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Monocytes Are Major Players in the Prognosis and Risk of
Infection After Acute Stroke

Xabier Urra, MD; Alvaro Cervera, MD, PpD; Victor Obach, MD; Nuria Climent, PhD;
Anna M. Planas, PhD; Angel Chamorro, MD, PhD

Background and Purpose—Monocytes participate in adaptive and innate immune responses. Monocyte numbers increase
in patients with stroke associated infection (SAI) or severe stroke. Whether changes in monocytes are related to specific
effects, or simply mark brain damage, remains unsettled.

Methods—We used flow cytometry in 45 consecutive strokes and 12 healthy controls to assess the time course of
monocytes, their phenotype, and the production of cytokines after stimulation. Cortisol, TNF-a, IFN-v, and IL-10 were
measured in serum and metanephrine in plasma. The effects of humoral and cellular parameters on the risk of SAI and
poor outcome were tested in multivariate analyses adjusted for confounders (NIHSS score, age, and tube feeding).

Results—Surface expression of human leukocyte antigen-DR, Toll-like receptor-2, and production of TNF-« in monocytes
were independently associated with stroke. Distinct immune mechanisms were related with functional outcome and the
risk of SAI; the signature of SAI included an increase of cortisol, metanephrine, and IL-10 in serum, and reduced
production of TNF-a in monocytes; poor outcome was associated with increased expression of Toll-like receptor-4 in
monocytes (OR, 9.61; 95% CI, 1.27-72.47). SAI did not predict poor outcome (OR, 5.63; 95% CI, 0.45-70.42;
P=0.18).

Conclusions—In human stroke, poor outcome is associated to innate responses mediated by Toll-like receptor-4 in
monocytes. SAI may result from the immunosuppressive and antiinflammatory effects of corticoids, catecholamines,
IL-10, and deactivated monocytes. Early treated SAI does not contribute significantly to additional brain damage. These
findings encourage the exploration of strategies aimed to inhibit Toll-like receptor-4 signaling in acute stroke. (Stroke.
2009;40:1262-1268.)
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he relevance of immune mechanisms in patients with
acute stroke is increasingly recognized.'-# Ischemic and
hemorrhagic stroke disrupt the blood—brain barrier, damage
brain cells, and allow self antigens from the central nervous
system to interact with circulating and resident immune
cells.> The exchange of immunologic signals from and to the
brain is facilitated by a rich bidirectional regulatory network
between the central nervous system and the adaptive and
innate immune systems. This network includes neural path-
ways that innervate the lymphoid organs,® neuroendocrine
glands,” and humoral messengers such as cytokines, adreno-
medullary hormones, or glucocorticoids.® For many years
these neural, humoral, and cellular pathways have been
considered essential in the physiological regulation of the
immune system, but until recently they had not received
attention in the setting of acute stroke.
Pioneer studies in rats described the arrival of circulating
monocytes to capillaries and venules of brain ischemic areas

as early as 4 hours after stroke onset, but their specific effects
were not further elucidated.® Monocytes are of paramount
immunologic relevance because they contribute to adaptive
immunity as antigen-presenting cells, and they are the main
effectors of innate immunity through the expression of
pattern recognition receptors.!®!! These receptors include the
Toll-like receptors (TLR), which are linked to intracellular
signal transduction pathways that regulate the inflammatory
response.'? There are at least 10 distinct TLR families in
humans, and TLR2 and TLR4 are the best-studied in the
central nervous system.!3

Monocytes express human leukocyte antigen-DR (HLA-
DR) to bind to foreign and self peptides, which are then
recognized by CD4% T cells that secrete cytokines that
amplify the immune response.'# Other relevant molecules in
monocytes are CD49d, which interacts with vascular cell
adhesion molecule-1 and allows monocytes and lymphocytes
to cross the endothelial wall to gain access to tissues,'s and
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CDS86, a costimulatory molecule that is expressed on acti-
vated antigen presenting cells, especially when TLR are
stimulated.'® However, the specific role of monocytes in
patients with acute stroke and the overall harms and benefits
of inflammatory and immune responses remain incompletely
understood.

We posit that the study of infections complicating the
course of acute stroke could serve as a useful clinical model
to address the relevance of immune responses after stroke. In
experimental studies, stroke-associated infection (SAI) may
result from a state of stress-mediated reduced immune com-
petence that is associated with increased mortality.!” At the
bedside, SAI occurs most frequently in patients with severe
stroke and reduced immune competence.*!'® However, it is
also arguable that reduced immune competence could be bene-
ficial after stroke because it would limit the inflammatory
response to brain injury. Clarification of this conundrum is
required to judge the need of immunomodulatory therapies in
acute stroke, and to define specific immune targets that might
translate into a better risk—benefit profile. This study supports
the potential value of immunomodulation after stroke and
suggests that the innate proinflammatory responses mediated by
monocytes are promising therapeutic targets.

Subjects and Methods
Subjects

We studied 45 consecutive stroke patients with a prestroke modified
Rankin Scale score =2, and a National Institutes of Health Stroke
Scale (NIHSS) score on admission >3. Patients were first evaluated
at a median of 180 minutes (interquartile range, 120-350) of stroke
onset. Exclusion criteria included a history of infection or the use of
antibiotics, immunosuppressants, or steroids within the preceding 3
months. Although the high prevalence of infections before stroke
increases the possibility that an infection diagnosed after admission
was present before, we tried to avoid the inclusion of those patients
by carefully looking for signs and symptoms of infection in the
interview, the first physical examination, and the emergency tests.
The study was approved by the local ethics committee and all
participants or their legal representatives signed a written informed
consent. Patients had a brain CT scan or MRI on admission and were
managed in the Stroke Unit according to European Guidelines.!”
Neurological impairment was assessed daily using the NIHSS until
day 7, and at day 90. Functional outcome was assessed with the
modified Rankin Scale and NIHSS score at day 90. Favorable
outcome was defined as a modified Rankin Scale of 0 to 2 and a
NIHSS of 0 or 1. According to the ESPIAS trial,>® SAI was defined
as a body temperature >37.8°C in patients with suggestive symp-
toms (ie, cough, dyspnea, pleuritic pain, urinary tract symptoms), or
white blood cell count >11000/mL or <4000/mL, pulmonary
infiltrate on chest x-rays, or cultures positive for a pathogen during
the first week after stroke. SAI was first assessed by stroke
neurologists and then validated by specialists on infectious diseases
external to the current investigation. Treatment with appropriate
antibiotics was started whenever SAI was suspected, and intravenous
ceftriaxone was the starting regime unless contraindicated. Twelve
relatives of the patients, all free of symptomatic central nervous
system disorders, served as controls.

Flow Cytometry

Blood samples were collected at a median delay of 180 minutes after
stroke onset before any medication was started, and between 8:30AM
and 9:00AM at days 2, 7, and 90 after admission. The phenotype of
monocytes was analyzed immediately after blood extraction by
investigators blinded to clinical end points. The following monoclo-
nal antibodies were used: TLR2 and IgG1 isotype control conjugated
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to fluorescein isothiocyanate, TLR4, CD49d (very late antigen-4),
CD86 (B7-2), HLA-DR, and IgGl1 isotype control conjugated to
phycoerythrin, CD45 conjugated to Peridinin-chlorophyll-protein,
and CD14 and IgG1 isotype control conjugated to allophycocyanin
(all from Pharmingen, except for TLR2 and TLR4, which were from
Serotec). Monoclonal antibodies were mixed with the cell suspen-
sion and incubated for 15 minutes at room temperature in the dark.
After erythrocyte lysis and 2 washes, acquisition was performed on
a FACSCalibur flow cytometer (BD Biosciences). CellQuest soft-
ware (BD Biosciences) was used for analysis. Surface molecule
expression was quantified by converting median fluorescent inten-
sity values into molecules of equivalent soluble fluorochrome units
using standardized fluorescent beads (Quantum fluorescein isothio-
cyanate and Quantum phycoerythrin Medium Level; BangsLabs).
Molecules of equivalent soluble fluorochrome units were obtained
after substraction of the isotype control molecules of equivalent
soluble fluorochrome units.

Data of the same study population focused on the effects of stroke
on the adaptive immune system have been reported elsewhere.?!

Intracellular Cytokines

After diluting 1000 wL of whole blood 1:1.5 in RPMI 1640 (GIBCO
BRL; Breda), it was stimulated for 4 hours with 1 pg/mL lipopoly-
saccharide in the presence of 10 ug/mL Brefeldin A (both from
Sigma). Incubation and intracellular staining was performed accord-
ing to the manufacturer’s protocol (BD Biosciences) using fluores-
cein isothiocyanate conjugated anti-TNF-« and phycoerythrin con-
jugated anti-IL-10 antibodies and their respective controls.
Monocytes were recognized by their staining with CD45 and CD14,
and the results were expressed as the proportion of TNF-a or
IL-10—positive monocytes.

Cortisol, Metanephrine, and Cytokines

Between 8:30AM and 9:00AM of day 1, serum cortisol levels were
measured using an enzyme immunoassay, and unconjugated levels
of metanephrine (MN) were measured in plasma by competitive
enzymatic immunoassay, as previously reported.?! IL-10, TNF-«,
and IFN-v levels were determined in serum at days 0, 2, 7, and 90
using a BD Cytometric Bead Array Human Th1/Th2 cytokine kit
(BD Biosciences) according to the manufacturer’s protocol.

Statistical Analysis

Differences in patients and between patients and controls were
calculated with the Student ¢ test or Mann—Whitney U test as
appropriate. Correlations were calculated with the Spearman Rank
correlation coefficient. The last observation carried forward method
was used for missing clinical values. SAI and outcome were
dependent variables assessed in logistic regression models adjusted
for baseline stroke severity (NIHSS score), age, and tube feeding.'s
The area under a receiver-operator characteristic curve was used to
compare the ability of different logistic regression models to predict
outcome. All tests were performed using the SPSS software version
14.0 (SPSS Inc). P<<0.05 were considered statistically significant.

Results

Stroke-Associated Infection

The main traits of the study population are shown in Table 1.
Patients with ischemic stroke were older than those with
hemorrhagic stroke (76.6 years; SD, 9.0 vs 65.2 years; SD,
13.9; P=0.003), but the stroke subtype resulted in no signif-
icant differences in risk factors, clinical findings, and labo-
ratory results (data not shown). Exploratory analyses by
ischemic subtype or hemorrhage location were not per-
formed. SAI occurred in 14 (31%) patients at a mean delay of
2.5 days after symptom onset and included pneumonia (n=5),
tracheobronchitis (n=5), urinary tract infection (n=2), and
other infections (n=2). Expectedly, SAI prevailed in patients
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Table 1. Main Characteristics of the Study Population
Controls All Patients SAl Poor Outcome
N 12 45 14 33
Demographics, risk factors
Age, yr, mean (SD) 73.7 (10.7) 73.8(11.4) 74.6 (14.6) 75.5(11.9)
Male, % 50 56 79 54
Smokers, % 0 10 14 13
Hypertension, % 45 76 71 73
Diabetes mellitus, % 0 32* 43 30
Dyslipidemia, % 18 34 36 37
Coronary artery disease, % 15 0 10
Peripheral arterial disease, % 10 14 10
Previous stroke, % 15 7 13
Tube feeding, % 27 571t 40%
Urinary catheters, % 27 43 37
Antibiotics within 1 wk, % 42 1001t 57%
1PA, % 38 57 39
Qualifying stroke subtype, %
Ischemic 76 79 82
Hemorrhagic 24 21 18
Baseline parameters, mean (SD)
SBP, mm Hg 149 (25) 165 (28) 170 (30) 168 (28)
DBP, mm Hg 77 (15) 77 (18) 79 (21) 81 (15)
Temperature 36 (0.5 36.1(0.6) 36 (0.5) 36.1(0.6)
Neurological course, NIHSS
score, median (IQR)
Baseline 6.5-18) 9(13.2-20.2)t1 4(7.5-19)%
48 hr 5-17.7) 8 (14-20)t 1t 5( —19)1t
Day 7 3.5-17.5) (13 7-21.7)1tt 14 (6-20)ttt
Day 90 1-14.7) 15.5 (4-42)tt 6 (3-42)11t
Death at day 90, % 20 671t
Neurohormonal response
Cortisol, wg/dL, mean (SD) 18.5(6.7) 239 (7.1)* 28.8 (8)tt 24.8 (6.8)
Metanephrine, pg/mL, mean (SD) 15.9 (17.5) 16.6 (14.1) 21.2 (10.7)t1 16.2 (10.5)

*Patients vs controls.
1SAI vs no SAl.
FPoor vs favorable outcome.

1 symbol=P<0.05; 2 symbols=P<0.01; 3 symbols=P<0.001.

fed by nasogastric tube and in those with poor outcome
(Table 1), but SAI was not independently associated with
poor outcome in models adjusted for stroke severity, age, and
tube feeding (OR, 5.63; 95% CI, 0.45-70.42; P=0.18).

Cortisol and Metanephrine

Cortisol levels were higher in patients than in controls, highest in
patients with SAI, although unrelated to clinical outcome (Table
1). MN levels were similar in patients and controls, highest in
patients with SAI, and unrelated to clinical outcome (Table 1).
Cortisol was correlated with MN (r=0.39; P=0.02) and baseline
NIHSS score (r=0.38; P=0.02). In adjusted models, SAI
increased with higher levels of cortisol (quartiles: OR, 2.51; 95%
CI, 1.08-5.84; P=0.03) and MN (quartiles: OR, 3.00; 95% CI,
1.23-7.32; P=0.01).

Serum Levels of Cytokines

As shown in Table 2, patients had higher IFN-vy, lower TNF-c,
and similar IL-10 levels than controls. In multivariate analysis,
SAI was associated with increased IL-10 at baseline, quartiles
(OR, 4.56; 95% CI, 1.41-14.77; P=0.01), and at day 2 (OR,
2.80; 95% CI, 1.08-7.32; P=0.03). Levels of TNF-« and IFN-y
were unrelated to SAI, and poor outcome was unrelated to the
time course of IFN-vy, IL-10, or TNF-« (Table 2).

Monocytes After Stroke: Phenotype and

Cytokine Production

The number of monocytes increased in patients compared
with controls, as shown in Figure 1A. Patients also had
significantly lower expression of HLA-DR (Figure 1B), and
enhanced expression of TLR2 (Figure 1C). The expression of
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Table 2. Cytokines in Serum in Patients and Controls and Their Relation With SAl and Poor Outcome at 3
Months in Models Adjusted for Age, Baseline NIHSS Score, and Tube Feeding

Controls All Patients SAl Poor Outcome

TNF-a pg/mL, mean (SD)

Baseline 3.40(1.89) 2.21(1.84) 1.80(1.19) 2.38 (2.04)

48 hr 2.18 (2.52) 1.74 (1.46) 2.37 (2.75)

Day 7 2.35(2.58) 1.98 (1.39) 2.05(1.10)

Day 90 2.81 (1.55) 2.56 (1.64) 3.21(1.67)
IFN-y pg/mL, median (IQR)

Baseline 3.05 (1.20-3.66) 412 (1.45-6.76) 4.27 (2.46-6.27) 4.24 (2.33-6.46)

48 hr 3.69 (2.22-5.18) 3.45(1.1-5.26) 3.61(2.2-5.18)

Day 7 3.78 (2.65-5.57) 3.37 (1.82-4.99) 3.78 (2.14-5.46)

Day 90 4.48 (2.83-6.45)* 414 (2.43-4.76) 4.25(2.71-6.14)
IL-10 pg/mL, median (IQR)

Baseline 1.58 (0.01-1.81) 1.62 (1.21-3.01) 3.01 (1.67-5.38) 1.67 (1.29-3.53)

48 hr 1.64 (1.39-2.14) 2.13(1.55-4.90)t 1.68 (1.38-2.14)

Day 7 1.53 (1.25-2.11) 2.16 (1.98-5.11) 1.67 (1.24-2.17)

Day 90 1.69 (1.42-2.25) 1.54 (1.27-2.13) 1.64 (1.34-2.18)

*P<0.05 patients vs controls.
1P<0.05 SAl vs no SAl.

TLR4, CD86, and CD49d did not differ between patients and
controls (Figure 1D to 1F). Stroke patients had significantly
lower proportion of TNF-a producing monocytes after stroke,
whereas the production of IL-10 was similar than in controls,
as shown in Figure 2. In logistic regression adjusted for age
and risk factors (hypertension and diabetes), at day 2, stroke
was associated with the magnitude of the surface expression
of HLA-DR (OR, 0.30; 95% CI, 0.11-0.79; P=0.01) and
TLR2 (OR, 3.36; 95% CI, 1.25-9.01; P=0.02), and the
proportion of TNF-a—producing monocytes (OR, 0.21; 95%
CL, 0.06-0.68; P=0.01).

Monocytes and Stroke-Associated Infection

SAI was associated in univariate analyses with increased
number of monocytes on day 2 (P=0.02) to at least day 7
(P=0.01), reduced expression of HLA-DR, CD86 and
CD49d (Figure 3A-C), and lower proportion of TNF-a—
producing monocytes (Figure 3D). Lower TNF-« production
on day 2 (quartiles) remained associated to SAI in adjusted
models (OR, 0.27; 95% CI, 0.09-0.80; P=0.01). In explor-
atory analyses, monocyte deactivation was correlated with the
levels of cortisol (r=—0.40; P<<0.05), and IFN-y on admis-
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Figure 2. Cytokine production in monocytes after stimulation with
lipopolysaccharide in acute stroke. Stroke patients had a signifi-
cant decrease in the proportion of TNF-a producing monocytes,
especially during the acute phase (A), whereas the production of
IL-10 was similar to that in controls (B). Values are mean=SEM.
*P<0.05, ** P<0.01, control vs stroke; n(controls)=11, n(day
0)=20, n(day 2)=36, n(day 7)=27, n(day 90)=32.

sion (r=—0.44; P=0.01). Surface expression of TLR2 and
TLR4 was unrelated to SAI (data not shown).

Monocytes and Stroke Outcome

Poor outcome was associated with decreased expression of
HLA-DR at baseline (P=0.06), on day 2 (P=0.03), day 7
(P=0.01), but not on day 90 after stroke (P=0.23); however,
these findings were not significant in adjusted models. As
shown in Figure 4, surface expression of TLR4 at day 2
increased in patients with poor outcome (P=0.03), and the
effect remained significant in adjusted models (quartiles: OR,
9.61; 95% CI, 1.27-72.47; P=0.02). Using receiver-operator
characteristic curve analysis, adding TLR4 expression to
clinical variables increased the capacity to predict poor
outcome (area under the curve) from 0.73 to 0.95. Expression
of TLR2 and other receptors in monocytes and cytokine

A HLA-DR B
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[~
$

CD86

& /§ u| =g
;e -
£ 20004 /E

1000+ 1004

50 TLR4

40 *
w 30
w
w
=20

10

A 1T

0 2 7 90
days

Il Poor outcome JFavourable outcome

Figure 4. Time course of TLR4 expression and outcome after
stroke. Higher expression of TLR4 on monocytes at day 2 was
associated with worse outcome. This association remained sig-
nificant after adjusting for potential confounders. Values are
mean=SEM. *P<0.05, favorable vs poor outcome; n(day 0)=37,
n(day 2)=39, n(day 7)=41, n(day 90)=33. MESF indicates mole-
cules of equivalent soluble fluorochrome.

production was not associated with outcome (data not
shown).

Discussion
The clinical relevance of immune responses after acute stroke
is stressed in this study, which showed that distinct mecha-
nisms are associated with clinical outcome and the risk of
SAL Previously, the most consistently reported clinical pre-
dictors of SAI included being older, greater baseline stroke
severity, total anterior cerebral infarction, and dysphagia.?? In
this study, we confirmed these data and the association
between SAI and several cellular and humoral markers
including a decreased capacity to release TNF-« in stimulated
monocytes, increased levels of MN,22 and increased IL-10 in
serum.?* The study first reported the independent association
between higher levels of cortisol and increased risk of SAIL In
addition, the study confirmed that monocytes in patients with

Figure 3. Time course and phenotype of circu-
lating monocytes in relation to SAl. Patients

-3

a0 with SAl had lower expression of HLA-DR (A),
CD86 (B), and CD49d (C), as well as lower pro-
portion of TNF-a producing monocytes (D). Val-
ues are mean+SEM. *P<0.05, SAl vs no SAl.
A-C, n(controls)=13, n(day 0)=37, n(day
2)=39, n(day 7)=41, n (day 90)=33. D, n(con-
trols)=11, n(day 0)=20, n(day 2)=36, n(day
7)=27, n(day 90)=32. MESF indicates mole-
cules of equivalent soluble fluorochrome.
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acute stroke show a reduced expression of HLA-DR and
decreased capacity to release TNF-a after stimulation.?>-2¢
Yet the study added new insights in brain—-immune interac-
tions, because it showed for the first time to our knowledge
that stroke patients also had an increased expression of TLR2
in monocytes, and evidenced that the expression of TLR4 is
an independent predictor of functional outcome.

The independent association between increased expression
of TLR4 in monocytes and poor outcome after stroke in
humans is consistent with previous experimental data indi-
cating that TLR4-deficient mice had smaller infarctions and
less inflammatory response after an ischemic insult,?” and that
the brain damage caused by stroke prime mechanisms that
signal through TLR4.28 We recently reported?! an association
between poor outcome after stroke and increased expression
of CD86 in B lymphocytes. Because the expression of CD86
is increased if TLRs are stimulated,'® this association might
be the result of an increased innate response elicited by TLR4
signaling. The relationships between TLR4 expression and
poor clinical outcome but not SAI reinforce the concept that
TLR4 can be activated by endogenous ligands without the
intervention of exogenous pathogens.?® The expression of
TLR2 was increased on day 2 in patients with stroke,
although SAI and poor outcome were not associated with
TLR2 in adjusted models. This increased expression of TLR2
in acute stroke agrees with previous studies demonstrating
that TLR2 signaling is involved in the induction of inflam-
matory and tissue-repair genes after tissue injury.3°

A decreased capacity to release TNF-a in stimulated
monocytes has been previously described in patients with
acute stroke,?52¢ and in patients with SAL.?> We confirmed a
reduced capacity of monocytes to produce TNF-a but not
IL-10 in stroke, and a greater reduction in patients with SAIL
Monocyte deactivation was detected on admission (median, 3
hours); it was severest on day 2, and similar to controls on
day 90. The relevance of monocyte deactivation observed in
patients fed by nasogastric tube suggests a potential mecha-
nism to explain the high incidence of pneumonia in these
patients.?! The study also confirmed the association between
hypercortisolemia and monocyte deactivation,?? but further
studies will be required to unravel the molecular mechanisms
that limit the inflammatory drive of monocytes.

Several studies have described an increment of cortisol levels
after stroke, particularly in patients with severe stroke.?3-3¢
However, it had not been addressed whether increased cortisol
favor the incidence of SAIL as we first report in this study. Our
current findings are in accord with the overall immunosuppres-
sive effects of glucocorticoids during stressful conditions,?” and
the simultaneous increase of cortisol and MN support a synchro-
nous hyperactivity of the hypothalamic—pituitary—adrenal axis
and the adrenomedullary gland after stroke. At variance with
some studies, this neuroendocrine response was not associated
with poor outcome?? or with an exaggerated inflammatory
response mediated by cytokines.?® After adjustment for prognos-
tic confounders, the neurohormonal response was a marker of
ongoing stroke severity rather than a contributor to additional
injury.

In keeping with previous reports,>* IL-10 was significantly
increased in patients with SAI, and the study stressed a

Monocytes, Infection, and Prognosis After Stroke 1267

significant elevation 3 hours after stroke onset, and until at
least day 7. Then, assessment of monocyte deactivation and
IL-10 in serum could emerge as valuable prognostic aids at
the bedside to anticipate very early the risk of SAL Reduced
expressions of surface receptors CD49d, CD86, and HLA-DR
were also found in patients with SAI, although not signifi-
cantly in adjusted models, suggesting that their expression in
monocytes was influenced by the extent of tissue damage.

In accordance with current European Guidelines,* the study
primed the early detection and treatment of incident infections
over preventive antibiotic therapy, which has recently shown
conflicting results in randomized controlled trials.20404! Strict
adherence to these recommendations resulted in a lack of
association between SAI and poor outcome.

This study has several limitations including the relatively
small study population and clinical heterogeneity. Subgroup
analyses by ischemic stroke subtype or by bleeding location
were not performed because large numbers of patients would
be required. The study found very similar immunologic
results after ischemic and hemorrhagic stroke, in accord with
the “danger model” of immune response that proposes that
the immune system evolved to primarily recognize danger
signals in diseased cells.*> This interpretation does not ex-
clude the possibility that stroke subtype might influence the
interaction between stroke and immune system, but it sug-
gests that the response to brain damage prevails over its
specific cause. Also, we acknowledge that greater or different
results might have been obtained had control subjects been
matched for the burden of atherosclerosis.

Summary

The study showed that different clinical implications derive
from the modulation of different surface receptors in mono-
cytes, or their capacity to present antigens or produce inflam-
matory cytokines. A very rapid switch to an antiinflammatory
phenotype in monocytes with a concomitant strong neurohor-
monal response predisposed to SAI. Stroke outcome de-
pended on innate responses signaled through TLR4 in mono-
cytes, and it was unrelated to SAI Therefore, our findings
encourage further exploration of strategies aimed to inhibit
TLR4 signaling in acute stroke.
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