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Abstract

Interference dynamics is analyzed in the light of the complex quantum Hamilton-Jacobi formal-

ism, using as a working model the collision of two Gaussian wave packets. Though simple, this

model nicely shows that interference in quantum scattering processes gives rise to rich dynamics

and trajectory topologies in the complex plane, both ruled by two types of singularities: caustics

and vortices, where the former are associated with the regime of free wave-packet propagation,

and the latter with the collision (interference) process. Furthermore, an unambiguous picture

connecting the complex and real frameworks is also provided and discussed.
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Realistic simulations of many quantum processes and phenomena of interest —e.g., dif-

fusion, relaxation, transport, dephasing or decoherence in solid state physics, condensed

matter or chemical physics— require a detailed knowledge of the time evolution (dynamics)

of a relative large number of degrees of freedom. A full quantum-mechanical study of this

type of many-body problems via the time-dependent Schrödinger equation (TDSE) results

prohibitive computationally. Because of this inconvenience, this kind of problems has be-

come an important and challenging issue in the last years. In particular, many efforts are

being devoted to the development of a number of alternative trajectory-based formalisms

[1]. The most recent approach considered in the literature, in this direction, is based on

using the complex quantum Hamilton-Jacobi (CQHJ) equation, formerly derived by Pauli

[2] in 1933 and later on rediscovered by other authors [3, 4, 5, 6, 7, 8, 9]. At a funda-

mental level, this formulation has been used basically to describe the dynamics associated

with stationary states [8, 10, 11, 12], while time-dependent problems have received little

attention [13]. However, from a practical (numerical) viewpoint, it has received much more

attention [3, 4, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. At the moment, the CQHJ equation

has been applied to both time-independent (bound states) and time-dependent (scattering)

problems, and is actually considered as a potential computational tool to handle relatively

large systems. Note that, as also happens with classical waves and fields, solving quantum

problems within a complex framework is usually simpler than in a real one.

One of the important problems in quantum trajectory-based methodologies is that of

interference dynamics. This characteristic quantum-mechanical process, which is central

to many actual research fields in physics and chemistry (e.g., quantum control [24] and

quantum information [25]), constitutes however a numerical drawback for such techniques

[19, 20, 21, 22, 26], since it introduces the so-called nodal problem [26]: the nodal structures

associated with interfering amplitudes give rise to numerical instabilities in the calculation

of quantum trajectories (and the properties derived from them). In the literature, this

issue has been tackled by means of different strategies (see, for instance, Refs. [22, 27, 28]).

One of them makes use of the superposition principle, separating the contributions from

each partial wave and then taking into account the combined effects of all the contributing

partial waves in the end. Nevertheless, despite this strategy may result efficient numerically,

from a dynamical viewpoint (i.e., in terms of trajectories) it leads to dramatic consequences:

the trajectories associated with a superposition look totally different to those associated
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with each separate partial wave [29] due to quantum nonlocality [30]. The purpose of this

Letter is to shed some light on this numerical issue by analyzing the topology of complex

quantum trajectories and comparing them with their real homologous. The unfolding in the

complex space turns relatively simple dynamics in real space into very intricate complex ones,

where unexpected and surprising features even for low-dimensional systems are observed.

A vortical dynamics in the complex configuration space appears as a natural consequence

of interference even in 1D, breaking the causticity regime characterizing free propagation.

Two types of quantum singularities are thus shown to rule the complex dynamics: vortices

and caustics. Apart from their intrinsic physical interest, these singularities should also be

taken into account when using this formulation for computational purposes, in the design

and implementation of numerical algorithms.

For the sake of simplicity, here we consider the 1D CQHJ formulation, although the

results can be straightforwardly extended to higher dimensions. Thus, after considering

the transformation relation Ψ(x, t) = eiS(x,t)/~, where S(x, t) is a complex-valued phase

depending on the position and time, the TDSE for a particle of mass m in a potential V

acquires the form of a Hamilton-Jacobi equation,

∂S

∂t
+

(∇S)2

2m
+ V − i~

∇2S

2m
= 0. (1)

This is the CQHJ equation, where the last term plays the role of a nonlocal, complex quan-

tum potential. Note that, due to the one-to-one correspondence between Ψ and S (both

functions provide exactly the same information), Eq. (1) can also be regarded as the loga-

rithmic form of the TDSE, since its solution (S) is proportional to ln Ψ. Equation (1) can be

further generalized by analytic continuation assuming that both S and Ψ are complex-valued

functions of a complex (space) variable z, i.e., S̄ ≡ S(z, t) and Ψ̄ ≡ Ψ(z, t). Now, analo-

gously to the standard Hamilton-Jacobi formalism, a family of characteristics or trajectories

satisfying the motion law (or “guidance” condition) can be defined as

v̄ ≡ ż =
∇S̄

m
=

~

im

∇Ψ̄

Ψ̄
, (2)

where v̄ is, like S̄ and Ψ̄, a complex-valued, time-dependent field that depends on the

(complex) variable z. Despite this formulation may result inconvenient interpretively, it has

been shown [14, 15, 16, 17, 18, 19, 20, 21, 22], however, that numerical algorithms based on

it are relatively stable and efficient for low-dimensional systems.

3



Within a real quantum Hamilton-Jacobi (RQHJ) formulation (the standard Bohmian

mechanics) at least two dimensions are necessary in order to observe quantum vorticality

[31, 32]. However, as shown below, only one dimension is required to observe the same

phenomenon within the CQHJ framework provided quantum interference is involved. The

collision of two identical Gaussian wave packets in 1D constitutes an ideal scenario which

illustrates fairly well the appearance of vorticality in the complex plane. Before entering into

details, first we would like to specify that by collision of two wave packets (either Gaussian or

of any other general type) here we mean the problem described by a “one-body” wave func-

tion which consists of a wave packet superposition. These wave packets fulfill two conditions

initially: (a) they move towards each other and (b) their respective propagation velocities

are larger than their spreading rates. With these conditions, after the collision (maximal

interference) takes place, two emerging or outgoing wave packets are clearly defined, just

like in a classical elastic particle-particle scattering problem. Diffraction-like situations (i.e.,

those where typical diffraction patterns can be observed after the collision, instead of two

emerging wave packets) constitute the opposite case.

The Gaussian wave-packet collision is an analytical problem which, despite its simplicity,

could be considered as representative of other more complicated, realistic processes char-

acterized by interference (e.g., scattering problems, diffraction by slits, or quantum control

scenarios). As indicated above, this process can be described as

Ψ(x, t) = N [ψ1(x, t) + ψ2(x, t)] , (3)

where N is the normalizing prefactor. Each wave packet is represented as

ψj(x, t) =

(

1

2πσ̃2
t

)1/4

exp

[

−
(x− aj − v

(j)
0 t)2

4σ̃tσ0
+
ip

(j)
0 x

~
−
iE(j)t

~

]

, (4)

where the complex and real time-dependent spreadings are

σ̃t = σ0

(

1 +
i~t

2mσ2
0

)

(5a)

and

σt = σ0

√

1 +

(

~t

2mσ2
0

)2

, (5b)

respectively, and the initial width (a real-valued quantity) is given by σ0. Regarding the

other parameters, aj is the initial position of the center of the wave packet, and v
(j)
0 = p

(j)
0 /m
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and E(j) are the corresponding velocity and energy, respectively . The space-time contour

plots of the probability density, phase and velocity fields associated with Ψ, given by

ρ = Ψ∗Ψ, (6a)

S =
~

2i
ln

(

Ψ

Ψ∗

)

, (6b)

v = ẋ =
∇S

m
, (6c)

respectively, are shown in Fig. 1. It is worth mentioning that Eqs. (6a) and (6b) are trans-

formation relations between the wave field (Ψ and its complex conjugate) and the flow or

hydrodynamic fields (ρ, S); the inverse transformation is just given by the polar form of the

wave function, Ψ = ρ1/2eiS/~, and its complex conjugate. On the other hand, Eq. (6c) arises

after the TDSE is recast in a RQHJ form,

∂S

∂t
+

(∇S)2

2m
+ V −

~
2

2m

∇2ρ1/2

ρ1/2
= 0, (7)

plus a continuity (or conservation) equation for the probability density,

∂ρ

∂t
+ ∇

(

ρ
∇S

m

)

= 0. (8)

In order to illustrate the dynamics associated with Ψ, several (real) quantum trajectories

x(t) (white solid lines), which are solutions of Eq. (6c), have also been added on each plot.

As seen in Fig. 1(a), the interference of the two wave packets leads to the appearance of

a nodal structure in ρ, which makes the trajectories to avoid certain space regions. These

nodes strongly affect the space-time structures of S and v, as seen in Figs. 1(b) and 1(c),

respectively: sudden changes from −π (blue) to π (red) around tmax = 4 (maximum inter-

ference time) in S, and a sharp variation from positive to negative values in v. As clearly

noticed from v, the configuration (position) space is divided into two well-defined dynamical

regions, where particles will strictly move with either positive (reddish regions) or negative

(bluish regions) momentum. Moreover, at x = 0, there is a sort of “interface” acting like

a (fictitious) barrier, which has a determining influence on the topology of the quantum

trajectories: as they start approaching that barrier, they undergo a strong repulsion and

bounce backwards. Also, around x = 0, v displays a series of local periodic maxima (in

the regions with v > 0) and minima (for v < 0), which become more prominent as time

evolves and that, after tmax, they interchange their role (i.e., maxima become minima and
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FIG. 1: (Color online.) Space-time contour plots of the probability density (a), phase (b) and

velocity (c) fields. The associate flux lines or real quantum trajectories (white solid lines) have

been represented in all plots to make easier their understanding. The initial values are σ0 = 1,

aj = ∓8, and v
(j)
0 = ±2 (with j = 1, 2), for a particle with unit mass (arbitrary units are used).

The color scale from red to blue ranges from high values of the corresponding field to the lower

ones [0 in (a); negative in (b) and (c)].

vice versa). These structures are connected with the nodes of ρ arising after the overlapping

of both counter-propagating wave packets. If both wave packets are relatively far apart this

effect is so tinny that it is meaningless dynamically (i.e., it does not affect the topology of

the quantum trajectories), although it does not mean it does not exist —it persists because
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of the initial coherence between ψ1 and ψ2.

In the complex version of the wave packet interference process, the dynamics becomes

richer: this 1D problem unfolds into a 2D one on the complex or Argand plane, with the

dynamics exhibiting more intricate features. Here, we are dealing with complex fields (the

wave function and the velocity) which are functions of a complex variable and time. In order

to provide a clear picture of the time-evolution of these fields, we will decompose both of

them in polar form, i.e.,

F(z, t) = ̺F (z, t)eiϕF (z,t), (9)

where ̺F(z, t) and ϕF(z, t) represent, respectively, the modulus and the phase of the complex

field F(z, t) —in our case, F stands for Ψ̄ and v̄. Thus, in Fig. 2 the contour plots of ̺Ψ̄,

̺v̄ and ϕv̄ are displayed at four different times to illustrate the dynamical evolution in the

complex plane. We have not plotted the field ϕΨ̄ because it is highly oscillating in the

space (i.e., on the Argand plane) and time ranges considered, and therefore, very difficult

to visualize; instead, we have shown the fields ̺v̄ and ϕv̄, which are related and provide a

more clear information. Several remarks are worth stressing. First, as can be inferred from

the sequence presented in the upper row of Fig. 2, Ψ(x, t) corresponds to the value of Ψ̄(z, t)

along the real axis (zr = x, zi = 0) at the time t. Second, Ψ̄ satisfies the normalization

condition only along the real axis, but not in general on the complex plane. And, third,

following the sequence in Fig. 2 (from left to right), we observe that the interference process

translates into a 2D anticlockwise rotating dynamics, where at tmax the nodal structure —a

set of aligned nodes— just lies on the real axis. At any other time, there is still a nodal

alignment, but it is out of the real axis. This explains why, in real space, interference is

weaker at any other time than tmax (in other words, the larger |t − tmax|, the weaker the

interference pattern). Conversely, as v̄ shows, the nodal structure remains even for relatively

large times (t≫ tmax) in the complex space. Taking into account all these observations, we

can say that, within this (complex) formulation, the evolution of (real) Ψ can be understood

as an “apparent” effect of the evolution of Ψ̄ in the complex plane. That is, the value

displayed by Ψ at each time can be compared with the frames of a movie tape (which is the

role played by Ψ̄); each frame is watched only when the corresponding piece of the tape is

passing in front of the projector. The sensation of motion then appears when the tape runs

in front of the projector (i.e., many frames passing consecutively).

In Fig. 3, the evolution from t = 0 to t = 8 for four different families of complex
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FIG. 2: (Color online.) The three rows, from top to bottom, correspond to the contour plots of

̺Ψ̄, ̺v̄ and ϕv̄ , respectively, at: (a) t = 0, (b) t = 2, (c) t = 4, and (d) t = 8 (arbitrary units are

used). The color scale from red to blue ranges from high values of the corresponding field to low

ones (0 in the top and middle rows, and negative in the bottom one). The real axis (zi = 0) is

denoted by a white solid line in all plots.

trajectories is plotted. Each family represents a set of isochrones [14, 15, 16, 19, 20, 21], i.e.,

all the trajectories belonging to the same family cross the real axis (their imaginary part, zi,

vanishes) at a given time, namely the crossing time tc (in the cases depicted, at tc = 0, 2, 4

and 8, respectively). Moreover, in our case, the trajectories of each family have been chosen

in such a way that their respective real part coincide with the positions of the real trajectories

in Fig. 1 at the time they cross the real axis. Comparing the real and complex trajectory

dynamics, it is clear that there is no a simple one-to-one correspondence between both types

of trajectories, although they are associated with the same physical problem; real trajectories

are not the real part of the complex ones at any time, as suggested elsewhere [10, 11, 12].
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FIG. 3: (Color online.) Isochrones crossing the real axis [zi(tc) = 0] at: (a) tc = 0, (b) tc = 2, (c)

tc = 4, and (d) tc = 8, in accordance with the snapshots shown in Fig. 2 (arbitrary units are used).

All the trajectories are propagated from t = 0 up to t = 8; the crossing points correspond to the

same positions reached by the real trajectories in Fig. 1 at the corresponding times. Black and red

trajectories are associated with ψ1 and ψ2, respectively.

To establish a connection, one has to consider the movie-based analogy between Ψ and Ψ̄

pointed out above and the previous discussion in terms of isochrones. Accordingly, a single

real trajectory is made of the crossings of many different complex trajectories with the real

axis —one crossing for each (real) position at each time. Note that this allows us to define a

real trajectory as a family of complex trajectories fulfilling the property that their subsequent

crossings (in time) with the real axis generate such a real trajectory. This is, precisely, the

reason why when using computational methods based on complex trajectories one needs to

consider isochrones to reproduce the corresponding observable [14, 15, 16, 19, 20, 21]. As

seen in Fig. 3(c), some of these isochrones can display the effects of a vortical dynamics,
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unlike the analogous situation in real configuration space, where vorticality can only be

observed in two (or higher) dimensions [31, 32]. Nevertheless, the presence of vortices in

complex space can be explained as in a real dynamical framework. In the latter, they appear

as a consequence of the presence of nodes in the wave function [31, 32]. In such a case, the

rotational of the velocity field does not vanish and trajectories undergo loops around the

nodes for some time. Moreover, the motion along closed loops is shown to be quantized, i.e.,

the circle integral of the action evaluated along a trajectory enclosing a node has a finite,

quantized value proportional to the total number of closed loops around the node. Going now

to the complex framework, we know that except for a constant in its phase ϕΨ̄, Ψ̄ is uniquely

determined, i.e., it remains invariant under a change of phase provided ϕ′
Ψ̄

= ϕΨ̄ + 2nπ~,

with n being an integer number. Since Ψ̄ is a smooth function, discontinuities in its phase

(n 6= 0) can only occur in nodal regions, where the wave function vanishes and the phase

displays “jumps” due to its multivaluedness. These discontinuities give rise to a vortical

dynamics, as infers from the circulation of the phase ϕΨ̄ along a closed path: when n 6= 0,

v̄ is rotational, this leading to the formation of quantum vortices around the nodal regions.

The appearance of this dynamics breaks off the causticity regime associated with free wave

packet propagation, where (complex) quantum trajectories give rise to the appearance of

caustics, i.e., curves arising as the envelope of a set of trajectories (all of them tangent to

such a curve at different, consecutive times). This can be seen in panels (a), (b) and (d) of

Fig. 3. Before and after tmax, the nearly free propagation of ψ1 and ψ2 manifests as a sort of

causticity regime, which can not be appreciated at all under a strong vortical dynamics, as

seen in Fig. 3(c), where this dynamics prevents the isochrones to display the corresponding

caustics.

To conclude, from a theoretical and interpretative viewpoint, we have shown that very

intricate and rich, complex dynamics can appear provided interference is present even in

the case of very simple processes (with simple dynamics in real configuration space). These

dynamical behaviors deserve much attention in the design and improvement of numerical

techniques based on the CQHJ formalism, since the interplay of vorticality and causticity

might become relevant sources of inefficiency when dealing with realistic problems. The

knowledge of the complexity involved by the vortical dynamics should be therefore taken

into account in the construction and implementation of numerical methods aimed to describe

more realistic situations. We would like to note that, rather than being independent, the two
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quantum singularities (vortices and caustics) are related through the quantum nonlocality

[30]. In this sense, an immediate, natural extension of the study presented here would be

multi-interference phenomena, such as the Talbot effect [33], which are currently being devel-

oped and that constitute an intermediate step before going to more complicated situations,

such as surface scattering. It is expected that the information obtained from this type of

studies will shed some light on whether working within the CQHJ framework can be further

developed and applied to higher-dimensional systems. Up to date (real) trajectory-based

methods have been proven to be valuable numerical and interpretative tools to explore this

kind of quantum problems; CQHJ methods would further benefit from the advantages of

working in the complex space, which have led to well-known numerical simplifications in

problems of interest in many other fields of Physics. In particular, the problem we have

tackled is a special case due to the dynamical richness mentioned above. However, when

dealing with problems with two o higher dimensions, the computational effort of complex

trajectories is significantly increased since the dimensionality of the working space is double.
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