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Abstract

Hematopoiesis is a complex process regulated by both cell intrinsic and cell extrinsic factors. Alterations in the expression of
critical genes during hematopoiesis can modify the balance between stem cell differentiation and proliferation, and may
ultimately give rise to leukemia and other diseases. AF10 is a transcription factor that has been implicated in the
development of leukemia following chromosomal rearrangements between the AF10 gene and one of at least two other
genes, MLL and CALM. The link between AF10 and leukemia, together with the known interactions between AF10 and
hematopoietic regulators, suggests that AF10 may be important in hematopoiesis and in leukemic transformation. Here we
show that AF10 is important for proper hematopoietic differentiation. The induction of hematopoietic differentiation in
both human hematopoietic cell lines and murine total bone marrow cells triggers a decrease of AF10 mRNA and protein
levels, particularly in stem cells and multipotent progenitors. Gain- and loss-of-function studies demonstrate that over- or
under-expression of AF10 leads to apoptotic cell death in stem cells and multipotent progenitors. We conclude that AF10
plays a key role in the maintenance of multipotent hematopoietic cells.
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Introduction

In adult vertebrates, hematopoiesis takes place in the bone

marrow starting with the integration of signals originated by cells

located in the hematopoietic stem cell (HSC) environment, known

as the HSC niche. These surrounding cells secrete specific

molecules, such as cytokines and chemokines, that initiate and

promote stem cell proliferation and differentiation and provide an

extracellular matrix that serves as an anchoring point for adhesion

of HSCs [1]. Daughter cells generated from HSCs can either

retain their self-renewal capability or may become committed to a

cell lineage and subsequently undergo terminal differentiation

[1,2]. Upon the integration of extracellular signals, the expression

of key genes in immature hematopoietic cells is modified,

switching on specific pathways that result in the change of the

characteristics of the cells [3,4]. Aberrant expression of these key

genes during hematopoiesis may lead to the development of

different hematological diseases, such as leukemia [5].

Chromosomal rearrangement of genes encoding transcription

factors with important roles during hematopoiesis are frequently

associated with leukemic processes [6]. One such frequently-

rearranged genes is MLL (Mixed Lineage Leukemia), located at

11q23, which encodes a highly conserved transcription factor

belonging to the Trithorax family of transcriptional activators [7].

MLL has been characterized as a major regulator of the homeotic

group of genes (Hox genes) [7] as well as a key controller of

hematopoiesis [8,9,10]. MLL is implicated in at least 70 different

chromosomal translocations associated with the development of

both infant and adult leukemias [11,12,13,14,15]. However,

despite the broad range of partners, 85% of the described

translocations involve rearrangements that affect just six genes:

AF4, AF9, ENL, AF6, AF10 and ELL, which have been suggested to

participate, together with MLL, in the same transcriptional

regulator complex [15]. The AF10 gene, located at 10p12, is the

only one of these six MLL recurrent partners that has been found

to participate in another leukemic translocation with the CALM

gene (Clatrhin-Assembly Lymphoid-Myeloid) [16,17], located at

11q14. CALM (also known as PICALM) is a cytoplasmic protein

implicated in endocytosis [18]. The translocation t(10;11)(p12;q23)

produces the MLL-AF10 fusion protein which is almost exclusively

found in patients with acute myeloid leukemia [19]. Translocation

t(10;11)(p12;q14) leads to the CALM-AF10 fusion protein, which

is present in patients with acute myeloid or acute lymphoid

leukemia [16]. Although AF10’s target genes remain unknown, its

implication in the development of myeloid, lymphoid and

megakaryoblastic leukemia upon translocation with either MLL

or CALM [16,17] suggests that AF10 may be an important factor

in the development of leukemia.

Although the molecular mechanisms through which AF10

influence the development of leukemia remain poorly understood,

some regions of AF10, important for leukemic transformation,

have been identified. In its C-terminal region, AF10 possesses an

octapeptide motif followed by a leucine zipper domain (OM-LZ,

Figure S1) implicated in its interaction with several proteins,
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including DOT1L [20,21]. Molecular analyses of MLL- and

CALM-AF10 rearrangements show differences in the location of

AF10 breakpoints, but the OM-LZ domain is present in both

fusion proteins (Figure S1) [16,17,20,21]. Furthermore, Desh-

pande et al showed recently that the fusion between the clathrin

binding domain from CALM and the OM-LZ from AF10 is

sufficient to induce acute myeloid leukemia in mice [22]. DOT1L

is a H3K79 histone-methyltransferase whose binding with AF10

modifies and activates the methylation pattern of the lysine 79 at

histone H3 tails on target gene promoters [20,21]. In the presence

of MLL- or CALM-AF10 fusion proteins, aberrant increases in the

expression level of genes such as HoxA5, HoxA7, HoxA9, HoxA10

and Meis1 have been described; all of these genes are involved in

hematopoiesis [23]. AF10 has also been shown to interact with

FLRG and Ikaros, both of which have been implicated in

hematopoiesis [24,25,26]. FLRG participates in erythrocytic

commitment, whereas Ikaros interacts with chromatin remodeling

factors and plays a role in transcriptional regulation and cell cycle

control during lymphocyte differentiation [27,28,29,30]. AF10 was

recently shown to be present in a complex also containing Tcf4/b-

catenin and Dot1L in mouse small intestinal crypts, zebrafish, and

Drosophila, where it participates in the maintenance of intestinal

cell homeostasis [31,32]. These data, together with the fact that

AF10 interacts with other proteins implicated in the hematopoietic

differentiation and its involvement in leukemic transformation

[16,17], suggest that AF10 has an important role in the regulation

of cell proliferation and differentiation in several tissues.

We sought to further investigate the role of AF10 in

hematopoiesis and leukemic transformation by testing the

consequences of AF10 gain- or loss-of-function during hemato-

poietic differentiation. We utilized four different human cell lines

(HEL, K562, CMK and HL-60) with the ability to differentiate

through diverse hematopoietic pathways as well as immature

primary hematopoietic stem cells obtained from mouse bone

marrow to test the effects of modulating AF10 function. HEL cells

follow either the megakaryocytic or the monocytic pathway,

depending on the concentration of 12-O-tetradecanoylphorbol 13-

acetate (TPA) used [33]. K562 and CMK cells are committed to

the megakaryocytic lineage [34,35], while HL60 cells follow the

monocytic lineage [36]. The induction of differentiation in all four

cells lines led to a decrease in both AF10 mRNA and protein levels.

Small variations in AF10 gene expression induced apoptosis in

HEL cells, the only one of the cell lines used capable to

differentiate into diverse hematopoietic cell fates, but this effect

was not observed in the cell lines with committed fate. Mouse bone

marrow-derived immature hematopoietic cells show high AF10

expression levels, whereas these levels are very low in differentiated

macrophages, recapitulating our observations in immortalized cell

lines. Taken together, these data support the conclusion that AF10

plays an important role in the early stages of hematopoiesis but not

in differentiated stages. These results provide insight into AF10

function during hematopoiesis and contribute to a better

understanding of its role in leukemic transformation.

Methods

All experiments were assayed in triplicates in at least three

independent experiments. Figures show one representative inde-

pendent experiment.

Ethics statement
Mice used in the project were maintained according to the law

(R.D. 1201/2005, October 10th, BOE, October 21st, 2005) and

housed in the animal facility of UAM, Register number ES-28079-

0000097, and approved by the Ethical committee for Research

from the Universidad Autonoma de Madrid (Certificate Code

C13–201). Mice were sacrificed with CO2 followed by cervical

dislocation, a method that has been authorized by DG XI

European Commission 2010/63/UE, published 22 September

2010, annex IV.

Isolation of mouse primary cells from bone marrow
Bone marrow cells from 2–3 month-old CD1 mice were isolated

by flushing the femurs and tibias with complete RPMI 1640

medium. Cells were filtered to obtain a single cell suspension,

centrifuged at 1,000 RPM and cultured with complete RPMI

1640 medium at 37uC and 5% CO2. After 24 hours, cells were

incubated in complete RPMI 1640 medium supplemented with

30% monocyte colony stimulation factor (M-CSF) for 7 days at

37uC and 5% CO2 to induce monocytic differentiation. M-CSF

was obtained from the culture of L929 as described by Boltz-

Nitulescu and collaborators [37]. Briefly, L929 cells were

incubated with DMEM medium (Gibco) supplemented with

10% FBS (Gibco), 1% L-glutamine (Gibco) and 50 mg/ml

gentamicine (Normon Laboratories S.A). Medium was changed

when L929 cells were 90% confluent. After 72 hours with fresh

media, medium was collected, filtered and kept frozen until use.

The cell line L929 was a gift from Dr. Susana Alemany and its

original source was ATCC.

Cell culture and cell transfection
The cell lines HEL, K562, CMK and HL60 were grown in

complete RPMI 1640 medium (RPMI 1640 medium (Invitrogen)

supplemented with 10% FBS (Invitrogen), 1% L-glutamine

(Invitrogen) and 50 mg/ml gentamicin (Normon Laboratories

S.A)) at 37uC and 5% CO2. To induce megakaryocytic

differentiation in HEL, K562 and CMK cells and monocytic

differentiation in HL60 cells, cells were treated with 10 nM TPA

(Sigma Aldrich) for 72 hours [33,34,35,36]. HEL cells were

differentiated through the monocytic pathway with 1 mM TPA for

72 hours [33]. For the inhibition of the proteosome, the HEL cell

line was treated with 10 nM TPA during 24 h. After that period,

the cells were exposed to 10 nM MG132 or DMSO (vehicle)

together with the initial TPA treatment for 24 h more. For

transient transfections, 106 cells were transfected by nucleofection

with the AmaxaH Cell Line NucleofectorH Kit V (Lonza)

according to manufacturer’s protocol in the NucleofectorH
machine. Cells were cultured in complete RPMI 1640 medium

with or without TPA (depending on the assay) at 37uC and 5%

CO2 for 18 hours prior to their analysis. Cell lines HEL and K562

were kindly provided by Dr. Carmela Calés while CMK and

HL60 were gifts from Dr. Miguel Angel Piris. The original source

of these cell lines was ATCC.

Quantitative RT-PCR analysis
Total RNA from cells was isolated with TrizolH Reagent

(Invitrogen). The Quantitech Reverse Transcription Kit (Qiagen)

was used for cDNA synthesis, according to the manufacturer

protocol. Taqman Universal PCR Master Mix (Applied Biosys-

tems) was used for q-RT-PCR to analyze AF10 cDNA. The

specific probes (Applied Biosystems) were Hs00946024_m1 for

human AF10 cDNA and Mm00487708_m1 for mouse AF10

cDNA, and were used according to the manufacturer’s recom-

mendations. AF10 expression was calculated for each cell type

relative to 18S rRNA (Euk 18S rRNA) levels. The same 18S

rRNA probe was used for human and mouse analyses.

AF10 and Hematopoiesis
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Western blot
56105 cells were lysed with 50 ml of lysis buffer (25 mM Tris-

HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycho-

late, 0.1% SDS and protease inhibitors) for 10 minutes on ice and

centrifuged at 10,000 rpm for 10 min at 4uC. Protein concentra-

tion was measured with Dc Protein assay kit (Bio-Rad). 20 mg of

protein were separated by SDS-PAGE electrophoresis and

transferred to an Immobilon-PVDF membrane (Millipore). AF10

protein was detected with the monoclonal anti-AF10m (1:1000;

Abcam) or the polyclonal antibody anti-AF10p generated in the

laboratory (1:5000). Anti-TBP (1:2000; Santa Cruz Biotechnology)

was used as a control.

Immunofluorescence
Cells adhered to coverslips coated with 20 mg/ml fibronectin

(Sigma Aldrich) were fixed with 3.7% paraformaldehyde in PBS

for 15 minutes. Cells were washed twice with PBS for 5 minutes

and permeabilized and blocked in 5% Triton-X100 and 0.1 M

glycine in PBS. Fixed cells were incubated overnight at 4uC with

anti-AF10m antibody (1:1000). After two 5 minute washes in PBS,

cells were incubated with the appropriate secondary antibody for

1 hour in the dark and washed twice with PBS for 5 minutes.

Nuclei were stained with 1 mg/ml DAPI (Invitrogen). Images were

obtained using a Nikon Eclipse E400 microscope.

Flow cytometry
For all the protocols described in this section, 56105 cells were

washed with PBS and fixed with 10% formalin for 15 minutes in

ice unless otherwise indicated. For detection of phosphatidylserine,

cells were incubated with 3 ml of annexin V-DYE647 antibody

(Immunostep) in 100 ml annexin-V buffer (10 mM Hepes pH 7.4,

140 mMNaCl, 2.5 mM CaCl2) for 15 minutes at room temper-

ature in the dark. Annexin-V levels were determined as the

proportion of Annexin-V positive cells present in the total GFP

positive population. To detect the F4/80 or CD41 surface

markers, cells were incubated with 3 ml of F4/80 or CD41

antibody (Serotec) in 100 mL PBS for 15 minutes at room

temperature in the dark. For DNA content analyses, cells were

fixed with cold 70% ethanol and kept at 220uC during

30 minutes. Cells were incubated with 50 mg/ml propidium

iodide and 5 mg/ml RNAse in PBS. Cells were analyzed with a

Beckman Coulter-FC 500 MLP cytometer and the CXP software.

Constructs
For AF10 overexpression, KpnI and XbaI sites were terminally

added to AF10 coding sequence by PCR using appropriate

oligonucleotides. PCR products were then digested with both

enzymes and cloned in the pcDNA4/TO plasmid (Invitrogen).

GFP coding sequence was amplified from pStinger [38] and

cloned in to pcDNA4/TO plasmid following the same strategy.

This construct is referred to as GFP. To obtain the GFP-AF10

fusion protein-expressing construct, both cDNAs were amplified

by PCR so that the GFP 39 end overlaps with AF10 59 end. Then,

both fragments were used as bait in a second PCR round to obtain

the GFP-AF10 cDNA. This construct is referred to as GFP-AF10.

Sequences from these primers are available upon request. For

iRNA experiments, BLOCK-iTTMPOL II miRRNAi Expression

Vector Kit (Invitrogen) was used according to manufacturer’s

instructions. The scrambled control siRNA is referred to as

siControl. AF10 mRNA interfering constructs are referred to as

siAF10. Sequences from interfering harping are shown in Table

S1.

Statistical analyses
Data is presented as mean 6 SEM. A paired t-test was used to

determine the significance of the differences shown among

treatments. p,0.05 was considered statistically significant. Graph-

Pad Prism version 5.0 was used for statistical analyses.

Results

Expression pattern of AF10 during hematopoiesis
AF10 expression was assayed in vitro in a panel of four human

cell lines (HEL, K562, CMK and HL60) representing different

stages of hematopoietic differentiation. The HEL cell line, the

most uncommitted cell line in the panel, can differentiate into

megakaryocytes (when treated with 10 nM TPA) or into

monocytes (1 mM TPA) [33]. K562 and CMK cells can

differentiate into megakaryocytes and HL60 cells into monocytes

when they are treated with 10 nM TPA [34,35,36].

In order to determine the expression pattern of AF10 during

hematopoiesis, these four cell lines were induced to differentiate

down the megakaryocytic and/or monocytic pathways by

treatment with appropriate concentrations of TPA. At 72 hours

post induction, cell cycle and CD41 or F4/80 surface markers

levels were analyzed to confirm that the cells were differentiated

into megakaryocytes or monocytes, respectively (Figure S2). AF10

protein levels were analyzed by immunofluorescence microscopy

and western blot. When compared to the initial levels, both

analyses showed a reduction in AF10 protein levels after 72 hours

in the presence of TPA irrespective of the cell line or the

differentiation pathway (Figure 1A and S3). Intriguingly, HEL, the

most undifferentiated of the four cell lines, displayed the highest

basal levels of AF10 protein. In order to quantify this decrease,

AF10 levels were analyzed by flow cytometry before and after

incubation with TPA. As shown in Figure 1B, three of the four cell

lines showed a statistically significant (P,0.05) decrease in AF10

protein levels after the induction of differentiation, with the

reduction most apparent in the HEL cell line.

We next asked whether this decrease was due to an active

mechanism of protein degradation, to the down-regulation of

AF10 expression, or both. The inhibition of the proteasome

activity by its specific inhibitor MG123 after hematopoietic

differentiation in the HEL cell line led to the maintenance of

AF10 levels (Figure S4), indicating that there is an active

mechanism of degradation of AF10 upon differentiation. We also

analyzed the levels of AF10 mRNA by quantitative real-time RT-

PCR (qRT-PCR) before and after the differentiation induction. All

four cell lines showed a statistically significant reduction (P,0.05)

of mRNA amount after 72 hours of differentiation (Figure 1C).

Taken together, these data suggest that AF10 protein levels

decrease during hematopoietic differentiation and that this

decrease is likely due to the active degradation of the protein

through the proteasome and to the diminished AF10 gene

expression that results in a reduction in the steady state levels of

AF10 mRNA.

AF10 overexpression induces cell death in multipotent
hematopoietic cells

Since AF10 expression decreased during hematopoietic differ-

entiation, we next asked whether maintenance of proper AF10

mRNA and protein levels was important for this process. First, we

tested the effect of AF10 overexpression in stably transfected HEL

and K562 cell lines using a tetracycline-regulated promoter to

express AF10 or GFP-AF10 fusion proteins (data not shown). The

empty vector was used as a negative control. We obtained several

stable transfected clones for AF10, GFP-AF10 in the K562 cell line

AF10 and Hematopoiesis
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and the empty vector control in both cell lines. However, we were

unable to obtain any positive HEL clones expressing AF10 or

GFP-AF10 (data not shown). Since positive clones were obtained

using the empty vector in the HEL cell line, we reasoned that the

lack of HEL clones expressing either transfected AF10 or GFP-

AF10 could be due to low levels of AF10 expression due to the

known leakiness of the tetracycline inducible promoter. If this were

true, then one possible explanation for our inability to identify

stable AF10-HEL lines would be that even low levels of AF10

overexpression leads to cell death in the HEL line but not in K562.

To test this hypothesis, apoptosis levels were analyzed in all four

cell lines transiently transfected with GFP-AF10 or GFP (control).

Annexin-V was used as an early apoptotic marker and the GFP

signal was used to identify transfected cells. The transfection

efficiency varied between 30–75% depending on cell line used

(Figure S5). At 18 hours post-transfection, cells were incubated

with annexin-V and cell death was quantified by flow cytometry.

While no increase in the number of apoptotic cells was observed in

K562, HL60 or CMK expressing GFP or GFP-AF10, HEL cells

transfected with GFP-AF10 have a statistically significant increase

(P,0.01) of the number of annexin-V positive cells as compared to

the same cell line transfected with the GFP control (Figure 2A;

white bars). This result shows that overexpression of AF10 in HEL

cells, but not in any of the other cell lines tested, leads to apoptotic

cell death.

Since we found that differentiation leads to reduction of AF10

mRNA and protein levels (Figure 1), we next asked whether this

reduction was specific for the endogenous protein. To answer this

question, GFP and GFP-AF10 levels were analyzed by flow

cytometry in the four cell lines before and after TPA-induced

differentiation. As shown in Figure 2B, differentiation induction

results in a moderate decrease of relative GFP-AF10 signal in all

cell lines irrespective of the differentiation pathway analyzed.

GFP-AF10 protein level reduction is less apparent in the HEL cell

line. This might be due to the fact that HEL cells display the

highest basal AF10 expression levels, hence the decrease of AF10

levels requires longer periods than in the other cell lines. Since

transfected GFP-AF10 mRNA levels should not be affected by

Figure 1. Expression pattern analysis of AF10 protein during hematopoiesis. Detection of AF10 protein by western blot (A) and flow
cytometry (B) before (2) and after (+) the treatment with TPA of the cell lines HEL, K562 and CMK, for the megakaryocytic pathway (upper panels),
and HEL and HL60, for the monocytic pathway (bottom panels). (C) Relative quantification of the levels of AF10 mRNA by qRT-PCR before (2) and
after (+) treatment with TPA. Paired t-test; * P,0.05; ** P,0.01; *** P,0.001 (n$3).
doi:10.1371/journal.pone.0051626.g001

Figure 2. Effect of AF10 over-expression during hematopoiesis.
(A) Relative annexin-V in the cell lines transfected with GFP-AF10
plasmid before (2TPA) and after (+TPA) the induction of megakaryo-
cytic differentiation, in cells lines HEL, K562 and CMK, and monocytic
differentiation in cell lines HEL and HL60. Dashed line indicates the
annexin-V levels of the cells lines transfected with GFP plasmid
normalized to 1. (B) Flow cytometry analysis of GFP-AF10 protein levels
in all cell lines after the induction of megakaryocytic and monocytic
differentiation. Paired t-test; * P,0.05; ** P,0.01 (n$3).
doi:10.1371/journal.pone.0051626.g002
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differentiation induction, the observed decrease in GFP-AF10

protein levels must be mainly due to protein degradation, further

supporting the conclusion that induction of differentiation leads to

activation of the cellular machinery responsible for the reduction

of both AF10 mRNA and protein.

These results led us to predict that induction of differentiation

would not only cause a reduction in AF10 protein levels, but would

also prevent apoptosis in HEL cells resulting from GFP-AF10

overexpression. To test this hypothesis, we induced the transfected

cells to differentiate with TPA down the megakaryocytic and/or

monocytic pathway. 18 hours after TPA treatment, apoptosis

levels were analyzed by flow cytometry. Induction of differentia-

tion after transfection caused a strong reduction in the number of

apoptotic HEL cells irrespective of whether the differentiation

pathway followed is megakaryocytic or monocytic (P,0.05)

(Figure 2A; black bars). As expected, no changes in annexin-V

levels were observed after differentiation induction in any of the

other cell lines analyzed. We infer that AF10 levels must be tightly

regulated during hematopoietic differentiation.

AF10 knockdown induces apoptosis in multipotential
cells

We next sought to analyze the consequences of reduction in

AF10 expression levels, reasoning that if each differentiation stage

requires a particular AF10 expression level, it is likely that a strong

decrease in AF10 expression might have adverse consequences.

Since AF10 expression was shown to be high in the less-committed

cells, we hypothesized that a large decrease in AF10 expression

would not be tolerated by uncommitted cells. In order to study the

effect of knocking down AF10 mRNA, an interference hairpin

(siAF10) and the scrambled control siRNA (siControl) were cloned

following the GFP cDNA. Since both sequences were expressed in

a single mRNA, the GFP signal was used to identify siAF10-

expressing cells.

Based in our findings in the overexpression assay, we sought to

determine if AF10 knockdown affected cell viability. The four cells

lines were transiently transfected with siAF10 and siControl

plasmids. 18 hours after transfection, cells were collected and

incubated with annexin-V and apoptosis levels measured by flow

cytometry. As shown in figure 3A for HEL and K562 cell lines,

similar levels of knockdown were achieved in both cell lines. Since

cells were transiently transfected and transfection efficiency was

estimated between 40 and 80% depending on the cell line (Figure

S6), we concluded that the knockdown was effective in the

transfected cells. We found that AF10 knockdown in undifferen-

tiated HEL cells led to a significant increase in the number of

apoptotic cells (Figure 3B). In contrast, no significant increase was

observed in any of the more committed cell lines. This result is in

accordance with our hypothesis that AF10 levels must be tightly

controlled throughout hematopoietic differentiation in not fully

committed cells.

To further confirm our hypothesis, we asked whether the

induction of differentiation prevented HEL cells from undergoing

apoptosis following AF10 knockdown. After transfection with

either siControl or siAF10, megakaryocytic and/or monocytic

differentiation was induced in all four cell lines by TPA treatment.

Differentiation of HEL cells into megakaryocytes or monocytes

resulted in a significant reduction in the number of apoptotic cells

as compared with uninduced HEL cells (P,0.05 and ,0.01

respectively; Figure 3B). No changes in apoptosis were observed in

any of the other cell lines upon differentiation.

Expression pattern of AF10 in primary cultures from
mouse bone marrow

The results presented above demonstrating that AF10 levels

must be tightly controlled through hematopoietic differentiation

led us to hypothesize that AF10 might play an essential role

throughout hematopoiesis in vivo. To address this question, we

performed an ex vivo analysis (as a surrogate of in vivo experiments)

of AF10 expression levels in primary mouse cells during the

differentiation process. Hematopoietic cells were isolated from

mouse bone marrow and cultured in the presence of M-CSF for 7

days to induce the monocytic pathway. Since F4/80 has been

described as a typical monocyte surface marker [39], it was used to

monitor the progress of monocytic differentiation induced in the

primary cultures. Figure 4A shows that incubation with medium

containing M-CSF for 7 days led to a 7-fold increase in F4/80

levels, confirming that monocytic differentiation occurred. To test

whether AF10 expression levels were regulated during the

monocytic differentiation pathway, AF10 mRNA and protein

levels were measured before and after induction of differentiation

using western blot and flow cytometric analyses. Primary

immature bone marrow cells showed high levels of AF10 protein.

In contrast, AF10 protein levels in differentiated monocytes were

barely detectable (Figure 4B). A quantitative analysis of AF10

protein expression by flow cytometry revealed a statistically

significant reduction (P = 0.001) in its expression in primary bone

marrow cells 7 days after induction of differentiation (Figure 4C).

We showed above that AF10 mRNA levels are strongly reduced in

differentiated cells irrespective of the differentiation pathway

studied (Figure 1D). To further investigate the relevance of these

data, we measured AF10 mRNA levels in primary bone marrow

cells and differentiated monocytes. AF10 expression was reduced

more than 90% after 7 days of differentiation, confirming that

AF10 expression is strongly regulated in primary cultures of

hematopoietic cells during the hematopoietic differentiation

(Figure 4D). In summary, our results demonstrate that AF10

Figure 3. Effect of AF10 loss-of-function during hematopoiesis.
(A) Western blot analysis of AF10 expression in HEL and K562 cell lines
transfected with scrambled siControl and siAF10. (B) Analysis of
annexin-V levels in cell lines transfected with scrambled siControl and
siAF10 before (2TPA) and after (+TPA) the induction of megakaryocytic
differentiation, in cell lines HEL, K562 and CMK, and monocytic
differentiation in cell lines HEL and HL60. Dashed line indicates the
annexin-V levels of the cells lines transfected with scrambled siControl
plasmid normalized to 1. Paired t-test; * P,0.05; ** P,0.01 (n$3).
doi:10.1371/journal.pone.0051626.g003
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expression is tightly regulated through hematopoietic differentia-

tion, suggesting that it plays an important role in the process.

Discussion

In this study, we examined the expression pattern of transcrip-

tion factor AF10 during hematopoietic differentiation through the

megakaryocytic and monocytic pathways. The in vitro assays

developed in the human hematopoietic cell lines HEL, K562,

CMK and HL60 showed a reduction of both AF10 protein and

mRNA levels during the progression of cell differentiation

(Figure 1-S3), suggesting an in vivo down regulation of AF10 in

the later stages of hematopoiesis. A detailed analysis of these results

revealed that the four cell lines used in this work (all of which are

at different stages of hematopoietic differentiation), expressed

different basal AF10 levels before differentiation. HEL, the most

‘‘uncommitted’’ cell line in our panel, expressed the most AF10

before differentiation (Figure S3). The AF10 abundance in the

other three undifferentiated cell lines correlates with their

respective commitment in the hematopoietic lineage (Figure S3).

Accordingly, the analysis of differentiated cells overexpressing

AF10 shows a distinct reduction in protein levels (Figure 2A). As

AF10 overexpression is driven by a viral promoter, and therefore is

not developmentally regulated, this result, together with mainte-

nance of AF10 protein levels in differentiated cells after

proteasome inhibition (Figure S4), shows that the decrease in

protein levels is likely due to active protein degradation, and not

just transcriptional down-regulation. This indicates that both AF10

gene silencing and active protein degradation mechanisms

contribute to its regulation. Taken together, these results suggest

that AF10 levels must be tightly regulated throughout hemato-

poietic differentiation. To determine whether the results obtained

in cell lines reflect the in vivo role of AF10, we analyzed AF10 in

primary cells. Monocytic differentiation was induced in immature

hematopoietic cells from mouse bone marrow and the levels of

both AF10 protein and mRNA were measured before and after

differentiation. We observed a strong reduction of AF10 protein

and mRNA (Figure 4), supporting the premise that AF10 plays

role during hematopoiesis in vivo.

Recent reports by Mahmoudi et al. and Mohan et al. showed that in

mice, zebrafish and Drosophila, Dot1L, Tcf4/b-catenin and AF10

form a stable complex along with several other proteins [31,32].

Dot1L is a well-characterized histone methyltransferase whose

interaction with AF10 has long been established [20]. Although

there are no in vivo data available on the role of AF10 during

hematopoiesis, it has been recently shown that Dot1L2/2 mice and

embryonic stem cells have severe defects in hematopoietic

differentiation due to the block of cell-cycle progression which

promotes apoptosis of hematopoietic progenitor cells [40,41]. b-

catenin is key in the Wnt pathway, which serves a critical role in

tissue development, progenitor cell proliferation, and many

human cancers [42]. Canonical Wnt signaling is considered to

be an important pathway for maintaining or inducing an

undifferentiated phenotype in HSCs [43,44]. Therefore, over-

expression of Wnt signaling components can potentially enhance

HSC self-renewal. In contrast, loss of canonical Wnt signaling may

lead to impaired self-renewal, showing that maintenance of Wnt

signaling at the exact dose is critical for HSC function [42]. This

pathway has also been shown to regulate apoptosis in many tissues,

and activation of canonical Wnt signaling has been associated with

either a decrease or increase in apoptosis [45,46]. Considering this

information, the presence of Tcf4/b-catenin in the AF10-Dot1L

complex also supports an in vivo role of AF10 during hematopoietic

differentiation.

In agreement with these observations, the data obtained from

the AF10 gain and loss of function experiments show that these

alterations induce cell death by apoptosis in the more uncommit-

ted cell line HEL, but not in any of the other cell lines analyzed

(Figures 2–3). Moreover, induction of differentiation in HEL cells

rescues cell death induced by both AF10 over-expression or

knockdown (Figures 2B–3B). Considering that HEL cells are the

only cells used in these experiments that maintain multipotential

characteristics, these results indicate that the alteration of AF10

levels compromises the viability of uncommitted cells. According-

ly, the loss of uncommitted cell properties due to the differentiation

process prevents cell death induction by changes in AF10 levels

(Figures 3A–4A). Since the catalytic properties of Dot1L are

regulated in vivo by AF10 [32], it is key that Dot1L2/2 embryonic

stem cells present elevated apoptosis levels and G2 cell cycle arrest

Figure 4. Expression pattern of AF10 in mice bone marrow-derived cells. (A) Quantification of relative F4/80 surface surface expression by
flow cytometry before (T0) and after (T7) the cellular differentiation. (B–C) Immunodetection of the protein AF10 by western blot and flow cytometry,
respectively, in cells extracted from bone marrow before (T0) and after (T7) the induction of cell differentiation. (D) Quantification by qRT-PCR of the
relative levels of AF10 mRNA before (T0) and after (T7) the differentiation of the cells. Paired t-test; *** P,0.001 (n$3).
doi:10.1371/journal.pone.0051626.g004

AF10 and Hematopoiesis

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51626



in hematopoietic progenitor cells [41,47]. These data agree with

gene expression studies showing that in Dot1L2/2 cells, gene

ontology groups related to cell proliferation, cell cycle progression,

and apoptosis are statistically overrepresented in a list of

differentially expressed RNAs [48]. Taken together, these results

support our hypothesis that precise control of AF10 levels is crucial

in early stages of hematopoiesis.

In conclusion, we have demonstrated the significance of AF10

during the uncommitted stages of hematopoiesis, as well as the

importance of AF10 maintenance at these stages. Based on these

findings, we infer that AF10 could be directly or indirectly

implicated in cell cycle regulation. Changes in expression levels

leads to apoptosis only in the multipotential cells, which retain

proliferative capacity. AF10’s interaction with Ikaros, a protein

involved in lymphocyte cell cycle control [26,29], as well as with

Dot1L and b-catenin, both of which are involved in the regulation

of apoptosis and hematopoiesis [32], supports our findings.

Although further investigation is needed to reveal the molecular

mechanisms of AF10 action during hematopoiesis, our data

demonstrate that AF10 participates in the early stages of

hematopoiesis and contribute to a better understanding of the

link between the translocation of AF10 and the development of

lymphoid and myeloid proliferative diseases.

Supporting Information

Figure S1 Schematic representation of protein struc-
tures and model system. Schematic representation of
AF10, MLL-AF10 and CALM-AF10 structure. Arrows show

the break points in AF10 when the chromosomal rearrangements

occur. OM: octapeptide motif; LZ: leucine zipper.

(TIF)

Figure S2 Cell line differentiation. (A) DNA content in
HEL, K562, CMK and HL60 cell lines before and after
TPA treatment for the induction of megakaryocytic
(upper panels) or monocytic (bottom panels) differenti-
ation. (B) Levels of specific markers of megakaryocytic (CD41)

and monocytic (F4/80) differentiation before and after the

exposure to TPA. Paired t-test; * P,0.05; ** P,0.01 (n$3).

(TIF)

Figure S3 Immunohistochemistry. AF10 immunodetection

(green) in the cell lines HEL, K562, CMK and HL60 before

(2TPA) and after (+TPA) megakaryocytic (A) or monocytic (B)

differentiation. DNA was stained with DAPI (blue).

(TIF)

Figure S4 Inhibition of the proteasome activity during
differentiation. Western blot analyses of AF10 levels in the cell

line HEL. Cells were incubated with TPA for 24 h followed by

24 h of treatment with the specific proteasome inhibitor MG132

or DMSO (vehicle). AF10 analyses were performed in cells

exposed to DMSO (1st lane), to TPA during 24 h or 48 with TPA

(2nd and 3rd lanes respectively) and 48 h with TPA and the last

24 h also with MG123 (4th lane). AF10 was detected with antibody

anti-AF10m and TBP was used as loading control.

(TIF)

Figure S5 Overexpression efficiency determination by
flow cytometry. Untransfected cells (left panels) were assayed to

determine the threshold for GFP detection. Cells transfected with

GFP and GFP-AF10 plasmids were analyzed to determine the

transfection efficiency. Percentages indicate the percentage of GFP

positive cells.

(TIF)

Figure S6 Determination of knockdown efficiency by
flow cytometry. Untransfected cells (left panels) were assayed to

determine the threshold for GFP detection. GFP signal after

transfection with siControl or siAF10 plasmids represents the

transfected population. Percentages indicate the percentage of

GFP positive cells.

(TIF)

Table S1 Oligonucleotides sequences used for AF10
knock-down. In red, complementary regions that will generate

the dsRNA. The underlined sequence indicates the sequence that

will recognize AF10 mRNA region that will activate the dsRNA

degradation machinery. siAF10, interference plasmid; siControl,

control plasmid with no homology to any known vertebrate DNA

sequence.

(XLSX)
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