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Abstract  

 

Vitamin D deficiency is associated with high risk of colon cancer and a variety of other 

diseases. The active vitamin D metabolite 1αααα,25-dihydroxyvitamin D3 (1,25(OH)2D3) 

regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional 

regulatory mechanisms of gene expression have also been proposed. We have identified 

microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)2D3 targets in 

human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)2D3 in a time-, 

dose-, and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-

function by transfection of a miR-22 inhibitor suppresses the antiproliferative effect of 

1,25(OH)2D3. Additionally, miR-22 inhibition increases cell migration per se and 

decreases the antimigratory effect of 1,25(OH)2D3 in both cell types. In silico analysis 

shows a significant overlap between genes suppressed by 1,25(OH)2D3 and miR-22 

putative target genes. Consistently, miR-22 inhibition abrogates the 1,25(OH)2D3–

mediated suppression of NELL2, OGN, HNRPH1, RERE and NFAT5 genes. In 39 out of 

50 (78%) human colon cancer patients, miR-22 expression was found lower in the 

tumour than in the matched normal tissue and correlated directly with that of VDR. 

Our results indicate that miR-22 is induced by 1,25(OH)2D3 in human colon cancer cells 

and it may contribute to its antitumour action against this neoplasia. 
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INTRODUCTION 

 

Vitamin D deficiency is increasingly associated with a variety of human diseases (1, 2). 

Among them, colorectal cancer is particularly important as many epidemiological studies link 

high risk of developing this neoplasia to low vitamin D diet or circulating level of calcidiol 

(25-hydroxyvitamin D3) (3, 4). In line with this, experimental data in cultured cells and 

animal models show that the most active vitamin D metabolite 1α,25-dihydroxyvitamin D3 

(1,25(OH)2D3) exerts potent protective effects against colon cancer (and other neoplasias) (5-

7).  

 1,25(OH)2D3 is a pleiotropic hormone that regulates many genes in numerous tissues 

in the organism. Its classical model of action implies the binding to, and activation of a 

member of the superfamily of nuclear receptors, the vitamin D receptor (VDR). VDR acts as a 

ligand-modulated transcription factor that binds to specific sequences (VDRE, vitamin D 

response elements) in target genes and increases or decreases their transcription rate through 

the interaction with a vast array of co-activators, co-repressors, and chromatin modifier 

enzymes and remodelling complexes (8, 9). Recent data, however, indicate that a number of 

1,25(OH)2D3 target genes are regulated by posttranscriptional and/or posttranslational 

mechanisms (10-12). 

 MicroRNAs (miRNAs) are short non-coding RNAs with wide gene regulatory activity 

at the posttranscriptional level. MiRNAs associate with several proteins in RNA silencing 

complexes that cause mRNA degradation or translation inhibition, or both processes (13). In 

recent years, miRNAs have been shown to play key roles in cancer as they control the 

expression of crucial oncogenes and tumour suppressor genes and, accordingly, several 

miRNAs are either over-expressed or silenced affecting tumour progression and metastasis 

(14, 15). 
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To gain insight into the action of 1,25(OH)2D3 in colon cancer, we have searched for 

novel targets by screening with miRNAs microarrays. Among the candidate targets identified, 

we focused on miR-22 based on previous data suggesting its tumour suppressor activity (16-

21). 1,25(OH)2D3 modulates cell proliferation: it usually has a mild to medium cell-type 

dependent inhibitory effect although stimulatory effects have also been reported (22, 23). Our 

results show that miR-22 is induced by 1,25(OH)2D3 and contributes to its inhibitory effects 

on the proliferation and migration of colon cancer cells. Moreover, we found that anti-miR-22 

expression abrogates the regulation by 1,25(OH)2D3 of the RNA levels of several target 

genes. Importantly, miR-22 is downregulated in a high proportion of colon tumours and its 

expression correlates directly with that of VDR. Together, these data show that miR-22 is a 

target of 1,25(OH)2D3 and mediates in part its protective action against colon cancer. 
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RESULTS 

 

miR-22 is induced by 1,25(OH)2D3 

To study whether 1,25(OH)2D3 affects miRNA expression in human colon cancer we 

profiled with miRNA microarrays RNA samples extracted from SW480-ADH cells that 

were treated for different time points either with 10-7 M 1,25(OH)2D3 or the corresponding 

amount of vehicle (control). A series of miRNA species were consistently found to be 

upregulated (i.e. miR-146a, miR-22, miR-222) or downregulated (i.e. miR-203) (Fig. 1). 

Data have been deposited in GEO databases (GSE34564). On the basis of its kinetics of 

induction and the literature reporting its tumour suppressive activity in several systems, 

miR-22 was chosen for an in-depth study. 

 Validation of microarray data was performed by quantitative RT-PCR. The level of 

miR-22 increased in a time- and dose-dependent manner following 1,25(OH)2D3 treatment 

of SW480-ADH cells (Fig. 2A-B). Moreover, miR-22 was also induced by this hormone in 

five others human colon cancer cell lines (LS174T, HT29, SW1417, DLD-1, HCT116), 

while no induction was found in SW480-R and SW620 cells that lack VDR expression (5) 

(Fig. 2C). 

 

miR-22 mediates the antiproliferative and antimigratory effects of 1,25(OH)2D3 

Next, we examined whether the induction of miR-22 could be relevant for the inhibitory 

effect of 1,25(OH)2D3 on cell proliferation and migration of colon cancer cells. To this end, 

we first transfected SW480-ADH and HCT116 cells with a miR-22 oligonucleotide inhibitor 

(anti-miR-22) or a non-silencing control (scrambled oligonucleotide, SCR) and analyzed their 

proliferation in the presence or absence of 1,25(OH)2D3. In both cell types, the decrease in the 

number of viable cells, resulting from the sum of effects on cell division and survival caused 
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by the hormone, was blunted by the addition of anti-miR-22 but not by that of SCR 

oligonucleotide (Fig. 3A-B). Notably, in the absence of 1,25(OH)2D3 anti-miR-22 treatment 

did not alter cell division (Fig. 3A-B) but, in contrast, led to an increased migratory capacity 

in transwells assays (2.13 ± 0.3-fold, P = 0.0002, for HCT116 cells; 1.75 ± 0.38-fold, P = 

0.007, for SW480-ADH cells) (Fig. 4A and B). In line with this, anti-miR-22 abolished the 

inhibition of cell migration caused by 1,25(OH)2D3 in both cell types (Fig.4A-B). In all 

experiments, blockade of miR-22 induction by 1,25(OH)2D3 using anti-miR-22 was analyzed 

by qRT-PCR (Supplementary Material, Fig. S1). 

 

miR-22 mediates the regulation of several 1,25(OH)2D3 target genes 

We wished to explore the putative role of miR-22 in the gene regulatory effect of 

1,25(OH)2D3. To this end, we first did a comparative in silico analysis by using TargetScan 

(24) for predicted miR-22 targets and data from our transcriptomic studies of 1,25(OH)2D3 

target genes ((25) and unpublished data). This study rendered that 9 out of 36 genes (25%) 

downregulated and 11 out of 93 genes (11.8%) upregulated by the hormone in SW480-ADH 

cells are putative miR-22 targets (2.11-fold enrichment down- versus up-regulation) (Fig. 5A 

and Supplementary Material, Table S1). The comparison of these data with the predicted 

targets of a randomly selected group of miRs (miR-200a, miR-142-3p, miR-142-5p, miR-

320a, miR-31, miR-365 and miR-34b; median of total targets of 655 and median overlap with 

1,25(OH)2D3 targets of only 3) revealed the statistical evidence that miR-22 targets are 

enriched in the 1,25(OH)2D3-treated array dataset relative to other miRs.  

 To validate this finding we analyzed the expression of a few selected genes 

downregulated by 1,25(OH)2D3, such as neural tissue-specific epidermal growth factor-like 

repeat domain-containing protein (NELL2), osteoglycin (OGN), heterogeneous nuclear 

ribonucleoprotein H1 (HNRPH1), nuclear factor of activated T cells 5 (NFAT5), caudal type 
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homeobox 2 (CDX2) and arginine-glutamic acid dipeptide (RE) repeats (RERE) in SW480-

ADH and HCT116 cells transfected with either anti-miR-22 or SCR oligonucleotides. 

Supporting a role of miR-22 mediating the downregulation of these genes by the hormone, in 

either or both cell lines the transfection of anti-miR-22 oligonucleotides but not of SCR 

abrogated such inhibitory effect, except in the case of CDX2 (Fig. 5B and C). We also studied 

CDH1, a gene transcriptionally upregulated by the hormone that mediates part of its effects in 

colon cancer cells (5, 26). As expected from this regulation, anti-miR-22 did not affect the 

induction by 1,25(OH)2D3, suggesting that CDH1 mRNA may not be indeed a target of miR-

22. 

 

Expression of miR-22 in human colon tumours 

Finally, we studied the expression of miR-22 in 50 matched normal and tumour samples from 

human colon cancer patients. In agreement with a tumour suppressive action, miR-22 

expression was found downregulated in 39 out of 50 (78%) tumours as compared to normal 

tissue (Fig. 6A). In line with previous studies (27-29), VDR expression was downregulated in 

36 out of 50 (72%) tumours versus normal tissues (Supplementary Material, Fig. S2). 

Notably, a significant direct correlation was found between the expression of miR-22 and 

VDR RNA (Spearman correlation coefficient, r = 0.315, P = 0.026) (Fig. 6B), which suggests 

that the VDR-mediated induction of miR-22 observed in cultured cells probably also takes 

place in human colon tissue. 
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DISCUSSION 

 

In this study, we identify miR-22 as a target of 1,25(OH)2D3 in human colon cancer cells that 

mediates in part its inhibitory effect on cell proliferation and migration. The finding that an 

anti-miR-22 reduces the antiproliferative effect of 1,25(OH)2D3 strongly supports that the 

induction of miR-22 contributes to, and is not a mere consequence of the growth inhibitory 

action of the hormone. Moreover, miR-22 is found to mediate the repression by 1,25(OH)2D3 

of several genes such as OGN, NELL2, HNRPH1, RERE and NFAT5 at the RNA level, which 

we have validated as targets of this hormone in human colon cancer cells. 

 Supporting the consistency of these findings, they have been described in two cell 

lines that harbour different sets of mutations that are crucial and represent most human colon 

tumours: while SW480-ADH cells harbour mutated APC, TP53, and K-RAS genes, HCT116 

cells express a wild-type APC but a mutated CTNNB1/β−catenin that is the alternative 

responsible mechanism for the aberrant activation of the Wnt canonical signalling pathway, a 

hallmark of this neoplasia. Both cell types contain a mutated K-RAS but they differ with 

respect to the major tumour suppressor TP53, which is normal in HCT116 but mutated in 

SW480-ADH cells. 

 Several reasons support a role of the regulation of miR-22 for 1,25(OH)2D3 action in 

this system. First, our data show that miR-22 mediates the antiproliferative and antimigratory 

action of the hormone. Second, because the repression by 1,25(OH)2D3 of certain genes that is 

in part dependent on miR-22 may contribute to its antitumoural action: thus, NELL2 is 

repressed by the antitumour agent genistein in pancreatic cancer Panc1 cells (30), is over-

expressed in Burkitt’s lymphoma cells, neuronal tumours, and benign prostatic hyperplasia 

(31-33), and contributes to the survival promoting effects of estradiol via the ERK signalling 

pathway (34). HNRPH1 encodes a splicing regulator that is overexpressed in colon cancer and 
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counteracts apoptosis induced by etoposide and fluoropyrimidine anticancer drugs (35-37). 

NFAT5 transcriptional activity is induced by integrin α6β4 and Src oncogene (38), and 

mediates carcinoma invasion through the induction of S100A4 (39), and possibly also 

melanoma invasion (40). RERE (or ATN1) encodes a nuclear receptor corepressor that is 

aberrantly expressed in neuroblastoma and appears to be involved also in acute myeloid 

leukemia (41). Very little relation exists between OGN and cancer; paradoxicaly, it has been 

proposed to decrease gelatinase activity of murine hepatocarcinoma cells (42).  

 The relevance of miR-22 regulation by 1,25(OH)2D3 is also supported by the tumour 

suppressive effects of this miRNA recently described in other systems. Thus, miR-22 

suppresses cell proliferation and tumourigenicity and is downregulated in hepatocellular 

carcinoma (16), represses c-Myc binding protein, MYCBP, a positive regulator of the strong 

oncogene c-MYC (17), and controls the EVI-1 oncogene in breast cancer cells (18). 

Additionally, miR-22 is induced by p53 and favours p53-dependent apoptosis by targeting 

CDKN1A/p21
CIP-1 RNA (19), although our data show that the induction of miR-22 by 

1,25(OH)2D3 is independent of p53 as it takes place in cells with either wild-type or mutant 

TP53 gene. Also, miR-22 suppresses the activity of nuclear factor kappa B (ΝFκΒ), an 

important inducer of cell survival and inflammatory and tumourigenic cytokines (20). 

Remarkably, miR-22 may have an anti-angiogenic effect in colon cancer via the inhibition of 

hypoxia inducible factor (HIF)-1α expression (21). Lastly, it has recently been reported the 

additive induction of miR-22 by testosterone and 1,25(OH)2D3 in the prostate cancer LNCaP 

cell line (43). Altogether, these data suggest that miR-22 induction may play a role in the 

antitumoural action of 1,25(OH)2D3. 

 Data obtained from human biopsies show the correlation between the expression of 

VDR RNA and miR-22, suggesting that 1,25(OH)2D3 may also regulate miR-22 expression in 
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vivo. Likewise, the downregulation of miR-22 concomitant to VDR silencing in tumours 

agrees with its tumour suppressive effects in cultured colon cancer cells. 

 In summary, we have identified miR-22 as a novel target of 1,25(OH)2D3 that expand 

the range of its gene expression modulatory activity at the posttranscriptional level and may 

contribute to explain at least partially its protective action on this important neoplasia.
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MATERIALS AND METHODS 

 

Cells and cell culture 

Human colon cancer SW480-ADH, HCT116, HT29, LS174T, DLD-1, SW620, SW1417 and 

SW480-R cell lines were cultured in DMEM plus 10% foetal bovine serum (Invitrogen). All 

experiments using 1,25(OH)2D3 or isopropanol (vehicle) were performed in medium 

supplemented with charcoal-treated serum.  

 

Cell proliferation and migration assays 

To measure proliferation, cells (15 x 103) were seeded in 24-well plates and treated for up to 3 

days with 10-7 M of 1,25(OH)2D3 or vehicle. Living cells were counted after trypsinization 

using a TC10™ Automated Cell Counter (Bio-Rad). For migration assays, cells were 

transfected with antisense or control oligonucleotides and 12 h later they were trypsinized and 

counted. Equal numbers (15 x 104) were seeded on the upper surface of 8.0 µm pore 

Transwells® (Corning Incorporated). 1,25(OH)2D3 (10-7 M) or vehicle was added to the upper 

and lower media. After 24 h incubation, cells on the upper surface of the filter were removed 

by using a cotton swab and those attached to the lower surface of the filters were stained using 

Diff-Quick reagents (Dade Behring) and counted (10 fields/Transwell®). Experiments were 

performed in triplicate. Phase-contrast images were captured with a Leica DC300 digital 

camera mounted on an inverted Leitz Labovert FS Microscope. All images were processed 

using Adobe Photoshop CS4 software. 

 

miRNA microarray analysis 

Microarrays were produced in the Genomics Unit of the Spanish National Cancer Research 

Centre (CNIO), Spain. Briefly, NCode Multi-Species miRNA V2 probeset (Invitrogen, cat. # 
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MIRMPS2-01) was printed on Nexterion epoxy E slides (Schott) by following manufacturer’s 

recommendations. Probe sequences target all of the known mature miRNAs in the Sanger 

miRBase Sequence Database, Release 9.0. Cellular small RNA fractions were extracted with 

PureLink miRNA isolation kit (Invitrogen) and labelled with the 2-color LabelIT miRNA 

labelling system (Mirus). Extracts from cells treated with 1,25(OH)2D3 or vehicle at each time 

point were compared in dye swapped hybridizations. Hybridization conditions were as per 

Mirus’ kit recommendations and microarrays were read with an Agilent G2505B scanner. 

Two hybridization batches were performed on a first series of cells cultured for 24, 48 or 72 h 

(data not shown). A last batch, in which all the samples were dye swapped in technical 

replicates, employed new cultures from a time series of 24, 48, and 96 h. Changes between 

1,25(OH)2D3 and vehicle treatments were apparent and steady but small, and statistically non-

significant. Biological replication (two replicates for time points 24 and 48 h) was 

insufficient. Entities that showed no signs of differential expression, with absolute fold 

change less than 1.5, were discarded from consideration. Raw data from microarray images 

were quantified, background subtracted, and global Lowess normalized with Feature 

Extraction Software (Agilent). Visualization of miRNA expression data showing relatively 

high intensity signals was carried out by importing processed data in MultiExperiment Viewer 

v4.7 (44) and MS Excel. The expression dataset was filtered to include only those probe sets 

detecting miRNAs with mean expression values showing at least a change of ±0.5 (log2 scale) 

between each pair of samples under comparison. Validation was carried out by qRT-PCR 

analysing three independent sets of samples. 

 

Transfection and miR-22 silencing 

To silence miR-22, cells were transfected with 25 nM of miRIDIAN anti miR-22 (hairping 

inhibitor oligonucleotide) or with a Caenorhabditis elegans miRNA not found in humans 
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[miRIDIAN miRNA Hairpin Inhibitor Negative Control 1 (SCR)] (Dharmacon) using the 

jetPEI reagent (PolyPlus Transfection) following manufacturer’s guidelines. Experiments 

were performed up to 72 h after transfection and the level of miR-22 silencing was monitored 

by qRT-PCR. 

 

Quantitative RT-PCR 

Total RNA (including small RNAs) from cultured cell lines was extracted using the 

NucleoSpin® miRNA extraction kit (Macherey-Nagel). RNA from ~30 mg of tumour or 

normal tissue was extracted using RNeasy mini kit (Qiagen). Quantitative real-time PCR 

(qRT-PCR) analyses of miR-22 expression level were performed using the miRNA-specific 

TaqMan MicroRNA Assay Kit (Applied Biosystems). Briefly, 12.5 ng of total RNA were 

reversed transcribed using the corresponding RT Primer and the TaqMan MicroRNA Reverse 

transcription Kit (Applied Biosystems). PCR was performed on 1.33 ml of RT products by 

adding the TaqMan PCR primers and the iQ Supermix (Bio-Rad). RNU44 small RNA was 

used for normalization of input RNA/cDNA levels. VDR, NFAT5, NELL2, OGN, CDX2, 

CDH1, RERE, and HNRPH1 RNA levels were measured using the primers listed in 

Supplementary Material Table S2 and the Power SYBR® Green PCR Master Mix (Applied 

Biosystems). RNA expression values were normalized versus the housekeeping gene 

succinate dehydrogenase complex subunit A (SDHA). The reaction was performed in a 

CFX384 Real-Time PCR Detection System (Bio-Rad). 

 

Patients and tumour samples 

Normal and tumour tissue samples from 50 colon cancer patients were obtained immediately 

after surgery, immersed in RNA later (Applied Biosystems), snap-frozen in liquid nitrogen 

and stored at -80ºC until processing. Tumours were considered sporadic cases because no 
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clinical antecedents of Familial Adenomatous Polyposis (FAP) were reported and those with 

clinical criteria of hereditary non-polyposis colorectal cancer (HNPCC) (Amsterdam criteria) 

were excluded. Tumours were examined by two different pathologists to: (a) confirm 

adenocarcinoma diagnosis and presence of at least 75% of tumour tissue in the sample, (b) 

determine the histological level of the tumour, and (c) verify the absence of tumour cells in 

normal tissue. All patients gave written informed consent. The protocol was approved by the 

Research Ethics Board of the Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, 

Spain. 

 

 

Statistical analysis 

Results are expressed as mean ± SD unless otherwise specified. Statistical significance was 

assessed by one-way analysis of variance (ANOVA) test with Bonferroni post-test. 

Differences were considered significant when P < 0.05. The single asterisk indicates P < 

0.05, the double asterisk P < 0.01, and the triple asterisk P < 0.001. All statistical analyses 

were performed using the Prism software V5 (GraphPad software). As the tumour/normal 

tissue (T/N) ratios of VDR and miR-22 expression were not normally distributed 

(Kolmogorov-Smirnov test, Lilliefords correction), we normalized the data distribution by 

using log10 for statistical analysis. Correlations between RNA expression levels were 

analyzed using the Spearman correlation coefficient.  
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SUPPLEMENTARY MATERIAL 

Supplementary material is available at HMG online. 
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LEGENDS TO FIGURES 
 

Figure 1. Identification of miRNAs regulated by 1,25(OH)2D3 in SW480-ADH cells 

using microarrays. RNA populations isolated from cells that were incubated with 10-7 M 

1,25(OH)2D3 for 24, 48, or 96 h with repeated addition of hormone every 24 h were 

hybridized to the arrays as indicated in Methods. Heat map showing the list of miRNA 

species that were upregulated (red) or downregulated (green). 

 

Figure 2. Induction of miR-22 expression by 1,25(OH)2D3 in human colon cancer cells. 

(A) qRT-PCR analysis of miR-22 expression levels in SW480-ADH cells at different 

times after addition of 10-7 M 1,25(OH)2D3. RNU44 was used for normalization. Mean ± 

SD (n = 3). (B) Dose-curve induction of miR-22 by 1,25(OH)2D3 in SW480-ADH cells. 

(C) qRT-PCR analysis of miR-22 levels after treatment with 10-7 M 1,25(OH)2D3 for 48 

h in a panel of human colon cancer cell lines that express (left) or lack (right) VDR. miR-

22 levels are shown relative to (untreated) LS174T cells after normalization to RNU44.  

 

Figure 3. Ectopic expression of anti-miR-22 abrogates the antiproliferative effect of 

1,25(OH)2D3. Proliferation capacity of HCT116 (A) or SW480-ADH (B) cells 

transfected with anti-miR-22 or a control oligonucleotide (SCR) in the presence or 

absence of 10-7 M 1,25(OH)2D3. In each panel, a representative experiment out of four 

performed in triplicate is shown. 

 

Figure 4. Anti-miR-22 abrogates the antimigratory effects of 1,25(OH)2D3. Migratory 

capacity of HCT116 (A) or SW480-ADH (B) cells transfected with anti-miR-22 or a 

control oligonucleotide (SCR) in the presence or absence of 10-7 M 1,25(OH)2D3. Cells 

were seeded in triplicate on Transwell filters and 24 h later cells on the upper surface of 
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the filters were swept out and migratory cells that had attached to the lower surface of 

filters were counted. Quantification of data of three independent experiments is shown 

(left). Representative phase-contrast images of cells attached to the lower surface of the 

filters that were stained with Diff-Quick reagents (right). 

 

Figure 5. Expression of anti-miR-22 abolishes the downregulation of several genes by 

1,25(OH)2D3. (A) Venn diagram representing the overlap between miR-22 predicted 

targets (TargetScan) and 1,25(OH)2D3-modulated genes identified in microarrays 

analyses of SW480-ADH cells. qRT-PCR analysis of NELL2, OGN, HNRPH, RERE, 

CDX2, CDH1 and NFAT5 mRNA expression in HCT116 (B) or SW480-ADH (C) cells 

treated for 48 h with 10-7 M 1,25(OH)2D3 or vehicle. SDHA was used for normalization.  

 

Figure 6. miR-22 expression in human colon cancer patients. (A) miR-22 levels were 

analyzed by qRT-PCR in normal and tumour tissue samples of 50 colon carcinoma 

patients. Quantification was performed as described in Methods. (B) Scattergram 

showing the relation between miR-22 and VDR RNA levels in each patient. 
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LEGENDS TO SUPPLEMENTARY FIGURES 

 

 

 

 
Supplementary Figure S1. Blockade of miR-22 induction by 1,25(OH)2D3 using anti-miR-

22. Three representative qRT-PCR analysis of miR-22 levels in HCT116 (A) and SW480-

ADH (B) cells transfected with anti-miR-22 or control oligonucleotide (SCR) in the 

presence or absence of 10-7 M 1,25(OH)2D3 for the indicated times. 

 

 

 

Supplementary Figure S2. VDR expression in human colon cancer patients. Levels of VDR 

RNA were analyzed by qRT-PCR in paired normal and tumour tissue samples of 50 colon 

carcinoma patients. Quantification was performed as described in Methods. 

 

 

 

Supplementary Table S1. miR-22 predicted targets regulated by 1,25(OH)2D3. 

Analysis was performed as described in Methods. 

 

 

Supplementary Table S2. Sequence of primers for amplification of each gene by qRT-

PCR.  
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Supplementary Table S1 

 
 

Reference Symbol Fold Change Seed Match Position 3’UTR 

NM_014057 OGN -4.34 8mer 509-515 

NM_001113178 NFAT5 -3.71 7mer-m8 2264-2270 

NM_005520 HNRNPH1 -4.28 7mer-1A 22-28 

NM_006159 NELL2 -2.26 8mer 91-97 

NM_002847 PTPRN2 -1.68 7mer-m8 1262-1268 

NM_016205 PDGFC -1.65 7mer-m8 1174-1180 

NM_001265 CDX2 -1.58 8mer 498-505 

NM_003655 CBX4 -1.38 7mer-m8 267-273 

NM_001042681 RERE -1.44 7mer-1A 1724-1730 
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Supplementary Table S2. 

 
 

Gene Forward primer Reverse primer 

CDH1 AGAACGCATTGCCACATACACTC  CATTCTGATCGGTTACCGTGATC  

CDX2 TCTGGGCTGCTGCAAACGCT CCTGGTTTTCACTTGGCTGCCG 

HNRPH1 TCGCGTGTCTAGTTTGTTTCGACG CATCGGCCGAGCAAGACCAGG 

NFAT5 CGCGAGATTCTCTGAAGTTACACCC GGCAAATCCAGCAGCAACAACAGC 

NELL2 TGCCTTTACAACAGAGGGAGACGA GACGCACTCCGGTCGTGGAC 

OGN AATGATGAAATGCCCACGTGTCTGC GGCTGATTCCTTTGGTAAGGGTGGT 

RERE GGTGTAGCGCTTTAGGGGAAGCATT TCTCACGGCTAGGCCTCCGT 

SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG 

VDR TTGCCATACTGCTGGACGC GGCTCCCTCCACCATCATT 
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ABBREVIATIONS 

1,25(OH)2D3, 1α,25-dihydroxyvitamin D3; ERK, extracellular signal-regulated kinase, SCR, 

scrambled; VDR, vitamin D receptor; VDRE, vitamin D response element 

 

Page 25 of 33 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

90x70mm (300 x 300 DPI)  

 

 

Page 26 of 33Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

160x182mm (300 x 300 DPI)  

 

 

Page 27 of 33 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

180x80mm (300 x 300 DPI)  

 

 

Page 28 of 33Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

160x180mm (300 x 300 DPI)  

 
 

Page 29 of 33 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

170x260mm (300 x 300 DPI)  

 

 

Page 30 of 33Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

180x270mm (300 x 300 DPI)  

 
 

Page 31 of 33 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

170x321mm (300 x 300 DPI)  

 

 

Page 32 of 33Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

 

90x62mm (300 x 300 DPI)  

 
 

Page 33 of 33 Human Molecular Genetics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


