardiovascular disease (including congenital heart disease, coronary disease, hypertension, diabetes, or hypercholesterolemia)

in expanded first-degree pedigree (male �55 years old; female �65 years old).
‡Not applicable (no mild cases born preterm or severe cases born at term).
§Major neonatal morbidity defined by the presence of bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular hemorrhage,

periventricular leukomalacia, retinopathy, persistent ductus arteriosus, or sepsis.
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and septal E/E� ratios were measured as described previously.15

When blood was available, B-type natriuretic peptide concentrations
were measured with the Siemens ADVIA Centaur B-type natriuretic
peptide assay.

Vascular Assessment
Systolic and diastolic blood pressures were obtained at the
beginning of the medical evaluation by a trained nurse while the
child was seated after having rested for 5 to 10 minutes. Right and
left carotid arteries were scanned according to a standardized
protocol with a 13-MHz linear-array transducer. Longitudinal
clips of the far wall of both carotid arteries were obtained
approximately 1 cm proximal to the bifurcation, with the ECG
recorded continuously. Carotid intima-media thickness (cIMT)
measurements were performed offline based on a trace method
with the assistance of a computerized program (Siemens Syngo
Arterial Health Package). To obtain cIMT, 2 end-diastolic frames
were selected and analyzed for mean intima-media thickness and
diameter, and the average reading from these 2 frames was
calculated for both right and left carotid arteries. Circumferential
wall stress was calculated as follows: (Mean blood
pressure�mean diastolic carotid diameter)/2�cIMT.

Statistical Analysis
The primary outcomes were cardiac dimensions and function. E/E�
ratio and S� were used to calculate sample size because of the high
reported sensitivity to detect preclinical cardiac dysfunction in
children.16–19 The sample size was calculated to enable us to observe
a difference of 20% in E/E� and S� between the group of case
subjects with severe FGR and control subjects, with 85% power and
a 5% type I risk. Basal mean and within-group standard deviations
were estimated according to published normative data in chil-
dren,18,19 which resulted in a required sample of 40 individuals in
each group for E/E� and 25 for S�. Conservatively, a sample size of
40 individuals in each group was designed. Data are presented as
mean�SD, median (interquartile range), or percentages, as appro-
priate. Paired comparisons between the study and control groups
were adjusted for age, gender, gestational age at delivery, body
surface area, heart rate, and the presence of preeclampsia or
gestational diabetes by linear (general linear model) or logistic
regression analysis. In addition, a linear polynomial orthogonal
contrast was also constructed for each model to test the hypothesis of
a linear association across FGR-severity groups. Children were
categorized into groups of control subjects, mild FGR, and severe
FGR. All reported P values are 2-sided. The software statistical
package SPSS 15.0 (SPSS, Chicago, Ill) was used for the statistical
analysis.

Results
Anthropometric, echocardiographic, and vascular data were
obtained from all patients included in the study. Parents
agreed to permit blood sampling in 42.5% of controls, 55% of
those with mild FGR, and 82.5% of those with severe FGR.

Baseline and Follow-Up Characteristics
Baseline characteristics are shown in Table 1. The study
groups were similar in terms of maternal, paternal, and
familial characteristics, with the exception of shorter parental
height in children with mild FGR than in control subjects. As
expected, mothers of FGR children had a greater occurrence
of pregnancy complications, and these children had worse
prenatal Doppler ultrasound findings, worse umbilical artery
pH, and longer admittance in a neonatal intensive care unit.

Follow-up characteristics at the time the children were
assessed are shown in Table 2. The age range was 2 to 6
years. At the time of evaluation, FGR children showed a
linear tendency to lower height and weight values, with
similar results for body mass index, compared with control
subjects. All case subjects were asymptomatic, and none of
them received treatment with diuretics.

Cardiac Morphometry and Function
Results of cardiac morphometry and function studies are shown
in Table 3 and Figures 2 and 3. Cardiac shape was altered
significantly, with the left and right sphericity indexes decreased
significantly in children with mild and severe FGR. Interven-
tricular septum, left posterior wall thickness, and relative wall
thickness showed similar values in all study groups.

Although left ventricular ejection fraction and B-type
natriuretic peptide were similar among the study groups,
stroke volume was changed significantly, which was com-
pensated for by a significantly increased heart rate to main-
tain output in children with severe FGR, with a significant
tendency for decreased stroke volume and increased heart
rate across FGR-severity groups. Systolic mitral and tricuspid
ring displacements were decreased significantly in mild and
severe FGR case subjects compared with control subjects.
Children with severe FGR showed significantly lower longi-
tudinal S� in mitral lateral, mitral septal, and tricuspid annulus

Table 2. Follow-Up Characteristics of the Study Groups

Characteristic Controls (n�120) Mild FGR (n�40) Severe FGR (n�40) Linear Tendency P

Age, y† 4.5 (2.6–5.6) 4.6 (3.4–4.9) 4.1 (2–4.7) 0.654

Anthropometric data

Height, cm 109 (88–117) 105 (96–110) 94 (80–107)* 0.002

Height percentiles 52 (48–56) 50 (47–52) 48 (43–51)* 0.001

Weight, kg 18 (13–22) 16 (14–19)* 14 (11–18)* 0.369

Weight percentiles 49 (30–73) 37 (14–62)* 24 (9–47)* 0.212

Body mass index, kg/m2 16 (15–17) 15 (15–17)* 16 (15–17) 0.480

Obesity, %‡ 5 0 5 0.352

BMI indicates body mass index.
Data are median (interquartile range).
*P�0.05 compared with controls, calculated by linear or logistic regression adjusted for gender, age, gestational age at delivery,

body surface area, heart rate, and association with preeclampsia or gestational diabetes.
†Children’s age is corrected by gestational age at delivery.
‡Obesity defined as body mass index above 95th percentile for age and gender.
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than control subjects, with a significant linear tendency to
lower values across FGR-severity stages.

Although mitral and tricuspid E/A ratios and isovolumic
left ventricular relaxation time were similar among study
groups, mitral E deceleration time was increased significantly
in mild and severe FGR with respect to control subjects.
Tricuspid E deceleration time was increased significantly in
children with severe FGR, although there was a significant

linear tendency for an increase across severity groups. Chil-
dren with severe FGR showed significantly lower longitudi-
nal E� in mitral lateral, mitral septal, and tricuspid annulus
than control subjects, with a significant linear tendency to
lower values across FGR-severity stages. Mitral lateral and
septal E/E� ratios were significantly higher in children with
severe FGR than in control subjects, with a significant linear
trend to higher values across severity stages.

Table 3. Cardiac Outcome of Study Groups

Characteristic Controls (n�120) Mild FGR (n�40) Severe FGR (n�40) Linear Tendency P

Cardiac morphometry†

Left ventricle

Base-to-apex length, mm 49 (34–63) 43 (33–53)* 40 (27–50)* �0.001

Basal diameter, mm 26 (19–40) 30 (26–38)* 30 (22–37)* �0.001

Sphericity index 1.8 (1.3–2.3) 1.4 (1.1–1.7)* 1.3 (1.1–1.7)* �0.001

Interventricular septum, mm 6.8 (6.1–7.9) 6.7 (5.8–7.3) 6.4 (5.8–6.4) 0.352

Left posterior wall, mm 6.7 (6.1–7.3) 6.7 (5.8–7.5) 6.4 (5.9–6.9) 0.449

Relative wall thickness 0.40 (0.35–0.46) 0.40 (0.36–0.46) 0.40 (0.35–0.49) 0.832

Right ventricle

Base-to-apex length, mm 39 (25–53) 35 (28–49)* 34 (22–45) 0.557

Basal diameter, mm 25 (16–33) 26 (20–33)* 25 (17–33)* �0.001

Sphericity index 1.6 (1.2–2.4) 1.4 (1.1–1.9)* 1.4 (0.9–1.8)* �0.001

Cardiac function

Systolic function

Left stroke volume, mL 28 (13–52) 30 (18–47) 22 (11–43)* 0.003

Heart rate, bpm 94 (67–178) 101 (79–127) 112 (81–180)* 0.026

Left cardiac output, L/min 2.6 (2.3–3.2) 3.1 (2.8–3.7)* 2.7 (2–2.9)* 0.004

Left ejection fraction, % 69 (50–88) 70 (56–87) 72 (59–91) 0.916

Mitral ring displacement, mm 12.5 (10.8–14.3) 9.6 (8.4–10.6)* 9.1 (8.2–10.7)* �0.001

Tricuspid ring displacement, mm 16.9 (15–18.9) 15.8 (13.6–17.4)* 11.6 (10.6–13.4)* �0.001

Mitral lateral S�, cm/s 10 (8–17) 9 (8–15) 9 (6–13)* �0.001

Mitral septal S�, cm/s 10 (7–15) 9 (8–12)* 9 (7–11)* �0.001

Tricuspid S�, cm/s 15 (11–21) 15 (12–24) 14 (10–19)* 0.033

Diastolic function

Mitral E wave, cm/s 101 (98–11) 103 (97–11) 105 (93–11) 0.638

Mitral A wave, cm/s 62 (61–76) 60 (51–66) 70 (56–71) 0.526

Mitral E/A ratio 1.7 (1.1–2.9) 1.7 (1.2–2.4) 1.5 (1.1–2.7) 0.505

Tricuspid E wave, cm/s 67 (61–79) 64 (60–71) 70 (59–72)* 0.013

Tricuspid A wave, cm/s 47 (42–58) 44 (39–52) 49 (42–53) 0.247

Tricuspid E/A ratio 1.4 (1–3.5) 1.5 (0.9–2.2) 1.3 (1–2.2) 0.348

Left isovolumic relaxation time, ms 56 (40–80) 60 (40–88) 56 (40–76) 0.855

Mitral E deceleration time, ms 88 (52–128) 96 (56–148)* 100 (56–160)* �0.001

Tricuspid E deceleration time, ms 107 (56–160) 105 (64–156) 115 (52–160)* 0.001

Mitral lateral E�, cm/s 19 (12–28) 18 (13–23) 16 (10–24)* 0.004

Mitral septal E�, cm/s 15 (11–19) 15 (12–18) 14 (11–24)* 0.001

Tricuspid E�, cm/s 20 (11–29) 19 (11–23) 18 (14–26)* 0.001

E/E� (lateral) 5.4 (3.9–8.3) 5.6 (3.3–8.5) 6.3 (4.1–10.8)* 0.001

E/E� (septal) 6.7 (4.7–9.4) 6.8 (3.7–9.4) 7.4 (4.5–10.2)* 0.001

B-type natriuretic peptide, pg/mL 12 (0–63) 12 (0–39) 13 (0–41) 0.730

Data are median (interquartile range).
*P�0.05 compared with controls, calculated by linear or logistic regression adjusted for gender, age, gestational age at delivery, body surface area,

heart rate, and association with preeclampsia or gestational diabetes.
†Cardiac morphometry results measured in end diastole.
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Vascular Assessment
Results of vascular assessment are displayed in Table 4 and
Figure 4. Systolic and diastolic blood pressures were signif-
icantly higher in the mild and severe FGR groups. cIMT was
increased significantly in children with severe FGR, even
after adjustment for systolic blood pressure (linear tendency
P�0.001; linear regression comparing control subjects and
children with severe FGR P�0.001). Circumferential wall
stress values were significantly higher in both the mild and
severe FGR groups. There was a significant linear trend for
higher values in relation to severity of FGR for all parameters
evaluated.

Discussion
The present study provides direct clinical evidence that
children with FGR show changes in cardiac morphology,
subclinical cardiac longitudinal dysfunction, and arterial re-
modeling, all of which increase linearly with the severity of
growth restriction. The findings support the existence of
direct cardiac programming in FGR and suggest a new
mechanistic pathway for the association between fetal growth
and cardiovascular disease. The most striking finding was
that children with FGR have a distinct cardiac geometry and
shape, with less elongated and more globular ventricles.
Morphometric measurements confirmed quantitatively an
overall increase in transverse cardiac diameters, which led to
apparent dilatation of the ventricular cavities. The data are in
line with postmortem studies in human FGR that described

hypoplasia in myocardial fibers.20 These findings are also in
agreement with our recent animal studies that showed the
persistence of dilated cardiomyopathy–like features in utero
into adulthood in a chick model of FGR under chronic
hypoxia.12

The globular cardiac shape observed in children with FGR
is most likely the result of changes in cardiac development
induced by the working conditions of the fetal heart. The
intrauterine state of chronic hypoxia and undernutrition,21

together with increased placental vascular resistance,22 results
in a combined pressure and possibly volume overload of the
fetal heart,22,23 which induces abnormal cardiac function.8,9,22

The resulting increased wall stress on the developing myo-
cardial fibers should trigger a cardiac remodeling response to
compensate for local stress. In normal conditions, acquired
mild pressure overload leads to hypertrophy in the region of
highest stress24; however, in the developing heart under
conditions of sustained hypoxia and undernutrition, the myo-
cardium might be unable to develop hypertrophic changes.
Consequently, increased wall stress can only be compensated
for by an increase in the local radius of curvature, which
results in dilated changes and a more spherical cavity.

Therefore, as observed in the present study, children who
were exposed to FGR will have intrinsically differently
shaped hearts. It is likely that this is accompanied by
stabilized changes in muscle fiber architecture,25 because
myocardial shape and fiber orientation are determined by
stress and strain conditions.26,27 A more globular ventricle,

Table 4. Vascular Outcome of Study Groups

Characteristic Controls (n�120) Mild FGR (n�40) Severe FGR (n�40) Linear Tendency P

Systolic blood pressure, mm Hg 100 (80–130) 105 (90–115)* 110 (90–120)* 0.019

Diastolic blood pressure, mm Hg 65 (45–90) 70 (57–85)* 70 (60–85)* �0.001

cIMT, mm 0.37 (0.29–0.47) 0.38 (0.32–0.43) 0.41 (0.37–0.44)* �0.001

Circumferential wall stress, mm Hg 72 (29–120) 78 (61–109)* 84 (58–102)* �0.001

Data are median (interquartile range).
*P�0.05 compared with controls, calculated by linear or logistic regression adjusted for gender, age, gestational age at delivery, body surface area,

heart rate, and association with preeclampsia or gestational diabetes.

Figure 3. Results for left ventricle (LV) sphericity index, left stroke volume, and mitral annular E/E� ratio in control subjects and subjects
with FGR. Data are mean�SD. *P�0.05 compared with control subjects.
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with potentially a different architecture, is not as efficient in
generating the normal stroke volume,28 which results in the
need for an increased heart rate to maintain cardiac output, as
observed in the present study. Because diastolic function
depends on ventricular shape and torsion, as generated by the
normal fiber architecture,29 it was not unexpected that addi-
tional changes in diastolic parameters were found. Cardiac
remodeling observed in FGR children in the present study
might explain the increased risk of cardiovascular disease
described in epidemiological studies on FGR.3 Although the
remodeled ventricles could compensate for their lower effi-
ciency in childhood, any additional changes in their working
conditions (eg, hypertension, ischemia, or arrhythmias) at a
later age would result in an abnormally high increase in local
wall stress and dilatation, because further shape adaptation of
the ventricle is not possible.

The present study confirms and extends previous findings
documenting a significantly increased carotid wall thick-
ness11 in children with FGR. Increased cIMT had been
reported previously in newborns with FGR,11 and the present
results demonstrate that these changes persist into childhood.
The increased arterial wall thickness is most likely the result
of the overall pressure and possibly volume overload in the
fetal circulation, in which vascular wall stress induces hyper-
trophy of the intima-media layer. In childhood, the remodeled
arteries, now working under normal loading conditions, will
produce an increased peripheral resistance and an elevation in
blood pressure, which may contribute to increased cIMT.30

Both elevated blood pressure and cIMT are additional ac-
cepted risk factors for future cardiovascular disease. How-
ever, because the hearts of FGR children did not demonstrate
the hypertrophic changes characteristic of hypertensive car-
diomyopathy, the cardiac changes in children with FGR are
primary and not secondary.

There are several limitations and considerations of the
present study. Because of the observed cardiac shape change
in FGR, some of the echocardiographic measurements based
on geometric assumptions such as the Simpson rule should be
interpreted cautiously. The changes reported here are subclin-
ical, and the long-term association with adult cardiovascular
function and disease remains to be further proven. Further-
more, although the effect of prematurity and consequently of
severe neonatal morbidity was accounted for in the study
design, we cannot completely rule out the possibility that
changes in FGR children could be a consequence of a more
morbid neonatal course that results in cardiovascular stress.

The study was not designed to assess the effect of other
factors on cardiovascular function. In the present study,
cardiac changes were independent of obesity or an abnormal
lipid profile, but the prevalence of these risk factors was very
low in the present setting (online-only Data Supplement). The
existence of metabolic programming in FGR is well demon-
strated,6 and the potential interactions between metabolic and
cardiac programming in the risk of cardiovascular disease in
these patients remains to be elucidated. The impact of gender
was also addressed, and cardiovascular differences were
equally observed in males and females (online-only Data
Supplement), but we acknowledge that we may have lacked
statistical power to detect subtle gender-associated differ-
ences. FGR children born preterm were compared with case
subjects born at similar gestational age. The present findings
are in line with recent studies that suggest that prematurity is
not associated with fetal cardiovascular programming.4 We
acknowledge that the pooling of control subjects regardless of
gestational age might be regarded as a potential limitation;
however, term and preterm control subjects showed similar
results (online-only Data Supplement), and all comparisons
were adjusted by gestational age at delivery.

Figure 4. Ultrasound carotid images in a
control subject and a case subject with
FGR illustrating the increase of cIMT in
FGR compared with control.
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Exposure to prenatal glucocorticoids was also similar, and
in addition, the influence of corticoids in cardiac function has
been discounted recently in a large cohort study.31 Even
though approximately half of the severe cases of FGR were
associated with preeclampsia, it has been reported recently
that the presence of preeclampsia does not influence fetal
cardiac function in severe FGR32; however, we acknowledge
that the association with preeclampsia could in some cases be
a form of familial predisposition. Consequently, analyses
were adjusted by potential confounders such as body surface
area, heart rate, or association with preeclampsia or gesta-
tional diabetes. Finally, other potential confounders such as
socioeconomic status, race, familial early cardiovascular
history, breastfeeding, parity, and parental smoking were
similar among study groups.

In summary, the present study provides evidence of an
association between FGR and cardiac remodeling and longi-
tudinal dysfunction in childhood that shows a linear increase
with the severity of growth restriction and is independent of
gestational age at delivery, lipid profile, or body mass index.
The importance of early identification and intervention in
pediatric risk factors for cardiovascular disease is now well
recognized33; however, FGR is not listed among the condi-
tions presumed to increase cardiovascular risk in current
consensus guidelines.33 FGR affects 5% to 10% of all
newborns, and therefore, the findings of the present study
concern thousands of children each year. Primary cardiac
programming might be one of the causes of increased
cardiovascular mortality in adults born with FGR, and this
may open new opportunities for monitoring and intervention
in newborns and children affected with this condition. The
present study identifies several therapeutic targets that could
be used in future clinical trials. If these findings are con-
firmed, the impact of strategies33–35 with beneficial effects on
cardiac remodeling should be explored in FGR children.
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CLINICAL PERSPECTIVE
The present study provides evidence that fetal growth restriction, a condition that affects 5% to 10% of all newborns, is
associated with cardiac remodeling and longitudinal myocardial dysfunction in childhood. This association shows a linear
increase with the severity of growth restriction and is independent of gestational age at delivery. From a pathophysiological
perspective, the results of the study are relevant because they may help to clarify the long-described epidemiological
relationship between fetal growth restriction and increased cardiovascular mortality in adulthood. This may result in new
opportunities for monitoring and intervention beginning in early life. The present study identifies several therapeutic targets
that might be used in future clinical trials. From a public health perspective, the study is relevant because the importance
of early identification and intervention in pediatric risk factors for cardiovascular disease is now well recognized; however,
fetal growth restriction is not listed among the cardiovascular risk factors in current consensus guidelines. Public health
strategies focused at targeting infants affected by fetal growth restriction would involve thousands of children yearly and
could reduce the cardiovascular risk of these children when they reach an elderly age.
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Fetal growth restriction results in remodeled and less efficient 
hearts in children 
 

Fàtima Crispi, Bart Bijnens, Francesc Figueras, Joaquim Bartrons, Elisenda Eixarch, 

Ferdinand Le Noble, Asif Ahmed, Eduard Gratacós. 

 

SUPPLEMENTAL MATERIAL 

 

Supplemental Methods 

Study protocol and follow-up 

Parents accepting to participate in the study were given an appointment for a single visit in 

which all examinations contemplated in the study were performed. The study protocol 

consisted in a medical examination and a dietary questionnaire. A blood sample extraction 

was also proposed but, if parents rejected it, the case was not excluded from the study. The 

study was completed by a detailed echocardiography and ultrasound carotid assessment. 

The follow-up team consisted of a research nurse trained to perform the medical evaluation 

(including height, weight and blood pressure), blood sample extraction and dietary 

questionnaire, and two experienced physicians (F.C., J.B.) who performed echocardiography 

and carotid assessment.  

Perinatal, including fetal ultrasound and Doppler exams, demographic and neonatal data 

were already recorded in the database, but were confirmed by review of medical records and 

clinical databases and by parental interview at the time of study evaluation. Low 

socioeconomic class was defined as routine occupation, long-term unemployment or never 

worked, for both the pregnant woman and her partner, according to the UK National 

Statistics Socio-Economic Classification.1 Familiar early cardiovascular history was defined 

as the presence of early cardiovascular disease (including congenital heart disease, 

coronary disease, hypertension, diabetes or hypercholesterolemia) in expanded first degree 
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pedigree (male<55 years; female <65 years). Preeclampsia was defined as blood pressure 

>140/90 mmHg on two occasions at least 4 h apart and proteinuria >300 mg/24 h.2 Prenatal 

Doppler ultrasound examinations were performed by a Siemens Sonoline Antares (Siemens 

Medical Systems, Malvern, PA, USA) or a Voluson 730 Expert (GE Medical Systems, 

Milwaukee, WI, USA) with 6-4 MHz linear curved array probes. The examination included: 

umbilical artery pulsatility index calculated from three or more consecutive waveforms 

obtained from a free-floating portion of the umbilical cord during the absence of fetal 

movement, at insonation angles <30º; middle cerebral artery pulsatility index measured 

distally to the junction of the internal carotid artery in a transverse view of the fetal skull at the 

level of the circle of Willis; and ductus venosus pulsatility index measured either in a mid 

sagittal view of the fetal thorax or in a transversal plane through the upper abdomen prior to 

its entrance to the inferior vena cava, positioning the Doppler gate at the ductus venosus 

isthmic portion. All prenatal Doppler measurements were converted into Z-scores (standard 

deviations from the gestational age mean).3-4 Major neonatal morbidity was defined by the 

presence of bronchopulmonary dysplasia, necrotizing enterocolitis, intraventricular 

hemorrhage, periventricular leukomalacia, retinopathy, persistent ductus arteriosus or sepsis. 

Anthropometric data including child’s height, weight and body mass index were measured at 

the time of the study examination, and their percentiles were calculated according to local 

reference values.5 

Two children were excluded because of structural heart defect (atrial septal defect and 

persistent ductus arteriosus) diagnosed at the time of the study and referred to the 

Department of Pediatric Cardiovascular Surgery of Hospital Sant Joan de Déu. 

Children with hypertension (blood pressure above 95th percentile for age, gender and 

height), abnormal lipid profile or suboptimal nutritional status were referred to their 

pediatrician for follow-up and treatment. 

 

Nutritional and lipid/glucose profile 
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Nutritional status was assessed by questionnaires in which parents reported the child’s 

weighted food and beverages diaries consumed for 3 days. Nutrient analysis for such diet 

was performed with DietSource Junior 1.1.23 software provided by Nestle Healthcare 

Nutrition S.A. (Esplugues de Llobregat, Spain). Mean intakes of dietary energy, protein, 

carbohydrate, fat, and saturated, monounsaturated and polyunsaturated fatty acids were 

measured. Protein, carbohydrate and fat percentages were calculated from the total diet. 

Saturated monounsaturated and polyunsaturated fatty acids percentages were calculated 

from the total fat intake. 

Total cholesterol, high-density lipoprotein, triglyceride, glucose and C-reactive protein 

concentrations were measured by standard methods on an automatic analyzer (Olympus 

AU-400, Germany) in fasting blood samples. Low-density lipoprotein concentrations were 

calculated according to the Friedewald formula. 

 

Cardiac morphometry and function 

All echocardiographic exams were performed following a standardized protocol6-7 using a 

Siemens Sonoline Antares (Siemens Medical Systems, Malvern, PA, USA) with 2-10 MHz 

phased-array transducer. Children were studied when resting quietly or asleep. 

Electrocardiogram was registered continuously during echocardiography. All parameters 

were measured in 3 or 4 consecutive cardiac cycles and the average value was recorded.  

Vascular assessment 

Systolic and diastolic blood pressure was obtained at the beginning of the medical evaluation 

by a trained nurse while the child was sitting after resting 5 to 10 minutes. It was measured 

manually in the child’s right arm and determined from appearance (Korotkoff sound phase 1) 

and disappearance (Korotkoff sound phase 5) of pulsations auscultated over the braquial 

artery. Different cuffs were used adjusting to one third size of child’s arm. When blood 

pressure was considered elevated (>90th percentile according to standard reference values), 

a second measurement was performed and the lower measurement was recorded. 
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Right and left carotid arteries were scanned following a standardized protocol according to 

the American Society of Echocardiography8 and American Heart Association guidelines.9 

This technique has been validated in children showing an acceptable inter- and intra- 

observer variability.9-11 To determine carotid wall thickness reliability in our population, 50 

children were evaluated by the same operator and 30 children by two independent operators.  

Statistical analysis 

The primary outcomes were cardiac dimensions and function. E/E’ ratio and S’ were used to 

calculate sample size because of the high reported sensitivity to detect preclinical cardiac 

dysfunction in children.12-18 Increased E/E’ has been reported as a marker of diastolic 

dysfunction in children with obesity and familial hypercholesterolemia,12 exposure to 

chemotherapies with known cardiotoxic effects,13 cardiomyopathy14 and cardiac involvement 

in renal15 and connective tissue diseases.16 Moreover, S’ has been demonstrated to precede 

clinical cardiac dysfunction in a substantial number of conditions, such as inherited 

cardiomyopathies,14 anthracycline-induced cardiomyopathy,17 mitral and aortic regurgitation18 

and cardiac involvement in connective tissue diseases.16 
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Supplemental Results 

Nutritional and lipid/glucose profile 

Nutritional parameters and lipid/glucose profile showed similar values among all study 

groups (Table 5). 

 

Cardiac morphometry and function 

Cardiovascular results in males and females are shown in Tables 6a and 6b. The data were 

analyzed separately for males and females, and similar results were found for both gender 

groups. 

Table 7 shows cardiovascular results in term and preterm controls. 

There was no significant correlation between longitudinal-transverse ratio and body surface 

area was measured in controls (R2=0.029, P value=0.771). A significant positive correlation 

between longitudinal-transverse ratio and body surface area was measured in FGR cases 

(mild FGR: R2=0.377, P value=0.020; R2=0.505, P value=0.001). 

 

Vascular assessment 

Intraclass Correlation Coefficients for cIMT were 0.75 and 0.70 for intra- and inter- observer 

variability respectively.  
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Supplemental Tables 

 

Table 5: Nutritional parameters and lipid/glucose profile of the study groups 

Characteristic 
controls 
(N=120) 

mild FGR 
(N=40) 

severe FGR 
(N=40) 

Linear 
tendency 
P Value 

Nutritional assessment (N=114) (N=38) (N=37)  
Total energy (kcal) 1606±340 1522±374 1525±388 0.964 
Proteins (%) 18±6 18±3 18±3 0.818 
Carbohydrates (%) 48±9 49±7 49±7 0.645 
Fats (%) 34±6 34±5 33±6 0.325 
Saturated fatty acids (%) 38±7 38±7 40±7 0.415 
Monounsaturated fatty acids 
(%) 

34±6 36±5 34±5 0.198 

Polyunsaturated fatty acids 
(%) 

8±5 7±3 7±2 0.516 

     
Lipid and glucose profile (N=51) (N=22) (N=33)  

Total cholesterol (mg/dL) 160 
[142,185] 

174 
[147,194] 

168 
[137,189] 

0.811 

High-density lipoproteins 
(mg/dL) 

54 
[41,61] 

48 
[40,60] 

55 
[41,60] 

0.513 

Low-density lipoproteins 
(mg/dL) 

96 
[75,114] 

110 
[79,128] 

96 
[71,109] 

0.383 

Triglyceride (mg/dL) 73 
[59,98] 

53 
[43,110] 

78 
[63,110] 

0.703 

Glucose (mg/dL) 89 
[82,95] 

88 
[84,92] 

86 
[84,92] 

0.374 

C-reactive protein (mg/dL) 0.75 [0,1] 1 [0,5] 0.30 [0,2] 0.797 

Data are mean±SD or median [interquartile range].  
FGR = fetal growth restriction.  
* P-value<0.05 as compared to controls calculated by linear or logistic regression adjusted by gender, 
age, gestational age at delivery, body surface area, heart rate and association to preeclampsia or 
gestational diabetes.
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Table 6a: Cardiac and vascular outcome of the males in the study groups 

Characteristic 
Controls 
(N=55) 

mild FGR 
(N=16) 

severe FGR 
(N=15) 

Linear 
tendency 
P Value 

Cardiac morphometry†     
Left ventricle     

Base-to-apex length (mm) 49 [45,54] 41 [39,45]* 40 [36,44]* <0.001 
Basal diameter (mm) 27 [24,30] 31 [29,32]* 30 [27,33]* 0.013 
Longitudinal-transverse ratio 1.8 [1.7,1.9] 1.3 [1.3,1.4]* 1.3 [1.3,1.4]* <0.001 
Interventricular septum (mm) 7 [6,8] 7 [6,8] 6 [6,8] 0.033 
Left posterior wall (mm) 7 [6,8] 7 [6,8] 6 [6,6] 0.008 

Right ventricle     
Base-to-apex length (mm) 40 [36,44] 36 [32,41]* 34 [32,39]* 0.003 
Basal diameter (mm) 25 [20,28] 26 [25,28]* 26 [21,27]* 0.465 
Longitudinal-transverse ratio 1.7 [1.5,1.8] 1.4 [1.3,1.5]* 1.4 [1.3,1.6]* <0.001 

Cardiac function     
Systolic function     

Left stroke volume (mL) 29 [23,33] 27 [23,34] 23 [20,34]* 0.056 
Heart rate (bpm) 95 [85,112] 99 [88,110] 106 [102,118] 0.045 
Left ejection fraction (%) 69 [[2,72] 71 [67,74] 71 [66,74] 0.314 
Mitral ring displacement 
(mm) 

13 [10,15] 10 [9,11]* 9 [8,10]* <0.001 

Tricuspid ring displacement 
(mm) 

17 [15,19]* 14 [13,16]* 11 [10,14]* <0.001 

Mitral annular S’ (cm/s) 11 [9,12] 9 [9,10]* 8 [8,10]* <0.001 
Mitral septal S’ (cm/s) 10 [9,10] 9 [9,10] 9 [9,9]* 0.026 
Tricuspid S’ (cm/s) 16 [14,17] 15 [14,17] 15 [14,15] 0.151 

Diastolic function     
Mitral E/A ratio 1.7 [1.4,1.8] 1.6 [1.5,2] 1.5 [1.3,1.7] 0.596 
Tricuspid E/A ratio 1.4 [1.2,1.6] 1.6 [1.4,1.7] 1.2 [1.1,1.6] 0.187 
Left isovolumic relaxation 
time (ms) 

56 [48,64] 52 [49,62] 56 [52,56] 0.897 

Mitral E deceleration time 
(ms) 

88 [76,96] 96 [76,114]* 96 [88,102]* 0.011 

Tricuspid E deceleration time 
(ms) 

104 [96,124] 112 [92,124] 120 [100,128] 0.186 

Mitral annular E’ (cm/s) 18 [17,21] 17 [17,20] 16 [14,18]* 0.002 
Mitral septal E’ (cm/s) 15 [14,16] 15 [14,16] 14 [13,15]* 0.008 
Tricuspid E’ (cm/s) 20 [19,21] 20 [19,21] 20 [19,20] 0.215 
Annular E/E’ 5.5 [4.6,6.2] 5.5 [5.2,6] 6.1 [5.6,8]* 0.001 
Septal E/E’ 6.9 [6.2,7.4] 6.9 [6.1,7.8] 7.3 [6.7,8.8]* 0.005 

B-type natriuretic peptide (pg/mL) 11 [7,15] 13 [10,14] 13 [12,18] 0.678 
Vascular assessment     
Systolic blood pressure (mmHg) 100 [98,110] 107 [105,113] 110 [105,110]* 0.041 
Diastolic blood pressure (mmHg) 65 [60,70] 70 [65,75]* 70 [70,75]* 0.015 
Carotid mean intima-media thickness 
(mm) 

0.38 
[0.36,0.40] 

0.38 
[0.36,0.40] 

0.41 
[0.40,0.42]* 

0.001 

Circumferential wall stress (mmHg) 77 [68,85] 83 [78,93] 95 [89,98]* 0.047 
Data are median [interquartile range].  
FGR = fetal growth restriction. BMI = body mass index. 
* P-value<0.05 as compared to controls calculated by linear or logistic regression. 
† Cardiac morphometry measured in end-diastole. 
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Table 6b: Cardiac and vascular outcome of the females in the study groups 

Characteristic 
Controls 
(N=65) 

mild FGR 
(N=24) 

severe FGR 
(N=25) 

Linear 
tendency 
P Value 

Cardiac morphometry†     
Left ventricle     

Base-to-apex length (mm) 48 [41,52] 45 [38,47]* 40 [32,43]* <0.001 
Basal diameter (mm) 26 [23,28] 30 [28,32]* 30 [27,31]* <0.001 
Longitudinal-transverse ratio 1.8 [1.7,2] 1.5 [1.3,1.6]* 1.3 [1.2,1.4]* <0.001 
Interventricular septum (mm) 7 [6,8] 7 [6,7] 6 [6,7] 0.089 
Left posterior wall (mm) 6 [6,7] 6 [6,7] 6 [6,7] 0.324 

Right ventricle     
Base-to-apex length (mm) 36 [31,42]  35 [32,39] 33 [28,37] 0.012 
Basal diameter (mm) 24 [20,27] 26 [23,28] 24 [22,27]* 0.989 
Longitudinal-transverse ratio 1.5 [1.4,1.7] 1.4 [1.3,1.5]* 1.3 [1.2,1.5]* 0.002 

Cardiac function     
Systolic function     

Left stroke volume (mL) 28 [24,33] 27 [24,32] 19 [17,24]* <0.001 
Heart rate (bpm) 94 [90,107] 103 [90,108] 114 [104,122] 0.001 
Left ejection fraction (%) 69 [64,73] 70 [66,74] 71 [67,77] 0.056 
Mitral ring displacement 
(mm) 

12 [11,13] 9 [8,10]* 10 [8,10]* <0.001 

Tricuspid ring displacement 
(mm) 

17 [16,18] 16 [14,18] 12 [11,13]* <0.001 

Mitral annular S’ (cm/s) 10 [9,11] 10 [9,11] 9 [8,11]* 0.011 
Mitral septal S’ (cm/s) 10 [9,10] 9 [8,10] 9 [8,9]* 0.002 
Tricuspid S’ (cm/s) 15 [14,17] 16 [14,17] 14 [13,15]* 0.006 

Diastolic function     
Mitral E/A ratio 1.7 [1.3,19] 1.7 [1.6,1.9] 1.5 [1.3,1.7] 0.274 
Tricuspid E/A ratio 1.4 [1.2,1.6] 1.4 [1.3,1.7] 1.4 [1.2,1.7] 0.651 
Left isovolumic relaxation 
time (ms) 

56 [52,64] 64 [54,64] 54 [48,58] 0.111 

Mitral E deceleration time 
(ms) 

88 [76,96] 96 [86,104]* 106 [92,114]* <0.001 

Tricuspid E deceleration time 
(ms) 

108 [96,120] 100 [90,112] 114 [104,132]* 0.101 

Mitral annular E’ (cm/s) 18 [17,20] 19 [17,19] 16 [15,18] 0.004 
Mitral septal E’ (cm/s) 15 [14,17] 16 [15,17] 14 [13,15] 0.099 
Tricuspid E’ (cm/s) 19 [18,21] 19 [18,22] 18 [17,20]* 0.030 
Annular E/E’ 5.2 [4.9,6.4] 5.7 [5.3,6.3] 6.4 [5.6,7.7]* <0.001 
Septal E/E’ 6.5 [5.8,7.4] 6.7 [5.9,7.4] 7.4 [6.9,7.9]* 0.005 

B-type natriuretic peptide (pg/mL) 12 [8,22] 12 [6,13] 12 [7,23] 0.522 
Vascular assessment     
Systolic blood pressure (mmHg) 100 [95,110] 105 [100,113]* 106 [100,110] 0.068 
Diastolic blood pressure (mmHg) 65 [60,70] 70 [65,75]* 70 [65,70]* 0.002 
Carotid mean intima-media thickness 
(mm) 

0.37 
[0.34,0.39] 

0.38 
[0.37,0.39] 

0.40 
[0.39,0.42]* 

<0.001 

Circumferential wall stress (mmHg) 70 [65,76] 75 [69,79] 76 [69,87]* 0.015 
Data are median [interquartile range].  
FGR = fetal growth restriction. BMI = body mass index. 
* P-value<0.05 as compared to controls calculated by linear or logistic regression. 
† Cardiac morphometry measured in end-diastole. 
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Table 7: Cardiac and vascular outcome of the term and preterm controls 

Characteristic 
Term controls 

(N=80) 
Preterm controls 

(N=40) 
P Value 

Cardiac morphometry†    
Left ventricle    

Base-to-apex length (mm) 49 [46,54] 44 [41,49] 0.436 
Basal diameter (mm) 28 [24,30] 25 [23,26] 0.123 
Longitudinal-transverse ratio 1.80 [1.64,1.98] 1.84 [1.70,1.93] 0.461 
Interventricular septum (mm) 6.8 [6.4,7.9] 6.7 [6.1,7.7] 0.786 
Left posterior wall (mm) 6.8 [6.1,7.6] 6.4 [6.1,7] 0.382 

Right ventricle    
Base-to-apex length (mm) 40 [35,44] 38 [32,41] 0.412 
Basal diameter (mm) 26 [23,28] 23 [19,27] 0.056 
Longitudinal-transverse ratio 1.58 [1.44,1.76] 1.66 [1.43,1.79] 0.351 

Cardiac function    
Systolic function    

Left stroke volume (mL) 28 [23,32] 29 [22,36] 0.055 
Heart rate (bpm) 93 [87,107] 102 [92,117] 0.412 
Left ejection fraction (%) 68 [62,72] 71 [67,75] 0.230 
Mitral ring displacement (mm) 12.9 [11.2,15.3] 11.6 [10.1,12.5] 0.060 
Tricuspid ring displacement (mm) 17.7 [15.5,19.5] 15.7 [14.9,17] 0.182 
Mitral annular S’ (cm/s) 10 [9,11] 10 [9,11] 0.940 
Mitral septal S’ (cm/s) 10 [9,10] 10 [9,11] 0.747 
Tricuspid S’ (cm/s) 15 [14,17] 16 [14,16] 0.270 

Diastolic function    
Mitral E/A ratio 1.68 [1.41,1.90] 1.56 [1.27,1.8] 0.833 
Tricuspid E/A ratio 1.43 [1.22,1.63] 1.36 [1.16,1.56] 0.654 
Left isovolumic relaxation time (ms) 56 [50,64] 56 [52,60] 0.876 
Mitral E deceleration time (ms) 88 [80,100] 88 [72,92] 0.550 
Tricuspid E deceleration time (ms) 108 [96,124] 104 [96,112] 0.387 
Mitral annular E’ (cm/s) 19 [17,21] 18 [17,19] 0.083 
Mitral septal E’ (cm/s) 15 [14,17] 16 [14,17] 0.396 
Tricuspid E’ (cm/s) 19 [18,21] 20 [19,22] 0.243 
Annular E/E’ 5.2 [4.6,6.3] 5.5 [4.9,6.4] 0.378 
Septal E/E’ 6.7 [6,7.5] 6.6 [5.8,7.2] 0.930 

B-type natriuretic peptide (pg/mL) 10 [5,13] 13 [10,22] 0.899 
Vascular assessment    
Systolic blood pressure (mmHg) 100 [95,110] 100 [100,110] 0.112 
Diastolic blood pressure (mmHg) 60 [60,70] 65 [60,70] 0.250 
Carotid mean intima-media thickness (mm) 0.37 [0.35,0.39] 0.38 [0.36,0.39] 0.642 
Circumferential wall stress (mmHg) 73 [67,83] 71 [59,78] 0.311 
Data are median [interquartile range].  
BMI = body mass index. 
* P-value<0.05 as compared to term controls calculated by linear or logistic regression. 
† Cardiac morphometry measured in end-diastole. 
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