View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Digital.CSIC
JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 22 8 JUNE 2004

Hamiltonian theory for vibrational line shapes of atoms adsorbed
on surfaces

R. Guantes, J. L. Vega, and S. Miret-Artés )
Instituto de Matemticas y Fsica Fundamental, Consejo Superior de Investigaciones @lizas)
Serrano 123, 28006 Madrid, Spain

Eli Pollak
Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel

(Received 5 November 2003; accepted 10 March 2004

The vibrational motions of atomic adsorbates on surfaces can be probed by helium atom scattering.
The experimental observable is the dynamic structure factor, which shows an inelastic peak around
the vibrational frequency of the isolated adsorbates known as the frustrated translatibimabde

peak. In this paper we develop a theory for the line shape of this peak, as well as for its
temperature-dependent shift and broadening, based on a Hamiltonian equivalent of the generalized
Langevin equation. The theory can be used to infer physical parameters of the adatom—surface
interaction, such as the friction coefficient, the barrier height to diffusion, and the anharmonicity
parameter. Numerical simulations are used to ascertain the range of validity of the theory, which is
also generalized to describe multidimensional systems and to include quantum corrections. We
compare the theoretical predictions for the shift and broadening with experimental results for the
Na/Cu001) system, showing quantitative agreement within experimental resolution20@t
American Institute of Physics[DOI: 10.1063/1.1737299

I. INTRODUCTION tion of the T-mode peak has been observed to shift linearly
. i . with temperature for several molecifidrand atomié sys-
Vibrational motions of atomic and molecular adsorbates[ems Fourth, the peak width has been observed to vary lin-

on surfaces have been recently prol_)6e d by the qugsielastic |?lz%lrly with temperature for some adsorbate-surface systems,
atom scattering(QHAS) technique-~® This experimental like Na/CL001) (Ref. 3 or CO/CU001),2 while for other

tool allows for an accurate determination of low-frequency ystems such as CO on(Ptl) (Ref. 4 it appears to be

vibrational modes, which are not accessible by other types Oﬁndependent of the temperature.

?:;Sougezrszg 5S icge:;'g??;\?fe;eeﬂrgcuag :?Osmorspit;OQCZEec- Despite the fact that knowledge of the adsorbate—
y : y r?%bstrate interaction potential and the vibrational damping is

tered by the adsorbates on the surface, changing momentu .
as a result of the collision process. If the ensemble of adso undamental for understanding surface processes such as ad-
orbate diffusiof® or the operation of lubricants on the

bates is diffusing on the surface, a quasielastic peak is o> > 1d0 fow th ical studies h b imed
served, centered at zero frequency and with a broadenini}tomlc scalé, very ew theoretical stu Ies have been aime
proportional to the diffusion coefficient. If, in addition, some to extract information about these physical quantities directly

atoms or molecules are adsorbed on specific sites, an add[om the line shape of the vibrational pngk%l,lo_r to relate
tional peak appears centered around the vibrational frel€Se features to the adsorbate dynamics. A simple explana-
quency of the adsorbate close to the bottom of the laterdfon for the linear dependence of the broadening at high tem-
potential well. This so-calle@-mode peak provides informa- peratures, assuming transitions from a Boltzmann population
tion on the frictional damping experienced by the adsorbate@f Vvibrational levels of an anharmonic oscillator, has been
due to electron-hole pair creation or phonon coupling to thediven in Ref. 2. At the same time, extensive numerical simu-
metal substratélt also provides details about the curvature lations using a semiempirical PES for the adiabatic adatom—
and anharmonicity of the lateral potential-energy surfacéurface interaction demonstratetiiat a Langevin equation
(PES around the minima? approach is able to accurately reproduce the experimental

For atomic adsorbates at low coverages, the analysis desults, not only for the quasielastic peak but also for the
the T-mode peak can be a direct measure of all these quarshift and broadening of th@-mode peak. Perssbh also
tities, since only adsorbate—substrate interactions are presesged a continuum Brownian motion model to analyze the
and there are no other internal or external vibrational modetemperature dependence of the infrared line shape of vibra-
coupled to theT-mode. The QHAS experiments presenttional modes of CO chemisorbed on(lNi1). These results
some well defined features of tiemode: First, it is a dis- suggest that the line shape of low-frequeniéynode peaks
persionless modéindependent on the parallel wave-vector can be analyzed within a stochastic classical framework, and
transferK) and of inelastic nature. Second, a Lorentzian prothe origin of the shift and broadening is the thermal noise
file provides a good fit for th&-mode line shape whenever it combined with the anharmonicity of the potential around the
does not overlap with the quasielastic peak. Third, the locawell bottom.
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FIG. 1. T-mode peak position as a function of temperature for the Na/FIG. 2. T-mode full width at half maximum as a function of temperature for
Cu(001) system. Circles: experimental results, Ref. 3. Solid line: numericalthe Na/C001) system. Circles: experimental results, Ref. 3. Solid line:
results obtained by solving the Langevin equation with the 1D cosine ponumerical results obtained as in Fig. 1. Dashed line: analytical estimate,

tential (3.1). The parameters usegi=0.1w, and V¥=75 meV, have been
estimated previously from experimefRef. 3. Dashed line: the theoretical
estimate using second-order anharmonic corrections{E®. The dotted

Eqg. (1.3). Dotted line: theoretical prediction, estimated by Fourier trans-
forming the intermediate scattering function of the Kubo model, (Edp),
see Sec. IV.

line is the theory using the quantum mechanical averages instead of the

classical ones.

A central result of this paper is the derivation of simple

shapes may be derived from a microscopic Hamiltonian, thus
including explicitly the adsorbate dynamics. In Sec. Il we

analytic expressions for the temperature dependence of tHEVIEW the basic correlation functions needed for the analysis
peak location and width as functions of temperature. Specifi?f QHAS experiments and the Hamiltonian formalism lead-

cally, to leading order, th&-mode potential of mean force
has the generic form

V()= 3 0iq+K,a*, (1.2)

whereq is the mass weighte@-mode vibrational coordinate,
wq the harmonic frequency, and, is the anharmonicity
constant. To second order in the anharmonicity and provide
that the damping constantis not too large ¢/ wy=<2) one
finds for Ohmic friction, that the peak locatioq)y)) is
given by

2

ing to a generalized Langevin equation. We will also provide
the equations necessary for estimating the correlation func-
tions within this formalism. In Sec. Il we outline a pertur-
bative theory of vibrational mode line shapes. We will exam-
ine the range of validity of the theory comparing it with
numerical Langevin simulations. Extensions of the theory to
Hwe multidimensional case and quantum corrections are also
mnvestigated. Then in Sec. IV we derive E@$.2 and (1.3

from the Hamiltonian formalism. Finally, we end up with
conclusions and a discussion relating our results to other
experimental systems studied by QHAS techniques.

(Noy= "\ wi— —+kgT 1—KkgT—+|.
4 2 wg
) , Y 0 Il. BASIC THEORY
W Wo— Z

(1.2

Here kg is Boltzmann’s constant antis the temperature. In
Fig. 1, we plot this simple formula for the Na/@01) sys-

A. The quasielastic helium scattering formalism

For simplicity, we will assume first that the adiabatic
interaction potential is effectively one dimensional. The ex-
perimental observable is the dynamic structure factor

tem and compare it with the experimental results. The pagk ), which is the Fourier transform in space and time of
rameters used have been estimated previously fronhe gistribution functiorG(x,t). 2213 At low adatom concen-

experiment Similarly, we find that for Ohmic friction the
temperature and friction dependence of the width of the
T-mode peak is found to be

trations, interactions between adsorbates can be ignored, and
G(x,t) is defined as the probability of finding a single ada-
tom at the positiorx at timet, given that it was at the origin

at some arbitrary time=0. It is convenient to express the

6|K
o=kgT Kl . (1.3y  dynamic structure factor directly in terms of the intermediate
5 5 e scattering functionl (K,t), which is just the characteristic
Wo '\ W™ 1 function of the positiorx considered as a stochastic process:

Using the same experimental parameters as for Fig. 1, we (K, w)=

obtain the fit shown in Fig. 2 for the width. The detailed

[

-

e 'l (K, t)dt. (2.2

derivation of these expressions and their quantum mechanjygre K is the wave-vector transfer of the He beam and the

cal extensions are given in Sec. IV below.
In addition to the derivation of these simple expressions
we will show that an analytic theory of th&-mode line
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A cumulant expansion to second order yields the stanB. Hamiltonian formalism

dard resuft’ The position of an adatom of magson a surface can be

e - considered as a stochastic process obeying a generalized
|(K,t)~ e~ K72 odt Jodt(v(t)e(th) = o= K= o(t=t")C,(t)dt" Langevin equation of the forniin mass weighted coordi-
(2.3 natesq= \/ux)

Wher_e C,(1) (_v(t)v(O)) is t_he velocity autocorrelatlor_w G+ +f dry(t—1)a(m) =F, (1), 2.7
function. The first approximation comes from the truncation aq 0
of the cumulant series, and the second equality holds if the

velocity procesw (t) is stationary. For Gaussian stochastic WhereV(q) is the adiabatic interaction potential af(t)
processes Eq2.3) is exact. the random force coming from a phonon bath. It is well

If the position process(t) is diffusive, then at times knowr'®*° that a Langevin equation of this form is equiva-
much longer than the correlation time, lent to the Hamiltonian

P4

N
© . Cj
[{emeanar=t] “cwar, 4 ~ HEgHV@rZ
0 0

P
i%j qu

Py 1
272

. (28

where thejth harmonic bath mode is characterized by the
and the intermediate scattering function takes the simplenass weighted coordinatg;, momentum Px; and fre-
form quencyw; . The solution of Hamilton’s equations of motion
for the bath modes are expressed in terms of the system
|(K,t):e*K2t/Tc (2.5  coordinateq and the initial conditions, and then introduced
into the equation of motion for the system variabipp, 19
This leads to the Langevin equatié®.7) with the identifi-

with ) o .
cation for the friction function

-2

cogwjt). (2.9

Nl

B N
Tglff (v(t)v(0))dt. 2.8 =3 -
0 =1

From Eq.(2.1) it is readily seen that the dynamic struc- For a suitably defined thermal distribution of initial
ture factor has a Lorentzian shape with a full width at hatfconditions® F(t) is Gaussian distributed with zero mean
maximum (FWHM), F=2K27'C_1. Moreover, the right- and obeys the fluctuation dissipation theorem
hand side of Eq(2.6) is the Green—Kubo relation for the _
diffusion coefficient, thud”=2K?D. For diffusion at long (Fr(DF(0))=keT¥(1). (.10
times(or, analogously, small values of the wave-vector transThe continuum limit in the Hamiltonian formalism can be
fer K) the adiabatic potential plays almost no role and theachieved using the spectral density givert®y
position process can be considered as Gaussian. Therefore
this FWHM reproduces quite accurately the behavior of the T
dynamic structure factor at smaffl, as has been observed I(w)= 2
experimentally and numericalfy*>*°At higher values of the
wave-vector transfer this is no longer a good approximation  The Hamiltonian formulation presents some advantages
and other theoretical methods should be used to analyze tlwer the phenomenological Langevin formulation: first of all,
quasielastic peak and the diffusion process. In particulat©hmic and memory friction are treated in the same way, and
Kramers’ turnover theory has been recently shown to be #he results obtained can be extended to any kind of friction
very convenient tool for studying activated surfacefunction obeying the fluctuation dissipation relatiGh10).
diffusion?® Second, the quantum treatment is straightforward, all that is

On the other hand, tHE-mode peak is the result of prob- needed is to treat the Hamiltoni@Rg. (2.8)] as an operator
ing vibrational motions of the adsorbates. Typically, correla-in the relevant Hilbert spacé.
tion times for the vibrational dynamics are much shorter than  If the interaction potentiaM(q) is purely harmonic,
those for diffusive dynamics, and the two time scales can b&(q) = w3g?/2, the Hamiltoniar(2.8) may be separated via a
separated® Also, the adiabatic atom—surface interaction cannormal mode transformaticif:? The normal-mode form is
be expanded around the minimum of the well. For a sym-

N 2

> i[a(w—wj)—a(wmj)]. (2.11)
=1 o

; . . . N 2
metric surface, the first term gives a purely parabolic poten- pﬁ 2 2 pyj 1.,,
tial, and the position procesgt) is the solution of a Lange- HNM:7+ 57‘09 +j21 2 + 5)‘1 il (2.12

vin equation for a harmonic oscillator subject to Gaussian

white noise and dissipation, which is a Gaussian stochastiwhere the normal-mode coordinates of the systpmand
process.’” Anharmonic corrections should account for the bath modey; are related to the mass weighted coordinates
shift and broadening of the inelastic peak, whenever theandx; by an orthogonal transformation mattik In particu-
Gaussian approximation remains valid. lar,
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&=
1-co ?q } (3.1

The new system and bath frequencieg,and\;, may wherea is the lattice spacing and, determines the barrier
be expressed in terms of the old frequencigsandw; .2* It~ height, V¢:2\_/o- The first term of a Taylor expansion
is convenient to define also a normal-mode frictionaroundgq=0 gives a parabolic potential with oscillator fre-

N
q=Uop+ >, UjoY; - (2.13 V(9)=V,
=1

functior?®23 quency
N V
-3 2 =27\ —% (3.2
K(t)—jgo U cog\jt) (2.14 wo wa? :
N (2.3 is exact. The normal mode transformation is also exact.
T Uj In normal-mode coordinates, the velocity autocorrelation
_0s o N — A , y
Y(\) = 2,20 N, IR =o04A)], 215 finction is

where the index O refers to the “system” normal mogle N
The normal-mode transformation has the property that for Cv(t):<(uoopp(t)+zl “jOpyj(t))
anys2 j=

N 2

N
S uso 1 216 -(uOOpP(O)-l—jZl ujopyj(O)) > (3.3

S0 S?+NT sPHsy(s)twp

The equations of motion for the normal modgsare those

wherey(s) is the Laplace transform of the friction function. . . .
fof a harmonic oscillator with frequenady;, so that

From this relationship, using the Fourier decomposition o
the Dirac delta function, one can deduce the continuum limit (0)

Py.
for the normal-mode spectral density: yj(t)=y;(0)cog\;t) + y)'\

Sin(\;jt). (3.9

]

(2.17  The initial positionsy;(0) and velocitiespyj(O) of the bath
modes are distributed thermally, i.e.,

)\Y()\)=RE[K(i)\)]=RE{ w%—)\2+i)\§/(i)\)}

These identities will be employed later on.

2,,2 _ 2 —n-1
For future reference, we also note that the system (Ajyj(0)=(pj(0)=8"", (3.5
normal-mode frequency, and the coefficientiyy can be  where B=1/kgT.
related to the friction function by the expressitié Differentiating Eq.(3.4) with respect to time and using
ing)) 1 the thermal averagd8.5 one obtains
2 2 y(l O)
No=wq 1+T (2.18 1
0 C,(H)=—=K(t). (3.6
1(¥lirng) _ d¥(s) o P
ud=l1+=| = +— . (2.19 . .
00 2| N ds |, Carrying out the inverse Laplace transform of E2117) for
-0

Ohmic friction[ ¥(s)=y], gives the standard result for the
As is clear from Eq(2.18), A is in general a complex fre- velocity autocorrelation function of the harmonic oscill&tbr,
guency. The real part gives the frequency shift and the imagi-

. —(y/2)t
nary part the rate of energy transfer to the bath. For instance, C (t)= e - t)— Lsi t 3
for Ohmic friction[J(w) = y®] one sees that oV B Lo1t) 20, (w1t)|. @7
No=w,+iyl2 (2.20 Substituting the exact harmonic velocity autocorrelation
with function, Eq.(3.7), in Eq. (2.3 for the intermediate scatter-
ing function gives
2
W= wg— ‘}’Z (2.21 (K, t)=e 2W.e2Wfh()
(3.9
As is well known, for a harmonic oscillator, with Ohmic fo(t)=e~ "2 cog w,t) + Lsin(wlt)}
dissipation, the oscillator frequency decreases with increas- 20,

ing damping constant but is independent of the temperaturgy,q ZNEKZ/,LLng. We note that B is the Debye—Waller
attenuation factof® since

2W=K?%(q(t)%+q(0)3)/2. 3.9
Il. VIBRATIONAL LINESHAPES (a(O™+ a0 39

A Harmonic oscillator The second exponential in E¢3.8) can be expanded as a
' power series in the variableV2. The line shape is then ob-
A simple representation of the atom—surface interactiortained by Fourier transformation as in E@-1). Neglecting

potential for a symmetric surface is the cosine féfm, nonresonant terms one finds
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1 S 12K, S
B SP+s¥(s)+wh  BPwh [SP+SH(s)+whl?
(3.16

: (3.10  For Ohmic friction, inverse Laplace transformation gives the

first anharmonic correction to the harmonic oscillator auto-
This is a series of Lorentzians centered at the frequenciesorrelation function as

+ w4 and their harmonics, with decreasing intensiiigpi-
cally only the casg =1 can be numerically or experimen- (1)=CO(t)— 12K,

20\ Y
A 2W
S(K,w)=e 2 (j-1! ((w+wlj>2+ Vi4

Y
(0= w1))*+y%j%/4

C,(s)=

tally observedl The width of the first peak is the friction B2w}
coefficienty. Note also that the center is not at the oscillator

—(yi2)t 2 N
frequencyw, but atw;; this is due to the coupling to the € [yt cog ) + (203t~ y)sin(w;t)]

bath. Experimentally, the value of the friction coefficient is 4oy '
usually estimated by extrapolation of the width of tfie (3.17
mode to zero temperature, a procedure which is justified by

Eq. (3.10. whereC°)(t) is given in Eq.(3.7).

From Eq.(2.3), the intermediate scattering function can
be then written as
B. Anharmonic corrections (K, =1OK,t)- DK, ). (3.18
The full system(cosing potential is approximated by its
first anharmonic correction term, such that the system-bat
Hamiltonian[Eq. (2.8)] may be expressed in terms of the
normal modes as

erel(©(K,t) is the harmonic oscillator scattering function,
g. (3.8, I8(K,t) the first-order anharmonic correction for
the cosine potential is

N 4 DK t)= o= 2WIBVF o(2WIBVHT4(1) (3.19
= + + oYi .
H=Hm+ Ks| Uoop jgl u]OyJ) ; (3.1) and
whereHyy is the normal-mode Hamiltoniaf2.12), and for o ng
. . . —a Y —
the cosine potentia(3.1) K, =V®#(0)/24u?= — w24V, is fit)=e 1 —24wlt cogw;t)
negative.
The time dependence for the normal-mode coordinates is 6ywi—»® w3
: ' 0 0 .
solved by perturbation theory, to leading ordeKipone has 8w§ 2w1t sin(wst) |. (3.20
—y(0 (1)
yi(O =y () + 4Ky (b, (3.12 Before comparing with numerical calculations we note
wherey{®(t) is the harmonic oscillator solution given in Eq. that apart from the purely sinusoidal terms in the exponent
(3.4), and the first-order correctioyfl)(t) is similar to those appearing in E.8), there are terms which
N are linear int. Proceeding in the same way as for the deriva-
u; t H 1
(D)4 — _ Jio Loy (O) g , tion of Eq. (3.10, we see that they lead to Fano profiles
Yi (® A Jo SinAj(t—t )](,Zo UjoY] (t') ] dt'. centered at the harmonic frequencies. This causes a skewness

(3.13 of the T-mode peak changing its width and position. Second,
To calculate the velocity autocorrelation function we use thethe magnltud'e of t'he flrit-order Cf rrection depenc!s on the
thermal averages redu_ced _barrler h_elgheBV_. For_,BV_ >1 the harmonlc ap-
proximation remains valid. This is expected since at low
) pﬁ(O) pj2(0) pﬁ(O) 1 temperatures and high barridrigh vibrational frequencigs
y;j(0) VAR BN\ 314 the particle remains close to the bottom of the potential well.
] ! J ) In order to establish the range of validity of the theory
We remark that strictly one should use the total anharmonigased on the leading first-order correction, we have solved
Hamiltonian for the averaging, while E(8.14) results from  nymerically the Langevin equatid@.?) with Ohmic friction.
averaging with the normal-mode Hamiltonian. However, fortne parameters are taken so as to model an adsorbed Na
the parameter range used later in this paper, this static CORarticle moving on a cosine potential, a system which
rectlo_n is small and_so can k_Je n_eglected. The result for thgas peen investigated both theoreticdif? and experi-
velocity autocorrelation function is mentally?® In Fig. 3 we show the numerically determined
1 12K, [t v velocity autocorrelation function for this system at two fric-
Cv(t)=—K(t)—ﬁf K(t—t’)~f K(t")dt".  (3.19 tion values: low,y=0.lw,, and moderatey=0.50,, and
A o Jo 0 two different barrier height¥/*, compared to the harmonic
The first term is the harmonic oscillator contribution, Eq.and anharmonic approximations, Eq8.7) and (3.17). As
(3.6), while for the second term is a convolution integral expected, doubling the barrier heigiwe could as well re-
with the normal-mode friction functioK (t) [see Eq(2.14)].  duce the temperaturémproves the agreement between the
Laplace transformation, using the identi®.16 yields the  numerical and analytical autocorrelation functions. Note that
result the anharmonic correction shifts the frequency of oscillations
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FIG. 5. Intermediate scattering function &t=100 K, y=0.1w, and V*
_10 : : . 03 =67 meV. We have sét=1 A~1. Dashed line: numerical simulation, Eq.

1
«ps)

(2.2). Solid line: Gaussian approximation, Eq®.3 or (3.22, with the

numerically calculated autocorrelation functions. Dotted line: numerical
simulation of a quartic oscillatoffourth-order expansion of the cosine po-
tentia). Diffusing trajectories are removed from the autocorrelation func-
tions. Inset: numericgdashedland Gaussiafsolid) simulations taking into
account diffusing trajectories.

FIG. 3. Numerical and analytical velocity autocorrelation functions for a Na
adsorbate on a cosine potentialTat 100 K, with different friction coeffi-
cientsy and barrier height valueg®. (a)—(c) y=0.1w,. V¥=67 and 134
meV, respectively(b)—(d) y=0.5w,. V¥=67 and 134 meV. Thick solid
line: numerical autocorrelation function. Thin solid line: harmonic approxi-
mation, Eq.(3.7). Dashed line: anharmonic correction, Eg.17).

shape untilT=100 K, while in the low friction case good
agreement is found only for the lower temperature Tof
towards the correct values, but at low barrier and friction,—5q K.
Fig. 3(a), it fails to reproduce properly more than the first  \wnen deriving the intermediate scattering function or
two or three peaks. Clearly, the first anharmonic correctionhe jine shape based on the leading-order contribution to the
does not suffice in this case. At higher friction, parielsand velocity correlation function, as in E¢3.17), one is making
(d), the particle remains closer to the well bottom, and thene additional assumption that the position or velocity are
anharmonic approximation reproduces properly the velocitysaussian processésuncation of the cumulant expansion
autocorrelation function. In order to check this approximation, we calculate both the
This can be also appreciated in the line shegamic  nymerically exact intermediate scattering function through
structure factor shown in Fig. 4 at different temperatures. Eq. (2.2 and the Gaussian approximation Ed8.3 or
For comparison, we also plot with dashed lines the harmoni¢z 22 using the numerically exact correlation functions. As
line shape Eq(3.10. For y=0.5wq, the first anharmonic seen in Fig. 5, the Gaussian approximation is an excellent
correction suffices to reproduce properly the numerical linepne even in the case of low friction and low barrier values.
Also, with the dotted line, we show the intermediate scatter-
ing function calculated for the quartic potential

(3.21)

The good agreement suggests that indeed the first anhar-
monic term in the Taylor expansion of the adiabatic potential
is able to account for the shift and broadening of Th@ode
peak, and that the failure of the analytic theory at low barri-
ers (high temperaturneor low friction is mainly due to the
fact that we neglected higher-order terms in the perturbative
solution.

The curves in Figs. 3 and 5 have been obtaiowelgt with
vibrational trajectories. For the parameters used in Fig. 5,
especially at long times many of the trajectories overcome
the barrier and start to diffugéherefore giving also a quasi-
elastic peak In the Inset of Fig. 5 we show how the Gauss-
ian approximation fails for the diffusing trajectories. More-
over, this approximation depends now on the value of the
wave-vector transfeK (it is better at smalK values, while
the intermediate scattering function for the vibrational mo-
tion does notdepend orK. Only its amplitude, and thus the
intensity of theT-mode peak, will change, not its shape or
position.

V(q)= 3 wha?+K4q”.

© T=50K

S(K,m)

@ T=100K

S(K,0)

o
—
<
o
o

10

FIG. 4. Dynamic structure factdline shapg of the T-mode peak for a Na
adsorbate on the cosine potential, at two different temperat(@eand (b)
y=0.1wy, V¥*=134meV. (c) and (d) y=0.5wy, V*=67 meV. Dashed
line: numerical simulatiofisee Eq(2.1)]. Solid lines: anharmonic approxi-
mation, Fourier transform of Eq$3.18 and(3.19. Dotted lines: harmonic
approximation, Fourier transform of E¢B.8).
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From Fig. 4 we also note that the anharmonic dynamic 1.8
structure factor presents a shift with temperature towards | 05w,
smaller frequencies. A calculation of the width from the ana-
lytical line shape, however, shows no significant broadening
with temperature even in the range where it compares well to
numerical simulations. This will be further discussed in
Sec. IV.

S(K,m)

C. Quantum corrections

As an example, we will work out the quantum line shape
for the dissipative harmonic oscillator. Since quantum cor-
rections are only significant at low temperatures, especially
for adsorbates with a large mass, the harmonic approxima':-IG . § ' . e n ' o
tion will suffice to illustrate the important quantum effects. It ;- 2 S(”;;‘;)“:n d{gggjcf;t:‘ﬁg:;;‘%t;’;;éteers Z;Tﬁ’;'%g’g;%’;'c’i;"at'on'
is convenient to express the Gaussian intermediate scattering 5, vt=67 mev, and several temperatures: solid line, classical re-

function exactly® in terms of theposition autocorrelation  sult atT=100 K. Quantum results: dashed lifE=100 K; dotted line,T
function® as =50 K; long dashed lineT =25 K; dot-dashed lineT=10 K. The wave-
vector transfer iK=1A"1.

1(K,t)=e2Wek*aha() (3.22

The resultant dynamic structure factor will be real,
showing two peaks at positive and negative frequen@es The Debye—Waller factor for the harmonic oscillator is
counting for quantum creation and annihilatiorstrictly,  readily obtained by noting that
S(K,w) andS(K, — ) are related by a detailed balance con- 5 5
dition preventing annihilation aT =02 therefore at low (9%(t))=(a"(0))=Cq(0). (3.27)
temperature the dynamic structure factor is asymmetric. The |, Fig. 6 we compare the harmonic approximation for
two peaks, however, will have nearly the same line shapgne classical and quantum dynamic structure factor for a Na
(although their magnitudes can be very diffejeMe can  atom moving on a cosine potential. The parameters chosen
calculate an average line shape by replaci@)d(0)) with  arev#=67 meV andy=0.50,. Results are shown at several
its real partCq(t) =1/2(q(0)q(t)) +(a(t)q(0))]. - _ temperatures. One notes that lowering the temperature in-
To obtain the quantum position autocorrelation functiongces ablueshiftof the T-mode peak. The observed experi-
we note that the quantum thermal average of the kinetic anghental redshift is due to the anharmonicity as shall be shown
potential energies are below. Quantum effects decrease as the friction coefficient
1 1 3 decreases, foy=0.1w,, any effect is unobservable for tem-
2,,2 2
5 (AYi(0)=5(pj(0))= 7 \jcoth#p\;/2). (323  peratures above 10 K.

Using the normal-mode representation of the Hamiltonian

one finds - .
N D. Multidimensional systems

Cq(t)zz uj20<y12(0))cos()\jt) _ The same pertur_batiqn theory may be used for systems
j=0 with more than one vibrational degree of freedom coupled to
PR a bath. We will illustrate this for an atomic adsorbate on a
= _f d\Y (N)coth( BN/2)cog At), (3.24) two-dimensional periodic surface. The generalized Langevin
™Jo equations for the two degrees of freedom problem take the

where we have used the definition of the spectral density oform

the normal modes as given in EQ.15. For Ohmic friction aNV(Q,z) t
the spectral density is found from E@.17 so that one has g+ 7 + joqu(t— 7)q(7)=F4(1),
hy (= \ coth(A BN/2)cog\t)
cin="" | ( (3.29 Maz [t
T o (0g=\%)*+y2\? 7+ —(ﬁqz ) +f dry(t—1)z(1)=F,1), (3.29
0

Note that usingCq(t) is consistent with the fact that the . . _ . _
quantum fluctuation-dissipation theorem implicitty obeyedwhere the adiabatic atom-surface interaction potential

by the friction function here has the symmetrized fdfim®  V(d.2) is generally nonseparableThe random forces,
F, are uncorrelated and obey the fluctuation-dissipation rela-

N
1 ti
Y0=2 5 (F(UF(0) ons
a (Fi(OFi(0)=kgTi(t), =02 (3.29
+Frj(0)':rj(t)>w- (3.26 The Hamiltonian equivalent of the two coupled Lange-

ho vin equations ¥
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(p2+p2) 13 | SYS en -
H=——+V(q.2)+ 52 =wy, wg=0, and(q(t)q(0)>=(z(t)z(0)> From the equa-
=1 tions of motion for the normal-mode coordinates given by
Huam, and Eqs(3.35—(3.37), one sees that for a symmetric
(3.30  surface the harmonic line shape is identical to the one-
dimensional case. The first anharmonic correction to the po-

}ential is

g |2 such as the G001 systent Then y,=7y,=y, wqq=®,
wg X q

2
qu+

N c, 2
w,Yi——Z .
2 ZiyJ Wy,

The Hamiltonian representation for the two time-dependen

frictions is
N
Z } cog ;. b, i=az (3.3)  since the surface is symmetric one has gt K;=K,. A
il perturbative solution to first order iK, and K$* for the
The interaction potential(q,z) can be expanded around the hormal-mode coordinates is found to be

minimum [for simplicity, located at the origin and with
V(0,0)=0] as vi(t) = {2 (1) + 4K vV (1) + 4K Pt (1), (339

I\)Il—\

V1(9,2) =K3g*+K3z*+ 2K 722, (3.39

l\)| N

V(0,2) = 3[ 050+ 204,02+ 05 2]+ V1(0,2), (332  where

whereV,(q,z) defines the anharmonic contributions. If we
. . . . . uj—l t .
neglect them, the Hamiltonian may be again diagonalized ()= — sin A (t—t")]F_4(t")dt’
using a normal-mode transformation; the orthogonal trans- ! A .
formation matrix U has now dimensions (2+2)X (2N

+2). The system coordinatég, 2 are expressed in terms of _ ﬂ sw{)\ (t—t")]Fo(t))dt’ (3.40
the normal modes, see E@®.13), as Aj
2N 'th
wi
g=U_3_3ptUg_,0+ _21 Uj—17j,
o (3.33 2N 3
2 ' Fi(t)E( > ujiy}f’)(t)) , i=—1, 0, (3.41)
Z:U_10p+U000'+2 Ujij, j=-1
=1

wherep and o are the system normal modes correspondingand
to g and z, respectively, and we have nowN2bath modes

v;. The normal-mode Hamiltonian takes the form Mfl)(t)I B Uj—-l ft SifAj(t—t)]G_(t)dt’

1
H=7 (P + Pt A21p?+X50%) + 5 2 (p3, + A7), Ujo i\ (t—t)" 1Go(t')dt’ (3.42

- SI 0 .
(3.39 Y
Equation(2.16 can be generalized to the multidimen-

sional casé&®? with
2N U-2 L 2N 2N 2

i
1:2_1 22 G—l(t)z(,-_El ”J—l”fo)(t))(j_El “joV}O)(t))

3.4
S2+59,(s) + w2, (343

>, (3.39

T2+ SYq(S) T wgal[ 7+ S¥4(S) + w2 ] — wg, and the subindices 0 and1 are interchanged fdB,(t).

N Although more cumbersome, it is straightforward, using

Uj—1Ujo the thermal average$3.14 and the expression$3.35—
(£ 2+ )\jz (3.37), to calculate the anharmonic autocorrelation function.
Its Laplace transform readsompare to Eq(3.16)]
— wg
= - - , (3.3
[S%+5¥4(S) + wga)[S2+S¥(S) + w3 ] — wf, 1 s
<pq(s)pq(0)> ﬁz
2N quo B s“+sy(s)+ wy
“1s +>\7 (12K4+4K§;Z s
- 2 2 2 en 272"
52+S:i/q(s)+wgq B w [S +S’}/(S)+wo]
. (3.37 (3.49

- _ 5 _ 5
[S%+5¥q(S) + wggl[S°+5¥,(S) + w5, — 0,

To simplify matters, we will obtain the velocity autocorrela- For a symmetric surface, such as for thg@1) system, one
tion function for a symmetric surface with Ohmic friction, can model the two-dimensionéD) PES ad
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27X 2y 6
V(x,y)=Vy—V,4| cO§ —| +c0o§ ——
a a
. 5.6
27X 2wy >
+V,c0§ —|cog —|. (3.495 £
a a ; 5.2+
o
ChoosingV,, V4, andV, such thatv(0,0)=0, V(0,=a/2) S .|
=V* (barrier energy at the saddle poinand V(=*a/2, ;’.}-4'8
+al2)=V,, (energy barrier at the maximaesults inV, T
=V /4+V*¥2, V=V /4 and V,=V,/4—V*2. With this 447
choice for the adiabatic PE®,= — w§/12V* is the same as
for the one-dimensional case, and 4 0 100 130 200 2% 300
KOZ— _f‘”é Vin 4 (3.46 e
4 12v Wf ' ’ FIG. 7. T-mode peak position as a function of temperature for the Na/

¥ L . _ Cu(001) system. Circles: experimental results, Ref. 3. Solid line: numerical
Note that forV,,=2V" the potential is separable and identi- results obtained by solving the Langevin equation with the 1D cosine po-
cal to the 1D case. In generf{J’<|K,| (for instance, in tential (3.). The parameters useg=0.1w, andV¥=75 meV, have been
Ref. 31 a fitting to the QHAS experiments gave the Va|ueestimated from experimefiRef. 3. Dashed line: theoretical prediction, Eq.
: . 4.2), using first-order anharmonic corrections.
V., /V*=5/4) and thus the coupling between the surface co—( 4 g
ordinates has only a small effect on tfienode peak. We

have seen from the analytical estimate using B4 and {]‘his is the result given in Eq1.2) keeping only the first-

from numerical simulations that the line shape does no d tion. As alread tod ab for th _
change significantly for this particular model and coupling.Or er correction. AAS already noted above, Tor Ihe cosine po-
tential K, is negative, so that the anharmonicity produces a

This does not mean that, experimentally, one cannot distin- e h

guish between a separable and nonseparable adiabatic s[ﬁ’gsmfm.”th alinear temperature depgndenge.

face: the quasielastic peak is sensitive to the multidimen- In Fig. 7 we compared the shift obtgmed from the
sional features of the surface. The nonseparability can have%ormal—mode frequency average, Hd.2), with numerical

large effect on the curvature close to the barrier, which enter SOI(')%ll'nes tandt e;pe?menltqalfres_tlj_lrt]s obltalnefdtkf]orbthe. Na/
in the multidimensional Kramers prefactor, and this does af- u(001) system(taken from Ref. & The value of the barrier

o - and friction coefficient estimated from experimental mea-
fect the diffusion significanty. surements aré*~ 75 meV andy/ wy=0.1. The agreement is
fairly good for temperatures beloWw~ 150 K. We will show
IV. TEMPERATURE-DEPENDENT SHIFT below that, due to the low friction of the SyStem and the
AND BROADENING relatively small barrier, second-order corrections in the an-

harmonicity are necessary for higher temperatures.

Frequency shifts can be obtained directly with the pre- | the analytical estimation of the lineshape given in Sec.
ceding formalism without calculating the dynamic structure||| B, a shift was indeed observed but there was no broaden-
factor. From Eq(3.11) one notes that the anharmonicity will jng. This can be understood by calculating the variance in the
cause a shift of both the minimum and the frequency of thesystem frequencj[)\o(t)—()\O(t))]2>, which is expected to
system normal mode. Specifically, the instantaneous frepe proportional to the broadening of the peak. One immedi-
quency, to leading order in the anharmonicity paramiigr  ately sees that, to first order i4,, the variancevanishes
IS Therefore second-order corrections in the anharmonicity are
52H\ 12 necessary for obtaining the temperature-dependent broaden-

) ing. A direct calculation of the dynamic structure factor

along the lines discussed in Sec. Il B, using second-order

)\O(I)E(a_pz
N 212 perturbation theory, is rather involved. Instead we resort to a
NG+ 12K4US0< 2 ujoyj) } simpler model which, however, retains the basic dynamical
1=0 ingredients: the Kubo oscillatdf:*? First, we expand the in-
6K 4u2, N 2 , termediate scattering functiof2.2) in momentsinstead of
~No+ X (E Ujoy; | +0(K3). (4.1)  cumulants. If we remain to order 2, this is equivalent to a
o 1i=0 second-order Taylor expansion of E®.22 aroundK=0.
The frequency shift is obtained from the thermal averageSince theT-mode peak shape is independentkothe mo-
(N\o(t)). Introducing the harmonic oscillator solution, Eq. ment expansion is at least in principle, convergent. Then the
(3.4), for the normal-mode coordinatg in the last term in  intermediate scattering function will be essentially propor-
Eqg. (4.1), and performing the averagégnoring the anhar- tional to the position autocorrelation function, as in the
monicity in the partition functionwe find a temperature- theory for Raman scatteririg,and we can use the Kubo
dependent contribution to the frequency shift oscillator model.
We assume that the normal-mode oscillator with fre-
6K,
—. (4.2 quency\y has a random frequency component due to the
Bwyw; anharmonicity, and define

AYOEO\O(J[)) —No=
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No(t)=Ng+ N(1). 4.3 one can readily calculate the integrals in the last exponent in

Eq. (4.5.
Then, using the equations of motion of an oscillator with q \(/VeS)note that, for long times, the first term in H4.9) is

frequencyA(t) and a cumulant expansion to second Orderdominant and gives a Gaussian intermediate scattering func-

we find tion of the form
-t ’ ’ : _
(q(1)q(0))ocReeTor1(t)dy girot |(K,t)cReel(@1+8N0)te~ 7t/2e70'2(t2/2), (4.1
~ ReelMotei fo(A1(t))dt o= [ot—t ) (A (')A 1(0)dt’ where
(4.9 6/K,| w3 .12
I g— = . .
Note that(\,(t')) is the shiftANo, Eq. (4.2. Using Eq. Bwiwy 2BVe;

(2.20 for Ao we can express the intermediate scatteringrhe gynamic structure factor is the time Fourier transform of
function as Eq. (4.11). The imaginary exponential gives the peak posi-
i(01+ ANg)ta— 24— fE(t—t )1 (t" )1 (0))dt! tion, already discussed above. The width of the peak is de-
(K, t)xReeea ™ol 7o PaOMOMC @45 termined by the real exponentials. At short times, ogW*
To first order inK 4 one sees tha\(t")A;(0))=0 and the >1 [see Eq.(4.12], the first exponent dominates, the peak
dynamic structure factor is a Lorentzian centered at the frehas a Lorentzian shape with the FWHM given mainly y
quency w;+ A\, (and thus there is a linear temperature-as in the harmonic oscillator case. At long times, g8¥* is
dependent shift with a FWHM equal to the harmonic oscil- small, the Gaussian contribution dominates and the peak has
lator width y (and thus no temperature-dependenta Gaussian shape with a FWHM mainly given &ylIn in-
broadening Second-order corrections hy(t) will produce  termediate situations both contributions have to be taken into
a temperature-dependent broadening due to the last exponeascount, the central part of tlemode peak being closer to
tial factor in Eq.(4.5 above. To second order, the instanta-a Gaussian while the wings are better approximated with a

neous frequency is given by Lorentzian shape. This is analogous to thetional narrow-
)N » ing effect;*3*first discussed in the context of magnetic reso-
Ng(D)~ho-t 6K 4Ugo (2 U-oy(o)) nance qbsorptio_n. It is important to note that this_simple
No = ™ model gives a width proportional i@, and therefore a linear

N N temperature-dependent broadening.

2 U yfo) E Uigy'Y In Fig. 2 we compared the experimental broadening with
= 0% & I the numerical one, and the full width at half maximum ob-
tained from the Fourier transform of the Kubo intermediate
scattering function, Eq(4.5). This simple model is able to
account for the linear increase of the broadening with tem-

h h introduced the fi d bati é)erature as observed experimentally.
whers we jave now itrocuced the Jrskorder periurhatly Second-order corrections can also be calculated for the

solution yl(l), Eq. (3.12. For the correlation function gpig using Eq.(4.6), with the result

(A 1(t")N1(0)) terms depending og!") cancel out and we R ,

obtain terms depending only on averages over the harmonic ,— 6Ky S4K3 41
oscillator position process. Since this is a Gaussian process 0_3w§w1 ,320’80’1’ 413
(for analytic simplicity we ignore the anharmonicity in the
partition function, we use the well-known identities

+8K,

4

2.4 N
_ %( +0(Kf{), (4.6)

0
N 2 Ujoyj( )
0

j=0

which gives Eq(1.2). For the Na/C(001) system, these cor-
rections are important fofF >100 K and now the agreement
2 o _ with numerical and experimental results is better for the
(G5sd 1) =(d5sd 0)) = Bl (4.7 high-temperature range, see Fig. 1. In this figure we also plot
5 ) ) ) ) with dotted lines the quantum-mechanical shift obtained
(osd 1) Aosd 0)) = 2(osd 1) Uosd 0))“+(dosd 0))° (4.8 along the lines sketched in Sec. 11l C. The shift depends fi-

2 —
so that everything can be cast in terms of the averagB2lly on averages of the tyfel,,{0))=Cq(0) 59 these may
(q%(0)) and the position correlation function be readily calculated from Eg3.25 with t=0. For this

{Qosd 1) Gosd0)) Which are known. We then find that particular system quantum effects are experimentally unob-
servable for the temperature range spanned. We do note that

4 . .
5> Ugo at low temperatures the quantum-mechanical blueshift com-

’ _ WY, 2 2
(A1(t)N1(0))=36K3 7\% (Gosd 0)) pensates for the redshift induced by the anharmonicity.

4
00

u
+7%273<qosat>qosao>>2. (4.9

V. CONCLUSIONS
In this work we presented an analytical theory for the
Substituting Eq(4.9) and[see Eq.(3.24)] line shape, shift, and broadening of tifenode peak based
o N2 y on two assumptions: the first one is that the dynamics of
(Qosd ) Tosd = ——| O wyt) + =——sin(wyt)| (4.10  isolated adsorbates is well reproduced by a generalized
OS ” Bwgy ! 2w, ! Langevin equation, and the second assumption is that the
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first anharmonic correction of the interaction potential suf-a diffusion barrier whose height i¢*~ 130 meV? Experi-
fices to account for the temperature dependence. The validithental measurements on this system show a sfaibde
of the first assumption has been demonstrated for severglequency shift with temperature, but to within experimental
atom-surface systems at low coverages, where numericakcuracy, the width of the peak is temperature independent.
simulations have been contrasted to results of QHASThis is not very surprising in view of the high barrier for this
experiments:®? In this paper we have demonstrated thatparticular system and our previous conclusions from the an-
also the second assumption is correct for systems even in tliearmonic theory. However, in contrast to the Naj@i)
low friction regime if BV¥>1. The theory is based on a system, here one finds that tflemode frequency shifts to
normal-mode transformation of the Hamiltonian equivalentthe blue with increasing temperature. There is, however, evi-
of the Langevin equation. dence of a strong coupling between thenode and the CO
For the line shape we used a first-order perturbative sorotation, as in the CO/G001) cas@ which changes the sym-
lution of the normal-mode coordinates. The line shape isnetry of the PES and could be responsible for the opposite
Lorentzian only in the harmonic approximation, first-order shift. It is worth mentioning that another source of difficulty
anharmonic corrections produce a temperature-dependeist present when analyzing experiments, especially at high
shift and asymmetry of the peak. The agreement with nutemperatures, since vibrational and diffusional motions can
merical simulations is good fg8V*~30 in the low friction  not be always well separated.
range (y=0.1lw,), and BV¥*~8 in the intermediate friction To conclude, we remark that the Hamiltonian formalism
regime (y=0.5w,). For the shift and broadening, we have has been successfully employed for the analysibath the
employed a perturbative expansion in the instantaneous syguasielastitand theT-mode peaks in QHAS experiments. In
tem frequency. First-order corrections suffice to account for dhe first case, one has to consider the dynamics at energies
linear temperature-dependent shift. To obtain the temperatui@dose to the diffusion barrier. The relevant physical quantity
dependence of the broadening, we had to include seconds the normal-mode system frequeratythe barrier, which is
order corrections. Simple analytic expressions for the shifimaginary and gives the Kramers prefactbtherefore play-
and width were derived using the Kubo oscillator model.ing the role of an attempt frequency for escaping the poten-
These reproduce quantitativelyithout any fitting of the tial well. For the analysis of th&-mode peak we are inter-
parametensthe numerical and experimental shift and broad-ested in the dynamicat the well and the normal-mode
ening of theT-mode peak, and show also a motional narrow-system frequency is complex. The real part gives the peak
ing effect between Lorentzian and Gaussian shapes as tig@sition at zero temperature, including the shift in the oscil-
reduced barrier heightgV?*) is decreased. lator frequency due to the coupling to the bath. The imagi-
Quantum corrections may play a role for damped adsornary part gives the width at zero temperature, which is the
bates at low temperature®r for adsorbates with small friction coefficient measuring the rate of energy transfer of
mas$. For a symmetric surface the quantum shifopposite  the oscillator to the bath.
in sign to the shift induced by the anharmonicity. We have  Finally, we note that the results presented here can be
also extended the theory to the case of an adsorbate oni@proved in several aspects. One is the calculation of the
two-dimensional surface with coupled degrees of freedomsecond-order corrections in the line shape as obtained from
but the effect of the coupling is typically small in tiemode ~ Ed. (2.3), for a direct comparison to the experimental line
shape and position. shape at higher temperatures. The other aspect is the more
One of the useful consequences, for experiments, of thaccurate evaluation of the normal-mode averages, which we

theory presented here is that one could estimate the anhabtained by steepest descent. This is analogous to the inclu-
monicity parameter from th&-mode shift, using Eqs4.2) sion of finite barrier corrections in the Kramers prob&m.
and(4.13. Among the systems studied so far by QHAS tech-
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