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Abstract. Phonon lineshapes in atom-surface scattering are obtained from a simple

stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-

bath model, the excited phonon resulting from a creation or annihilation event is

coupled to a thermal bath consisting of an infinite number of harmonic oscillators,

namely the bath phonons. The diagonalization of the corresponding Hamiltonian

leads to a renormalization of the phonon frequencies in terms of the phonon friction or

damping coefficient. Moreover, when there are adsorbates on the surface, this single-

bath model can be extended to a two-bath model accounting for the effect induced by

the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.
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1. Introduction

Bulk and surface phonon dynamics is a very active field of research. Usually the

information about this dynamics arises from scattering experiments, where the typical

observable quantity is the lineshape associated with a surface excitation, i.e. a creation

or an annihilation event. At present, the available experimental techniques, such as the

surface scattering with He-atom beams [1] or the He spin echo [2], allow to explore higher

and higher angular and energy resolutions. Therefore, it is important and necessary

to have at our disposal appropriate theoretical formalisms which allow us to extract

reliable information from the experiment, such as phonon lifetimes and frequency shifts,

phonon-dispersion relations or multiphonon backgrounds, for example. In this regard,

a qualitative explanation was formerly provided for multiphonon scattering processes

in terms of a semiclassical formula for energy and momentum exchange within the so-

called trajectory approximation as a generalization of the Brako-Newns formula [3, 4].

Levi and Bortolani [5] also developed a general multiphonon formalism based on the

time-evolution approach. More recently, Gumhalter [6] has made a revision on single

and multiphonon atom-surface scattering within the quantum regime. However, as far

as we know, little attention has been paid to the theory of phonon lineshapes.

In this work we develop a theory of phonon lineshapes within a stochastic approach

based on the so-called Caldeira-Legget Hamiltonian [7], which constitutes the paradigm

of stochastic dynamics and system-plus-reservoir approaches. In particular, we focus

on an excited phonon in the presence of a phonon field and study its relaxation. To

this end, in next Section we shortly review the theory of Manson and Celli, based on

the transition matrix formalism [8–10], in order to introduce the notation and their

main theoretical findings on single- and multiphonon scattering. In Section 3, the

Caldeira-Leggett Hamiltonian is introduced to develop a theory for damping phonons

within a single-bath model (phonon bath). This Hamiltonian, which displays a high

degree of versatility, has been used by our group to describe surface diffusion of single

adsorbates [11–13] and interacting adsorbates within a two-bath model (phonon and

adsorbate baths) [14,15]. This Hamiltonian has been applied, also recently, to classical

atom-surface scattering to describe angular distributions [16,17] and energy loss spectra

[18, 19]. Finally, in Section 4, different aspects of this new approach are discussed and

applied to He scattering off a Cu(001) surface with a 3% CO coverage at low (surface)

temperatures [20].

2. A brief account on the transition matrix formalism

The observable in atom-surface inelastic scattering experiments is usually the so-called

differential reflection coefficient, which gives the fraction of probe particles (e.g. He

atoms) scattered off into a final solid angle dΩf and an energy interval dEf . At a

theoretical level, this observable is obtained as a transition rate, dividing the incident

flux crossing a plane parallel to the surface and then multiplying by the density of
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available final states of the probe particle [8–10]. This allows us to express the transition

rate as [8, 9]

R(kf ,ki) =
1

~2

∫ +∞

−∞

e−i(ǫi−ǫf )t/~ |τ(kf ,ki)|2
∑

j,l

〈e−ik·[Rl+ul(0)] eik·[Rj+uj(t)]〉 dt, (1)

where ǫi and ǫf are, respectively, the initial and final particle energies, ~ω = ǫf − ǫi is

the energy exchanged in the scattering process, k = kf − ki is the total wave vector

exchanged by the scattering particles, and τfi ≡ τ(kf ,ki) is a pairwise transition

operator. The (time-independent) equilibrium position of the jth surface unit cell

is given by Rj , with j being a discrete two-dimensional variable for each layer. For

simplicity, we will assume that there is only one atom per unit cell and, therefore, uj

corresponds to the displacement of the jth atom with respect toRj due to its vibrational

motion. In (1), the sums extend over all Rj and the average is over all initial lattice

states (once the sum over all possible final lattice states has been carried out).

Equation (1) has the general form of the fundamental equation for a large class of

scattering treatments involving a many-body target,

R(kf ,ki) =
2π

~
|τ(kf ,ki)|2 S(k, ω). (2)

This equation is the product of a form factor, |τ(kf ,ki)|2, for the scattering centers

and a dynamical structure factor, S(k, ω), which depends on the average over scattering

center positions. The latter factor describes, precisely, the lineshapes in the kind of

experiments we are interested in here, and can be expressed as

S(k, ω) =

∫

I(k, t) eiωtdt, (3)

i.e. as a time Fourier transform of the so-called intermediate scattering function,

I(k, t) ≡
∑

j,l

e−ik·Rleik·Rj〈e−ik·ul(0)eik·uj(t)〉. (4)

If the harmonic approximation is valid for any vibrational lattice mode, then the

(vibrational) average in (4) can be easily carried out by standard methods, which yields

〈e−ik·ul(0)eik·uj(t)〉 = e−Υlj(k,t), (5)

where

Υlj(k, t) = 2W (k)− 〈[k · ul(0)][k · uj(t)]〉, (6)

and

W (k) =
1

2
〈[k · uj(t)]

2〉 = 1

2
〈[k · uj(0)]

2〉. (7)

The factor W (k) is the argument of the so-called Debye-Waller (DW) factor, e−2W (k),

which governs the decay of the scattered intensity as a function of the surface

temperature through the canonical ensemble average. This contribution to the thermal

attenuation of the scattered intensities arises mainly from the momentum transfer

perpendicular to the surface.
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The second term in (6) accounts for the energy transfer between the surface and

the scattered particles, which is governed by the displacement autocorrelation function

Ujl(k, t) ≡ 〈[k · ul(0)][k · uj(t)]〉. (8)

Here we are dealing with the problem of inelastic scattering and, therefore, our interest

relies on the evaluation of this displacement correlation function. Hence we express the

vibrational amplitude of the jth scattering center in terms of surface normal modes as

uj(t) =
∑

Q,ν

λQ,νe(Q, ν)
[

aQ,ν(t)e
−iQ·Rj + a†−Q,ν(t)e

iQ·Rj

]

, (9)

where

aQ,ν(t) = aQ,ν(0)e
−iων(Q)t, (10)

and

λQ,ν =

√

~

2NMων(Q)
. (11)

In these expressions, Q is the parallel-phonon momentum, ν represents additional

phonon quantum numbers (e.g. the Rayleigh-mode branch or normal momentum of

bulk modes), M is the mass of the surface atom in the unit cell, e(Q, ν) is the

polarization vector, and aQ,ν(t) and a†−Q,ν(t) are the time-dependent phonon annihilation

and creation operators, respectively. The polarization vector is related to the frequency

distribution function, ραβ , as [8, 9]

ραβ =
∑

Q,ν

eα(Q, ν) · eβ(Q, ν) δ(ω − ων(Q)), (12)

where α and β are the Cartesian components of the polarization vectors. From (9) and

(10), and after performing the corresponding thermal averages, (8) becomes

Ujl(k, t) =
∑

Q,ν

λ2
Q,ν[k · e(Q, ν)]2

{

nν(Q)eiQ·(Rl−Rj)e−iων(Q)t

+ [nν(Q) + 1]e−iQ·(Rl−Rj)eiων(Q)t
}

, (13)

where nν(Q) = [e~ων(Q)/kBT −1]−1 is the Bose-Einstein factor. By Taylor expanding the

exponential of Ulj(k, t), with Υlj decomposed as in (6), the multiphonon contributions

associated with the total inelastic scattering process can be obtained. The first term

of this series expansion (namely the unity) gives the diffraction intensities, i.e. the

elastic contribution to the scattering process, after carrying out the integral (3) and

then computing the transition rate (2). At this level of approximation, as reported by

Manson [9], these diffraction intensities will be given by the product of three factors: the

DW factor, the form factor and the structure factor. In particular, the (static) structure

factor is the time-independent factor arising from (4) at zero temperature,

S(k) ≡
∑

j,l

e−ik·Rjeik·Rl, (14)
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with the diffraction peaks then expressed in term of δ-functions. The next term,

the linear one, provides the single-phonon contribution, with its corresponding rate

containing an extra factor, namely the Bose-Einstein factor. Also in this case inelastic

intensities are given by δ-peaks. Finally, the multiphonon contribution is obtained from

the remaining terms of the Taylor expansion or, equivalently, by subtraction of the zero

and single-phonon contributions.

Since we are interested in phonon lineshapes, a damping mechanism has to be

introduced in a theoretical model in order to replace the δ-peaks by Lorentzian

lineshapes. The goal in next Section is to assume a simple model, the so-called Caldeira-

Leggett (single-bath) model. The corresponding Hamiltonian [7] has been widely used

and applied in the literature to a large variety of physical processes in presence of

dissipation [21]. More specifically, this approach has been extensively used in the

so-called Kramers’ turnover problem [22, 23] describing the escape from a metastable

potential, in the vibrational dephasing problem of small molecules in liquids [24], and

in diffusion problems [11–15] with no application to lineshapes.

3. A simple model for phonon lineshapes: The Caldeira-Leggett model

Consider the damping of a single phonon (system) excited by some external source

and coupled to a thermal bath at a given temperature (heat bath). This dissipation

mechanism is not very sensitive to the particular loss process involved and, therefore, the

heat bath can be assumed as consisting of an infinite number of independent oscillators

(phonon field) in thermal equilibrium at the surface temperature. Thermal fluctuations

in the bath or reservoir, which feed with noise the excited phonon, are related to the

friction coefficient or damping constant through the well-known fluctuation-dissipation

theorem. The system is usually represented by a harmonic oscillator weakly coupled

to the reservoir and undergoing an energy flow towards the reservoir. Conversely,

the reservoir fluctuations also couple back into the system. The driving force (He

atoms) exciting the phonon is assumed to be a linear perturbation and, at zero

order, no influence in the subsequent phonon dynamics is expected. From the linear

response theory, the dynamical susceptibility will be that of a particle subject to a

one-dimensional harmonic potential [14, 15].

Taking into account the comments above, the full Hamiltonian describing the

process can be written as [7, 21]

H = HS +HR +HSR, (15)

where HS describes the Hamiltonian accounting for the system dynamics (i.e. the excited

phonon), HR is the Hamiltonian associated with the thermal bath and HSR represents

the coupling between system and bath. The so-called Caldeira-Leggett Hamiltonian has

the structure given by (15) and is usually expressed in the form

H =
p2

2m
+ V (q) +

N
∑

i=1

[

p2i
2mi

+
1

2
mi

(

ωixi −
ci

miωi
q

)2
]

, (16)
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where (q, p) andm represent the system variables (coordinate and conjugate momentum)

and its mass, respectively; V (q) is the external potential acting on the uncoupled system,

which here we assume to be harmonic; (xi, pi) stand for the variables of the ith bath

oscillator, characterized by a mass mi and a frequency ωi; and ci is the coupling constant

between the ith bath oscillator and the system.

Within this single-bath model, tracing over the bath degrees of freedom in the

equations of motion (expressed in the Heisenberg picture) makes evident the damped

motion undergone by the system coordinate [21]. This tracing gives rise to a quantum

generalized Langevin equation,

mq̈ +
∂V (q)

∂q
+m

∫ t

0

γ(t− t′) q̇(t′) dt′ = ξ(t), (17)

which describes the evolution of the system coordinate (q) under the influence of the

external harmonic potential V (q), a friction kernel γ(t) and a random force ξ(t) coming

from the bath thermal motion. In this model, the friction kernel (phonon friction) is

γ(t) =
1

m

N
∑

i=1

c2i
miω2

i

cosωit, (18)

while the spectral density characterizing the bath oscillators is

ρ(ω) = π

N
∑

i=1

c2i
2miωi

δ(ω − ωi). (19)

On the other hand, the random force reads as

ξ(t) =
N
∑

j=1

cj

{[

xj(0)−
cj

mjω2
j

q(0)

]

cosωjt +
pj(0)

mjωj

sinωjt

}

, (20)

which satisfies the conditions for a Gaussian white noise provided the friction is Ohmic,

i.e. γ(t) = 2γδ(t). In this case, Eq. (17) becomes a standard quantum Langevin equation,

mq̈ +
∂V (q)

∂q
+mγ q̇(t) = ξ(t). (21)

Quantum-mechanically, the Hamiltonian (16) for a harmonic potential V (q) =

mω2
0q

2/2 can be expressed in terms of system (a, a†) and bath (bj , b
†
j) operators as

H = ~ω0(a
†a + 1/2) +

N
∑

j=1

~ωj(b
†
jbj + 1/2) + ~

N
∑

j=1

κj(ab
†
j + a†bj + a†b†j + abj)

+
~

4µω0
(a†

2
+ a2 + 2a†a+ 1)

N
∑

j=1

c2j
mjω2

j

, (22)

with

κj =
cj

2
√
µmjω0ωj

(23)

accounting for the strength of the bilinear coupling between the system and the bath

oscillators. As is apparent, two quantum transitions in the system are allowed according
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to the existing second order terms. The Hamiltonian (22) can be diagonalized via

a normal mode transformation with mass weighted coordinates. The corresponding

normal-mode Hamiltonian can be then written as a sum of N+1 oscillators [22–24],

H =
1

2
P 2 +

1

2
w2

0Q
2 +

N
∑

j=1

(

1

2
P 2
j +

1

2
w2

jQ
2
j

)

, (24)

where (w0, wj) denote the new system and bath frequencies (eigenvalues) and (Q,P )

and (Qj , Pj) are the new system and bath variables, respectively. For Ohmic friction,

the explicit expression of w0 is

w0 = ±
√

ω2
0 − γ2

0/4 + iγ0/2 = ±w̄0 + iγ0/2. (25)

Similarly, for wj,

wj = ±
√

ω2
j − γ2

j /4 + iγj/2 = ±w̄j + iγj/2. (26)

The real parts in both cases give renormalized frequencies, w̄0 and w̄j, and the

imaginary ones the damping constant or phonon friction coefficient. Notice that the

new frequencies are no longer a simple linear function of the friction coefficient, as it

usually happens when only single quantum transitions are allowed. Furthermore, after

diagonalization, we have a set of N+1 damping phonons. This procedure is equivalent

to write Hamiltonian (24) in terms of real frequencies w̄k [25,26]. Hence, in terms of

operators, the Hamiltonian (24) can be recast as

H =

N
∑

k=0

~w̄k(ā
†
kāk + 1/2), (27)

where (ā†, ā) are related to the new phonon variables (Qk, Pk). The time evolution of

such operators is given by

āk(t) = āk(0) e
iwkt, (28)

with the minus sign usually chosen for the real part of the frequencies in (25) and (26).

In order to obtain the phonon lineshapes, we proceed as previously shown, although

now the vibrational amplitude of the jth scattering center is given in terms of the new

normal modes or damping phonons, expressed through (ā†k, āk) as

uj(t) =
∑

Q,ν

λ̄Q,νe(Q, ν) e−γν(Q)t/2
[

āQ,ν(t)e
−iQ·Rj + ā†−Q,ν(t)e

iQ·Rj

]

, (29)

where, for simplicity, we keep the same notation (Q, ν) for quantum numbers, as in (9),

and

λ̄Q,ν =

√

~

2(N + 1)w̄ν(Q)
. (30)

Note that now the time-dependent operators are thus given by (28) and the

corresponding frequencies by (25) and (26), unlike Eq. (10), where frequencies were

real. In this way, (6) acquires formally the same expression,

Υlj(k, t) =
1

2
〈[k · ul(0)]

2〉+ 1

2
〈[k · uj(t)]

2〉 − Ujl(k, t), (31)
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but with the displacements being given by (29). This fact has important consequences:

though the first term in (31) is W , as in (7), the second one is no longer independent

of time (it depends on time as e−γν(Q)t) and, therefore, will not contribute as a new W

term. Regarding the third term, it is also time-dependent, containing the new extra

factors e−γν(Q)t/2, eiw̄ν(Q)t and the complex conjugate of the latter. In particular, this

displacement autocorrelation function, given above by (13), can now be expressed taking

into account the new normal modes as

Ujl(k, t) =
∑

Q,ν

λ̄2
Q,ν [k · e(Q, ν)]2

{

nν(Q)eiQ·(Rl−Rj)e−iw̄ν(Q)te−γν(Q)t/2

+ [nν(Q) + 1]e−iQ·(Rl−Rj)eiw̄ν(Q)te−γν(Q)t/2
}

, (32)

where w̄ν(Q) can be identified by w̄k. Observe that this equation is similar to (13) except

for the presence of damping factors. Therefore, phonon lineshapes will be obtained from

the time Fourier transform, as given by (3), but considering the damping normal modes

in terms of (Q, ν) and wν(Q). The interest here relies on the fact that lineshapes can

be obtained as a function of the new system and bath frequencies issued from a given

diagonalization due to the presence of the heat bath. This approach thus allows us to

consider the excited phonon and the phonon bath on equal footing.

Specifically, the phonon lineshapes obtained from the time Fourier transform (3)

read as

S(k, ω) =
1

2π~
e−W (k)

∑

j,l

∏

Q,ν

∞
∑

n,m,p=0

(
−1

2
)p
λ̄
2(n+m+p)
Q,ν

n!m!p!
[k · e(Q, ν)]2(n+m+p)

× nν(Q)n[nν(Q) + 1]m[2nν(Q) + 1]peiQ·(Rl−Rj)ne−iQ·(Rl−Rj)m

× (n +m+ 2p)γν(Q)

[ω − (m− n)w̄ν(Q)]2 + [(n+m+ 2p)γν(Q)/2]2
. (33)

In principle, this expression contains the main ingredients of the phonon relaxation

dynamics. For a given phonon, (33) consists of an infinite sum of weighted Lorentzian

functions which describes all phonon creation and annihilation events.

4. Discussion and applications

Some consequences of (33) can be discussed at different levels:

(a) Damping phonons in clean surfaces: positions and lifetimes

The first point to be stressed from (33) is the frequency position and lifetime of

each (creation or annihilation) phonon event. The frequency position is given by (25)

and involves the phonon friction. Thus, the nominal value of the phonon frequency ω0 or

ωj has to be replaced by a renormalized frequency due to the coupling with the phonon

bath. The phonon lifetime is directly related to such a friction, ~/γν(Q). The different

excitations of a certain phonon event are given by the sums running over n and m. Each

elementary contribution is expressed by a weighted Lorentzian shape. Obviously, the
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most prominent Lorentzian lineshape is related to the most likely phonon event. When

n = m, we have the diffuse elastic peak. This contribution arises from the creation and

annihilation of the same number of phonons and is essentially associated with single-

phonon exchanges (the multiphonon contribution is substantially smaller). The product

in the quantum numbers (Q, ν) shows the contributions of different excited phonons.

The multiphonon background is given by the different factors appearing in (33). The

temperature dependence comes through the Bose-Einstein and DW factors. Regarding

the symmetry of the total lineshape, and according to the detailed balance condition,

particle energy gains (which requires the system to be in the higher energy state) are less

frequent than atom energy losses, in agreement with the Boltzmann population factor.

(b) Damping phonons and the DW factor

In (33), the DW factor appears as e−W instead of the standard factor e−2W . This

is a consequence of the diagonalization carried out in the Caldeira-Leggett Hamiltonian

(16). The normal modes are now damping phonons given by (28) and, therefore, the

square thermal averages of the displacements are no longer independent of time. As is

well known, this factor is a measure of the effect of thermal motions in reducing the

periodicity of the lattice. It is also a measure of the number of phonons involved in a

scattering event. In this formalism, it is clearly seen that there is a new contribution

to the lifetimes (the sum running over p) independent of the creation or annihilation of

phonons. This contribution comes from the whole damping lattice.

(c) Adsorbates and phonons

The diffuse elastic intensity of the He atoms scattered at large angles away from the

specular direction provides very detailed information on the mobility of adsorbates on

surfaces. At low coverages, the interaction among adsorbates can be ignored, thus

allowing to work within the so-called single-adsorbate approximation describing the

quasielastic and low frequency vibrational lineshapes in terms of the motional narrowing

effect [27]. The relaxation processes of creation or annihilation adsorbate events are

due to the coupling of the adsorbate modes (considered as the system) to the phonon

substrate (single-bath model). Thus, (33) is also valid for describing the relaxation

dynamics of an excited single adsorbate with a renormalized frequency given by (25).

Furthermore, it can be considered as a generalization of previous lineshapes obtained in

a more phenomenological way [27].

Based on the transition matrix formalism, Manson and Celli [8] proposed a quantum

diffuse inelastic theory for small and intermediate coverages of adsorbates on the surface

by ignoring multiple scattering effects of He atoms. The dynamical structure factor

is then obtained by assuming all the lattice vibrational modes (Nph) and point-like

scattering centers (Nad) satisfying the harmonic approximation with a given frequency

distribution function. Therefore, following the same type of arguments, we could assume

two independent, uncorrelated baths to describe diffusion of interacting adsorbates:
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the first bath consists of the surface phonons and the second bath is formed by Nad

adsorbates which obviously changes with the surface coverage given by experimental

conditions [14, 15, 28]. The same procedure can now be used to obtain lineshapes of

adsorbates; in particular, the lowest frequency mode or frustrated traslational mode.

To this end, we have to generalize the Hamiltonian (16) to two baths, one for phonons

and the other for adsorbates. In this two-bath model (at a given coverage), we take

one adsorbate as the tagged particle or system, while the remaining ones constitute

the second bath described by M harmonic oscillators. Thus, when a given adsorbate is

excited the coupling to phonons and adsorbates simultaneously governs to the relaxation

dynamics. In this way, the corresponding total Hamiltonian in one dimension will read

as [14, 15]

H =
p2

2m
+ V (q)

+

Nph
∑

i=1

[

p2i
2mi

+
mi

2

(

ωixi −
ci

miωi

q

)2
]

+

Nad
∑

j=1

[

p̃2j
2m̃j

+
m̃j

2

(

ω̃jx̃j −
dj

m̃jω̃j

q

)2
]

, (34)

where now the tilde magnitudes refer to the second bath of Nad adsorbates, which are

also taken as harmonic oscillators. The ci and di coefficients give the coupling strengths

between the adsorbate (system) and the substrate phonons or other adsorbates,

respectively. The spectral density for the two baths is defined analogously to the single-

bath model,

J(ω) =
π

2

Nph
∑

i=1

c2i
miω2

i

δ(ω − ωi) +
π

2

Nad
∑

j=1

d2j
m̃jω̃2

j

δ(ω − ω̃j), (35)

but now it is split up into two terms, one spectral density associated with the surface

phonons and another one with the adsorbates. In a similar way, the friction functions are

defined as in (18), but with the spectral density being (35). The total friction function

η(t) also splits into two terms, one due to the phonons, γ(t), and another due to the

collisions with the the adsorbates or collisional friction, λ(t): η(t) = γ(t) + λ(t) [14,15].

After diagonalization of Hamiltonian (34) and if Ohmic friction is assumed, the new

renormalized frequencies of the set of Nph + Nad oscillators are expressed in a similar

way to Eqs. (25) and (26) but now in terms of η instead of γ. A straightforward

generalization of lineshapes accounting for both phonon and adsorbate (low-frequency

modes) excitations at the same time is then easily obtained. Again, this theoretical

procedure is more general than that previously reported based on phenomenological

arguments [28].
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(d) The convolution problem. Some simple applications

As a final remark, we would like to mention that, taking into account all the

previous information, one could carry out the calculation of the convolution of phonon

and adsorbate lineshapes in order to extract reliable lifetimes and damping coefficients

or phonon frictions in a more careful way. Thus, as an illustration, now we will

focus on experimental lineshapes obtained from typical time-of-flight measurements

from He atom-surface scattering: an isolated frustrated translational (T ) mode peak

and the masking of a T -mode by a substrate Rayleigh phonon. In particular, we will

consider He scattering off a Cu(001) surface with a 3% of CO coverage at low (surface)

temperatures [20], displaying the results in terms of the energy transferred (∆E) in

the scattering process. Experimentally, the intrinsic peak width is of the same order of

magnitude as the apparatus energy resolution. Therefore, quantitative reliable results

can only be extracted by using deconvolution techniques. Thus, in the case of low surface

temperatures, one proceeds (numerically) by assigning a single Lorentzian function to

the intrinsic lineshape and convoluting it with the apparatus response function, which

is usually assumed to be a Gaussian function. Then, by means of standard least squares

fitting techniques, the resulting curve is optimized until it fits the experimental one,

extracting finally from this procedure the good Lorentzian lineshape. In the applications

below, we have used this procedure rather than Eq. (33), since we are within a low

temperature regime and only one Lorentzian function is going to contribute. Information

about position of the maximum and full width at half maximum is processed in terms of

renormalized frequencies according to (25) and (26). As the surface temperature, more

and more Lorentzian functions have to be added in order to determine the lineshape, in

agreement with (33).

In Fig. 1 we show the result obtained (solid line) from the convolution of a single

Lorentzian function with the Gaussian apparatus response function, i.e., a typical Voigt

profile, which describes the creation of a T -mode peak at ∆E = ~w̄0 ≈ −4 meV and a

surface temperature Ts = 60 K. The dashed line represents the best-fitting Lorentzian

function whose position and full width at halh maximum (FWHM) are determined, as

mentioned above, by convoluting the Lorentzian with the apparatus response function

and then finding the best fit to the experimental data (here, they have been extracted

from Ref. [20] and are represented with open circles). As can be seen, the agreement

between the experimental data [20] and our fitting is fairly good. The FWHM is around

0.38 meV (damping constant) and ω0 can be calculated from (25). As mentioned above,

as the surface temperature increases, the number of Lorentzian terms to be considered

in (33) will also increase in order to reproduce a wider and lower convolution profile,

which can be later compared with the experimental peak.

In Fig. 2, the results from the convolution (solid line) describe the case where

the peaks corresponding to the annihilation of both a substrate Rayleigh phonon (at

∆E ≈ 3.5 meV) and the T -mode of the adsorbate (at ∆E ≈ 4 meV) are very close.

Here, again, the surface temperature is Ts = 60 K, which allows us to consider only one
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Figure 1. Comparison between experimental data (◦) [20] and convolution results

(solid line) for the creation of the T -mode peak (∆E ≈ −4 meV) at Ts = 60 K.

The dashed line represents the best-fitting Lorentzian function whose position and

FWHM are determined in such a way that, once the Lorentzian is convoluted with the

(Gaussian) apparatus response function, it best fits the experimental data.

Lorentzian function (dashed lines) for each event, the excitation of the substrate phonon

and the adsorbate T -mode. As can be seen, we find a fairly good agreement between our

theoretical results and the experimental data (open circles) [20]. Both peaks are so close

that they overlap, which leads the Rayleigh phonon peak, more intense, to mask the

peak corresponding to the T -mode. This is in a sharp contrast with the relative height

of the corresponding Lorentzians, which is lower for the former. This overlapping of

the two Lorentzian functions (dashed lines) thus explains the formation of the shoulder

observed at larger ∆E.
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