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The vibrational motions of atomic adsorbates on surfaces can be probed by helium atom scattering.
The experimental observable is the dynamic structure factor, which shows an inelastic peak around
the vibrational frequency of the isolated adsorbates known as the frustrated translational orT-mode
peak. In this paper we develop a theory for the line shape of this peak, as well as for its
temperature-dependent shift and broadening, based on a Hamiltonian equivalent of the generalized
Langevin equation. The theory can be used to infer physical parameters of the adatom–surface
interaction, such as the friction coefficient, the barrier height to diffusion, and the anharmonicity
parameter. Numerical simulations are used to ascertain the range of validity of the theory, which is
also generalized to describe multidimensional systems and to include quantum corrections. We
compare the theoretical predictions for the shift and broadening with experimental results for the
Na/Cu~001! system, showing quantitative agreement within experimental resolution. ©2004
American Institute of Physics.@DOI: 10.1063/1.1737299#

I. INTRODUCTION

Vibrational motions of atomic and molecular adsorbates
on surfaces have been recently probed by the quasielastic He
atom scattering~QHAS! technique.1–6 This experimental
tool allows for an accurate determination of low-frequency
vibrational modes, which are not accessible by other types of
measurements such as infrared reflection adsorption spec-
troscopy~IRAS!.5 A beam of low-energy He atoms is scat-
tered by the adsorbates on the surface, changing momentum
as a result of the collision process. If the ensemble of adsor-
bates is diffusing on the surface, a quasielastic peak is ob-
served, centered at zero frequency and with a broadening
proportional to the diffusion coefficient. If, in addition, some
atoms or molecules are adsorbed on specific sites, an addi-
tional peak appears centered around the vibrational fre-
quency of the adsorbate close to the bottom of the lateral
potential well. This so-calledT-mode peak provides informa-
tion on the frictional damping experienced by the adsorbates
due to electron-hole pair creation or phonon coupling to the
metal substrate.7 It also provides details about the curvature
and anharmonicity of the lateral potential-energy surface
~PES! around the minima.1,8

For atomic adsorbates at low coverages, the analysis of
the T-mode peak can be a direct measure of all these quan-
tities, since only adsorbate–substrate interactions are present
and there are no other internal or external vibrational modes
coupled to theT-mode. The QHAS experiments present
some well defined features of theT-mode: First, it is a dis-
persionless mode~independent on the parallel wave-vector
transferK ! and of inelastic nature. Second, a Lorentzian pro-
file provides a good fit for theT-mode line shape whenever it
does not overlap with the quasielastic peak. Third, the loca-

tion of theT-mode peak has been observed to shift linearly
with temperature for several molecular2,4 and atomic3 sys-
tems. Fourth, the peak width has been observed to vary lin-
early with temperature for some adsorbate-surface systems,
like Na/Cu~001! ~Ref. 3! or CO/Cu~001!,2 while for other
systems such as CO on Pt~111! ~Ref. 4! it appears to be
independent of the temperature.

Despite the fact that knowledge of the adsorbate–
substrate interaction potential and the vibrational damping is
fundamental for understanding surface processes such as ad-
sorbate diffusion3,9 or the operation of lubricants on the
atomic scale,10 very few theoretical studies have been aimed
to extract information about these physical quantities directly
from the line shape of the vibrational peaks,2,7,11 or to relate
these features to the adsorbate dynamics. A simple explana-
tion for the linear dependence of the broadening at high tem-
peratures, assuming transitions from a Boltzmann population
of vibrational levels of an anharmonic oscillator, has been
given in Ref. 2. At the same time, extensive numerical simu-
lations using a semiempirical PES for the adiabatic adatom–
surface interaction demonstrated3 that a Langevin equation
approach is able to accurately reproduce the experimental
results, not only for the quasielastic peak but also for the
shift and broadening of theT-mode peak. Persson7,11 also
used a continuum Brownian motion model to analyze the
temperature dependence of the infrared line shape of vibra-
tional modes of CO chemisorbed on Ni~111!. These results
suggest that the line shape of low-frequencyT-mode peaks
can be analyzed within a stochastic classical framework, and
the origin of the shift and broadening is the thermal noise
combined with the anharmonicity of the potential around the
well bottom.
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A central result of this paper is the derivation of simple
analytic expressions for the temperature dependence of the
peak location and width as functions of temperature. Specifi-
cally, to leading order, theT-mode potential of mean force
has the generic form

V~q!5 1
2 v0

2q21K4q4, ~1.1!

whereq is the mass weightedT-mode vibrational coordinate,
v0 the harmonic frequency, andK4 is the anharmonicity
constant. To second order in the anharmonicity and provided
that the damping constantg is not too large (g/v0<2) one
finds for Ohmic friction, that the peak location (^l0&) is
given by

^l0&5Av0
22

g2

4
1kBT

6K4

v0
2Av0

22
g2

4

S 12kBT
9K4

v0
4 D .

~1.2!

Here,kB is Boltzmann’s constant andT is the temperature. In
Fig. 1, we plot this simple formula for the Na/Cu~001! sys-
tem and compare it with the experimental results. The pa-
rameters used have been estimated previously from
experiment.3 Similarly, we find that for Ohmic friction the
temperature and friction dependence of the width~s! of the
T-mode peak is found to be

s5kBT
6uK4u

v0
2Av0

22
g2

4

. ~1.3!

Using the same experimental parameters as for Fig. 1, we
obtain the fit shown in Fig. 2 for the width. The detailed
derivation of these expressions and their quantum mechani-
cal extensions are given in Sec. IV below.

In addition to the derivation of these simple expressions,
we will show that an analytic theory of theT-mode line

shapes may be derived from a microscopic Hamiltonian, thus
including explicitly the adsorbate dynamics. In Sec. II we
review the basic correlation functions needed for the analysis
of QHAS experiments and the Hamiltonian formalism lead-
ing to a generalized Langevin equation. We will also provide
the equations necessary for estimating the correlation func-
tions within this formalism. In Sec. III we outline a pertur-
bative theory of vibrational mode line shapes. We will exam-
ine the range of validity of the theory comparing it with
numerical Langevin simulations. Extensions of the theory to
the multidimensional case and quantum corrections are also
investigated. Then in Sec. IV we derive Eqs.~1.2! and ~1.3!
from the Hamiltonian formalism. Finally, we end up with
conclusions and a discussion relating our results to other
experimental systems studied by QHAS techniques.

II. BASIC THEORY

A. The quasielastic helium scattering formalism

For simplicity, we will assume first that the adiabatic
interaction potential is effectively one dimensional. The ex-
perimental observable is the dynamic structure factor
S(K,v), which is the Fourier transform in space and time of
the distribution functionG(x,t).12,13At low adatom concen-
trations, interactions between adsorbates can be ignored, and
G(x,t) is defined as the probability of finding a single ada-
tom at the positionx at timet, given that it was at the origin
at some arbitrary timet50. It is convenient to express the
dynamic structure factor directly in terms of the intermediate
scattering functionI (K,t), which is just the characteristic
function of the positionx considered as a stochastic process:

S~K,v!5E
2`

`

e2 ivtI ~K,t !dt. ~2.1!

Here,K is the wave-vector transfer of the He beam and the
function I (K,t) is defined by

I ~K,t !5^e2 iK @x~ t !2x~0!#&5^e2 iK *0
t v~ t8!dt8&. ~2.2!

FIG. 1. T-mode peak position as a function of temperature for the Na/
Cu~001! system. Circles: experimental results, Ref. 3. Solid line: numerical
results obtained by solving the Langevin equation with the 1D cosine po-
tential ~3.1!. The parameters used,g50.1v0 and V‡575 meV, have been
estimated previously from experiment~Ref. 3!. Dashed line: the theoretical
estimate using second-order anharmonic corrections, Eq.~1.2!. The dotted
line is the theory using the quantum mechanical averages instead of the
classical ones.

FIG. 2. T-mode full width at half maximum as a function of temperature for
the Na/Cu~001! system. Circles: experimental results, Ref. 3. Solid line:
numerical results obtained as in Fig. 1. Dashed line: analytical estimate,
Eq. ~1.3!. Dotted line: theoretical prediction, estimated by Fourier trans-
forming the intermediate scattering function of the Kubo model, Eq.~4.5!,
see Sec. IV.

10769J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 Hamiltonian theory for vibrational line shapes of atoms

Downloaded 21 May 2004 to 161.111.20.5. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A cumulant expansion to second order yields the stan-
dard result14

I ~K,t !;e2K2/2 *0
t dt8*0

t dt9^v~ t8!v~ t9!&5e2K2*0
t
~ t2t8!Cv~ t8!dt8,

~2.3!

where Cv(t)[^v(t)v(0)& is the velocity autocorrelation
function. The first approximation comes from the truncation
of the cumulant series, and the second equality holds if the
velocity processv(t) is stationary. For Gaussian stochastic
processes Eq.~2.3! is exact.

If the position processx(t) is diffusive, then at timest
much longer than the correlation time,

E
0

t

~ t2t8!Cv~ t8!dt8.tE
0

`

Cv~ t8!dt8, ~2.4!

and the intermediate scattering function takes the simple
form

I ~K,t !5e2K2t/tc ~2.5!

with

tc
21[E

0

`

^v~ t !v~0!&dt. ~2.6!

From Eq.~2.1! it is readily seen that the dynamic struc-
ture factor has a Lorentzian shape with a full width at half
maximum ~FWHM!, G52K2tc

21. Moreover, the right-
hand side of Eq.~2.6! is the Green–Kubo relation for the
diffusion coefficient, thusG52K2D. For diffusion at long
times~or, analogously, small values of the wave-vector trans-
fer K! the adiabatic potential plays almost no role and the
position process can be considered as Gaussian. Therefore
this FWHM reproduces quite accurately the behavior of the
dynamic structure factor at smallK, as has been observed
experimentally and numerically.3,13,15At higher values of the
wave-vector transfer this is no longer a good approximation
and other theoretical methods should be used to analyze the
quasielastic peak and the diffusion process. In particular,
Kramers’ turnover theory has been recently shown to be a
very convenient tool for studying activated surface
diffusion.9

On the other hand, theT-mode peak is the result of prob-
ing vibrational motions of the adsorbates. Typically, correla-
tion times for the vibrational dynamics are much shorter than
those for diffusive dynamics, and the two time scales can be
separated.16 Also, the adiabatic atom–surface interaction can
be expanded around the minimum of the well. For a sym-
metric surface, the first term gives a purely parabolic poten-
tial, and the position processx(t) is the solution of a Lange-
vin equation for a harmonic oscillator subject to Gaussian
white noise and dissipation, which is a Gaussian stochastic
process.17 Anharmonic corrections should account for the
shift and broadening of the inelastic peak, whenever the
Gaussian approximation remains valid.

B. Hamiltonian formalism

The position of an adatom of massm on a surface can be
considered as a stochastic process obeying a generalized
Langevin equation of the form~in mass weighted coordi-
natesq5Amx)

q̈1
]V~q!

]q
1E

0

t

dtg~ t2t!q̇~t!5Fr~ t !, ~2.7!

whereV(q) is the adiabatic interaction potential andFr(t)
the random force coming from a phonon bath. It is well
known18,19 that a Langevin equation of this form is equiva-
lent to the Hamiltonian

H5
pq

2

2
1V~q!1(

j 51

N Fpxj

2

2
1

1

2 S v j xj2
cj

v j
qD 2G , ~2.8!

where thej th harmonic bath mode is characterized by the
mass weighted coordinatexj , momentum pxj

, and fre-
quencyv j . The solution of Hamilton’s equations of motion
for the bath modes are expressed in terms of the system
coordinateq and the initial conditions, and then introduced
into the equation of motion for the system variablesq, pq .19

This leads to the Langevin equation~2.7! with the identifi-
cation for the friction function

g~ t !5(
j 51

N cj
2

v j
2 cos~v j t !. ~2.9!

For a suitably defined thermal distribution of initial
conditions19 Fr(t) is Gaussian distributed with zero mean
and obeys the fluctuation dissipation theorem

^Fr~ t !Fr~0!&5kBTg~ t !. ~2.10!

The continuum limit in the Hamiltonian formalism can be
achieved using the spectral density given by18

J~v!5
p

2 (
j 51

N cj
2

v j
@d~v2v j !2d~v1v j !#. ~2.11!

The Hamiltonian formulation presents some advantages
over the phenomenological Langevin formulation: first of all,
Ohmic and memory friction are treated in the same way, and
the results obtained can be extended to any kind of friction
function obeying the fluctuation dissipation relation~2.10!.
Second, the quantum treatment is straightforward, all that is
needed is to treat the Hamiltonian@Eq. ~2.8!# as an operator
in the relevant Hilbert space.19

If the interaction potentialV(q) is purely harmonic,
V(q)5v0

2q2/2, the Hamiltonian~2.8! may be separated via a
normal mode transformation.20,21 The normal-mode form is

HNM5
pr

2

2
1

1

2
l0

2r21(
j 51

N S pyj

2

2
1

1

2
l j

2yj
2D , ~2.12!

where the normal-mode coordinates of the system,r, and
bath modesyj are related to the mass weighted coordinatesq
andxj by an orthogonal transformation matrixU. In particu-
lar,
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q5u00r1(
j 51

N

uj 0yj . ~2.13!

The new system and bath frequencies,l0 andl j , may
be expressed in terms of the old frequenciesv0 andv j .21 It
is convenient to define also a normal-mode friction
function22,23

K~ t !5(
j 50

N

uj 0
2 cos~l j t ! ~2.14!

and a normal-mode spectral density

Y~l!5
p

2 (
j 50

N uj 0
2

l j
@d~l2l j !2d~l1l j !#, ~2.15!

where the index 0 refers to the ‘‘system’’ normal moder.
The normal-mode transformation has the property that for
any s,23

(
j 50

N uj 0
2

s21l j
2 5

1

s21sĝ~s!1v0
2 , ~2.16!

whereĝ(s) is the Laplace transform of the friction function.
From this relationship, using the Fourier decomposition of
the Dirac delta function, one can deduce the continuum limit
for the normal-mode spectral density:

lY~l!5Re@K̂~ il!#5ReF il

v0
22l21 ilĝ~ il!G . ~2.17!

These identities will be employed later on.
For future reference, we also note that the system

normal-mode frequencyl0 and the coefficientu00 can be
related to the friction function by the expressions21,24

l0
25v0

2S 11
ĝ~ il0!

il0
D 21

, ~2.18!

u00
2 5F11

1

2 S ḡ~ il0!

il0
1

dĝ~s!

ds U
s5 il0

D G21

. ~2.19!

As is clear from Eq.~2.18!, l0 is in general a complex fre-
quency. The real part gives the frequency shift and the imagi-
nary part the rate of energy transfer to the bath. For instance,
for Ohmic friction @J(v)5gv# one sees that

l05v11 ig/2 ~2.20!

with

v1[Av0
22

g2

4
. ~2.21!

As is well known, for a harmonic oscillator, with Ohmic
dissipation, the oscillator frequency decreases with increas-
ing damping constant but is independent of the temperature.

III. VIBRATIONAL LINESHAPES

A. Harmonic oscillator

A simple representation of the atom–surface interaction
potential for a symmetric surface is the cosine form,29

V~q!5V0F12cosS 2p

a
qD G , ~3.1!

wherea is the lattice spacing andV0 determines the barrier
height, V‡52V0 . The first term of a Taylor expansion
aroundq50 gives a parabolic potential with oscillator fre-
quency

v052pA V0

ma2. ~3.2!

As stated above, for the harmonic oscillator case Eq.
~2.3! is exact. The normal mode transformation is also exact.
In normal-mode coordinates, the velocity autocorrelation
function is

Cv~ t !5K S u00pr~ t !1(
j 51

N

uj 0pyj
~ t !D

•S u00pr~0!1(
j 51

N

uj 0pyj
~0!D L . ~3.3!

The equations of motion for the normal modesyj are those
of a harmonic oscillator with frequencyl j , so that

yj~ t !5yj~0!cos~l j t !1
pyj

~0!

l j
sin~l j t !. ~3.4!

The initial positionsyj (0) and velocitiespyj
(0) of the bath

modes are distributed thermally, i.e.,

^l j
2yj

2~0!&5^pj
2~0!&5b21, ~3.5!

whereb[1/kBT.
Differentiating Eq.~3.4! with respect to time and using

the thermal averages~3.5! one obtains

Cv~ t !5
1

b
K~ t !. ~3.6!

Carrying out the inverse Laplace transform of Eq.~2.17! for
Ohmic friction @ ĝ(s)5g#, gives the standard result for the
velocity autocorrelation function of the harmonic oscillator,17

Cv~ t !5
e2~g/2!t

b Fcos~v1t !2
g

2v1
sin~v1t !G . ~3.7!

Substituting the exact harmonic velocity autocorrelation
function, Eq.~3.7!, in Eq. ~2.3! for the intermediate scatter-
ing function gives

I ~K,t !5e22W
•e2W f0~ t !,

~3.8!

f 0~ t !5e2gt/2Fcos~v1t !1
g

2v1
sin~v1t !G

and 2W[K2/mbv0
2. We note that 2W is the Debye–Waller

attenuation factor,16 since

2W5K2^q~ t !21q~0!2&/2. ~3.9!

The second exponential in Eq.~3.8! can be expanded as a
power series in the variable 2W. The line shape is then ob-
tained by Fourier transformation as in Eq.~2.1!. Neglecting
nonresonant terms one finds
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S~K,v!.e22W(
j

2 jWj

~ j 21!! S g

~v1v1 j !21g2 j 2/4

1
g

~v2v1 j !21g2 j 2/4D . ~3.10!

This is a series of Lorentzians centered at the frequencies
6v1 and their harmonics, with decreasing intensities~typi-
cally only the casej 51 can be numerically or experimen-
tally observed!. The width of the first peak is the friction
coefficientg. Note also that the center is not at the oscillator
frequencyv0 but at v1 ; this is due to the coupling to the
bath. Experimentally, the value of the friction coefficient is
usually estimated by extrapolation of the width of theT
mode to zero temperature, a procedure which is justified by
Eq. ~3.10!.

B. Anharmonic corrections

The full system~cosine! potential is approximated by its
first anharmonic correction term, such that the system-bath
Hamiltonian @Eq. ~2.8!# may be expressed in terms of the
normal modes as

H5HNM1K4S u00r1(
j 51

N

uj 0yj D 4

, ~3.11!

whereHNM is the normal-mode Hamiltonian~2.12!, and for
the cosine potential~3.1! K4[V(4)(0)/24m252v0

4/24V0 is
negative.

The time dependence for the normal-mode coordinates is
solved by perturbation theory, to leading order inK4 one has

yj~ t !5yj
~0!~ t !14K4yj

~1!~ t !, ~3.12!

whereyj
(0)(t) is the harmonic oscillator solution given in Eq.

~3.4!, and the first-order correctionyj
(1)(t) is

yj
~1!~ t !52

uj 0

l j
E

0

t

sin@l j~ t2t8!#S (
j 50

N

uj 0yj
~0!~ t8!D 3

dt8.

~3.13!

To calculate the velocity autocorrelation function we use the
thermal averages

K yj
2~0!

pk
2~0!

lk
L 5K pj

2~0!

l j
2

pk
2~0!

lk
L 5

1

b2l j
2lk

. ~3.14!

We remark that strictly one should use the total anharmonic
Hamiltonian for the averaging, while Eq.~3.14! results from
averaging with the normal-mode Hamiltonian. However, for
the parameter range used later in this paper, this static cor-
rection is small and so can be neglected. The result for the
velocity autocorrelation function is

Cv~ t !5
1

b
K~ t !2

12K4

b2v0
2 E

0

t

K~ t2t8!•E
0

t8
K~ t9!dt9. ~3.15!

The first term is the harmonic oscillator contribution, Eq.
~3.6!, while for the second term is a convolution integral
with the normal-mode friction functionK(t) @see Eq.~2.14!#.
Laplace transformation, using the identity~2.16! yields the
result

Ĉv~s!5
1

b

s

s21sĝ~s!1v0
22

12K4

b2v0
2

s

@s21sĝ~s!1v0
2#2 .

~3.16!

For Ohmic friction, inverse Laplace transformation gives the
first anharmonic correction to the harmonic oscillator auto-
correlation function as

Cv~ t !5Cv
~0!~ t !2

12K4

b2v0
2

3
e2~g/2!t@gv1t cos~v1t !1~2v1

2t2g!sin~v1t !#

4v1
3 ,

~3.17!

whereCv
(0)(t) is given in Eq.~3.7!.

From Eq.~2.3!, the intermediate scattering function can
be then written as

I ~K,t !5I ~0!~K,t !•I ~1!~K,t !. ~3.18!

HereI (0)(K,t) is the harmonic oscillator scattering function,
Eq. ~3.8!, I (1)(K,t) the first-order anharmonic correction for
the cosine potential is

I ~1!~K,t !5e22W/bV‡
•e~2W/bV‡! f 1~ t ! ~3.19!

and

f 1~ t !5e2gt/2F S 12
gv0

2

4v1
2 t D cos~v1t !

1S 6gv0
22g3

8v1
3 1

v0
2

2v1
t D sin~v1t !G . ~3.20!

Before comparing with numerical calculations we note
that apart from the purely sinusoidal terms in the exponent
similar to those appearing in Eq.~3.8!, there are terms which
are linear int. Proceeding in the same way as for the deriva-
tion of Eq. ~3.10!, we see that they lead to Fano profiles
centered at the harmonic frequencies. This causes a skewness
of theT-mode peak changing its width and position. Second,
the magnitude of the first-order correction depends on the
reduced barrier heightbV‡. For bV‡@1 the harmonic ap-
proximation remains valid. This is expected since at low
temperatures and high barriers~high vibrational frequencies!
the particle remains close to the bottom of the potential well.

In order to establish the range of validity of the theory
based on the leading first-order correction, we have solved
numerically the Langevin equation~2.7! with Ohmic friction.
The parameters are taken so as to model an adsorbed Na
particle moving on a cosine potential, a system which
has been investigated both theoretically27,28 and experi-
mentally.29 In Fig. 3 we show the numerically determined
velocity autocorrelation function for this system at two fric-
tion values: low,g50.1v0 , and moderate,g50.5v0 , and
two different barrier heightsV‡, compared to the harmonic
and anharmonic approximations, Eqs.~3.7! and ~3.17!. As
expected, doubling the barrier height~we could as well re-
duce the temperature! improves the agreement between the
numerical and analytical autocorrelation functions. Note that
the anharmonic correction shifts the frequency of oscillations
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towards the correct values, but at low barrier and friction,
Fig. 3~a!, it fails to reproduce properly more than the first
two or three peaks. Clearly, the first anharmonic correction
does not suffice in this case. At higher friction, panels~b! and
~d!, the particle remains closer to the well bottom, and the
anharmonic approximation reproduces properly the velocity
autocorrelation function.

This can be also appreciated in the line shape~dynamic
structure factor! shown in Fig. 4 at different temperatures.
For comparison, we also plot with dashed lines the harmonic
line shape Eq.~3.10!. For g50.5v0 , the first anharmonic
correction suffices to reproduce properly the numerical line-

shape untilT5100 K, while in the low friction case good
agreement is found only for the lower temperature ofT
550 K.

When deriving the intermediate scattering function or
the line shape based on the leading-order contribution to the
velocity correlation function, as in Eq.~3.17!, one is making
the additional assumption that the position or velocity are
Gaussian processes~truncation of the cumulant expansion!.
In order to check this approximation, we calculate both the
numerically exact intermediate scattering function through
Eq. ~2.2! and the Gaussian approximation Eqs.~2.3! or
~3.22!, using the numerically exact correlation functions. As
seen in Fig. 5, the Gaussian approximation is an excellent
one even in the case of low friction and low barrier values.
Also, with the dotted line, we show the intermediate scatter-
ing function calculated for the quartic potential

V~q!5 1
2 v0

2q21K4q4. ~3.21!

The good agreement suggests that indeed the first anhar-
monic term in the Taylor expansion of the adiabatic potential
is able to account for the shift and broadening of theT-mode
peak, and that the failure of the analytic theory at low barri-
ers ~high temperature! or low friction is mainly due to the
fact that we neglected higher-order terms in the perturbative
solution.

The curves in Figs. 3 and 5 have been obtainedonly with
vibrational trajectories. For the parameters used in Fig. 5,
especially at long times many of the trajectories overcome
the barrier and start to diffuse~therefore giving also a quasi-
elastic peak!. In the Inset of Fig. 5 we show how the Gauss-
ian approximation fails for the diffusing trajectories. More-
over, this approximation depends now on the value of the
wave-vector transferK ~it is better at smallK values!, while
the intermediate scattering function for the vibrational mo-
tion does notdepend onK. Only its amplitude, and thus the
intensity of theT-mode peak, will change, not its shape or
position.

FIG. 3. Numerical and analytical velocity autocorrelation functions for a Na
adsorbate on a cosine potential atT5100 K, with different friction coeffi-
cientsg and barrier height valuesV‡. ~a!–~c! g50.1v0 . V‡567 and 134
meV, respectively.~b!–~d! g50.5v0 . V‡567 and 134 meV. Thick solid
line: numerical autocorrelation function. Thin solid line: harmonic approxi-
mation, Eq.~3.7!. Dashed line: anharmonic correction, Eq.~3.17!.

FIG. 4. Dynamic structure factor~line shape! of the T-mode peak for a Na
adsorbate on the cosine potential, at two different temperatures.~a! and ~b!
g50.1v0 , V‡5134 meV. ~c! and ~d! g50.5v0 , V‡567 meV. Dashed
line: numerical simulation@see Eq.~2.1!#. Solid lines: anharmonic approxi-
mation, Fourier transform of Eqs.~3.18! and~3.19!. Dotted lines: harmonic
approximation, Fourier transform of Eq.~3.8!.

FIG. 5. Intermediate scattering function atT5100 K, g50.1v0 and V‡

567 meV. We have setK51 Å21. Dashed line: numerical simulation, Eq.
~2.2!. Solid line: Gaussian approximation, Eqs.~2.3! or ~3.22!, with the
numerically calculated autocorrelation functions. Dotted line: numerical
simulation of a quartic oscillator~fourth-order expansion of the cosine po-
tential!. Diffusing trajectories are removed from the autocorrelation func-
tions. Inset: numerical~dashed! and Gaussian~solid! simulations taking into
account diffusing trajectories.
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From Fig. 4 we also note that the anharmonic dynamic
structure factor presents a shift with temperature towards
smaller frequencies. A calculation of the width from the ana-
lytical line shape, however, shows no significant broadening
with temperature even in the range where it compares well to
numerical simulations. This will be further discussed in
Sec. IV.

C. Quantum corrections

As an example, we will work out the quantum line shape
for the dissipative harmonic oscillator. Since quantum cor-
rections are only significant at low temperatures, especially
for adsorbates with a large mass, the harmonic approxima-
tion will suffice to illustrate the important quantum effects. It
is convenient to express the Gaussian intermediate scattering
function exactly30 in terms of theposition autocorrelation
function16 as

I ~K,t !5e22WeK2^q~ t !q~0!&. ~3.22!

The resultant dynamic structure factor will be real,
showing two peaks at positive and negative frequencies~ac-
counting for quantum creation and annihilation!. Strictly,
S(K,v) andS(K,2v) are related by a detailed balance con-
dition preventing annihilation atT50,30 therefore at low
temperature the dynamic structure factor is asymmetric. The
two peaks, however, will have nearly the same line shape
~although their magnitudes can be very different!. We can
calculate an average line shape by replacing^q(t)q(0)& with
its real partCq(t)51/2@^q(0)q(t)&1^q(t)q(0)&#.

To obtain the quantum position autocorrelation function
we note that the quantum thermal average of the kinetic and
potential energies are

1

2
^l j

2yj
2~0!&5

1

2
^pj

2~0!&5
\

4
l j coth~\bl j /2!. ~3.23!

Using the normal-mode representation of the Hamiltonian
one finds

Cq~ t !5(
j 50

N

uj 0
2 ^yj

2~0!&cos~l j t !

5
\

p E
0

`

dlY~l!coth~\bl/2!cos~lt !, ~3.24!

where we have used the definition of the spectral density of
the normal modes as given in Eq.~2.15!. For Ohmic friction
the spectral density is found from Eq.~2.17! so that one has

Cq~ t !5
\g

p E
0

`

dlS l coth~\bl/2!cos~lt !

~v0
22l2!21g2l2 D . ~3.25!

Note that usingCq(t) is consistent with the fact that the
quantum fluctuation-dissipation theorem implicitly obeyed
by the friction function here has the symmetrized form.18,19

g~ t !5(
j 51

N
1

2
^Fr j

~ t !Fr j
~0!

1Fr j
~0!Fr j

~ t !&
2 tanh~\v jb/2!

\v j
. ~3.26!

The Debye–Waller factor for the harmonic oscillator is
readily obtained by noting that

^q2~ t !&5^q2~0!&5Cq~0!. ~3.27!

In Fig. 6 we compare the harmonic approximation for
the classical and quantum dynamic structure factor for a Na
atom moving on a cosine potential. The parameters chosen
areV‡567 meV andg50.5v0 . Results are shown at several
temperatures. One notes that lowering the temperature in-
duces ablueshiftof the T-mode peak. The observed experi-
mental redshift is due to the anharmonicity as shall be shown
below. Quantum effects decrease as the friction coefficient
decreases, forg50.1v0 , any effect is unobservable for tem-
peratures above 10 K.

D. Multidimensional systems

The same perturbation theory may be used for systems
with more than one vibrational degree of freedom coupled to
a bath. We will illustrate this for an atomic adsorbate on a
two-dimensional periodic surface. The generalized Langevin
equations for the two degrees of freedom problem take the
form

q̈1
]V~q,z!

]q
1E

0

t

dtgq~ t2t!q̇~t!5Fq~ t !,

z̈1
]V~q,z!

]z
1E

0

t

dtgz~ t2t!ż~t!5Fz~ t !, ~3.28!

where the adiabatic atom–surface interaction potential
V(q,z) is generally nonseparable.3 The random forcesFq ,
Fz are uncorrelated and obey the fluctuation-dissipation rela-
tions

^Fi~ t !Fi~0!&5kBTg i~ t !, i 5q,z. ~3.29!

The Hamiltonian equivalent of the two coupled Lange-
vin equations is25

FIG. 6. Quantum dynamic structure factor in the harmonic approximation,
from Eqs.~3.22! and~3.25!, for the same parameters as in Figs. 4~c! and~d!,
g50.5v0 , V‡567 meV, and several temperatures: solid line, classical re-
sult at T5100 K. Quantum results: dashed line,T5100 K; dotted line,T
550 K; long dashed line,T525 K; dot-dashed line,T510 K. The wave-
vector transfer isK51 Å21.
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H5
~pq

21pz
2!

2
1V~q,z!1

1

2 (
j 51

N F pqj

2 1S vqj
xj2

cqj

vqj

qD 2G
1

1

2 (
j 51

N F pzj

2 1S vzj
y j2

czj

vzj

zD 2G . ~3.30!

The Hamiltonian representation for the two time-dependent
frictions is

g i~ t !5(
j 51

N ci j

2

v i j

2 cos~v i j
t !, i 5q,z. ~3.31!

The interaction potentialV(q,z) can be expanded around the
minimum @for simplicity, located at the origin and with
V(0,0)50] as

V~q,z!5 1
2 @vqq

2 q212vqzqz1vzz
2 z2#1V1~q,z!, ~3.32!

whereV1(q,z) defines the anharmonic contributions. If we
neglect them, the Hamiltonian may be again diagonalized
using a normal-mode transformation; the orthogonal trans-
formation matrix U has now dimensions (2N12)3(2N
12). The system coordinates~q, z! are expressed in terms of
the normal modes, see Eq.~2.13!, as

q5u2121r1u021s1(
j 51

2N

uj 21n j ,

~3.33!

z5u210r1u00s1(
j 51

2N

uj 0n j ,

wherer ands are the system normal modes corresponding
to q and z, respectively, and we have now 2N bath modes
n j . The normal-mode Hamiltonian takes the form

HNM5
1

2
~pr

21ps
21l21

2 r21l0
2s2!1

1

2 (
j 51

2N

~pn j

2 1l j
2n j

2!.

~3.34!

Equation~2.16! can be generalized to the multidimen-
sional case:26

(
j 521

2N uj 21
2

s21l j
2

5
s21sĝz~s!1vzz

2

@s21sĝq~s!1vqq
2 #@s21sĝz~s!1vzz

2 #2vqz
2 , ~3.35!

(
j 521

2N
uj 21uj 0

s21l j
2

5
2vqz

@s21sĝq~s!1vqq
2 #@s21sĝz~s!1vzz

2 #2vqz
2 , ~3.36!

(
j 521

2N uj 0
2

s21l j
2

5
s21sĝq~s!1vqq

2

@s21sĝq~s!1vqq
2 #@s21sĝz~s!1vzz

2 #2vqz
2 . ~3.37!

To simplify matters, we will obtain the velocity autocorrela-
tion function for a symmetric surface with Ohmic friction,

such as the Cu~001! system.3 Then gq5gz[g, vqq5vzz

[v0 , vqz50, and^q̇(t)q̇(0)&5^ż(t) ż(0)&. From the equa-
tions of motion for the normal-mode coordinates given by
HNM , and Eqs.~3.35!–~3.37!, one sees that for a symmetric
surface the harmonic line shape is identical to the one-
dimensional case. The first anharmonic correction to the po-
tential is

V1~q,z!5K4
qq41K4

zz412K4
qzq2z2, ~3.38!

since the surface is symmetric one has thatK4
q5K4

z[K4 . A
perturbative solution to first order inK4 and K4

qz for the
normal-mode coordinates is found to be

n j~ t !5n j
~0!~ t !14K4n j

~1!~ t !14K4
qzm j

~1!~ t !, ~3.39!

where

n j
~1!~ t !52

uj 21

l j
E

0

t

sin@l j~ t2t8!#F21~ t8!dt8

2
uj 0

l j
E

0

t

sin@l j~ t2t8!#F0~ t8!dt8 ~3.40!

with

Fi~ t ![S (
j 521

2N

uji n j
~0!~ t !D 3

, i 521, 0, ~3.41!

and

m j
~1!~ t !52

uj 21

l j
E

0

t

sin@l j~ t2t8!#G21~ t8!dt8

2
uj 0

l j
E

0

t

sin@l j~ t2t !8#G0~ t8!dt8 ~3.42!

with

G21~ t ![S (
j 521

2N

uj 21n j
~0!~ t !D S (

j 521

2N

uj 0n j
~0!~ t !D 2

~3.43!

and the subindices 0 and21 are interchanged forG0(t).
Although more cumbersome, it is straightforward, using

the thermal averages~3.14! and the expressions~3.35!–
~3.37!, to calculate the anharmonic autocorrelation function.
Its Laplace transform reads@compare to Eq.~3.16!#

^ p̂q~s! p̂q~0!&5
1

b

s

s21sĝ~s!1v0
2

2S 12K414K4
qz

b2v0
2 D s

@s21sĝ~s!1v0
2#2 .

~3.44!

For a symmetric surface, such as for the Cu~001! system, one
can model the two-dimensional~2D! PES as31
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V~x,y!5V02V1FcosS 2px

a D1cosS 2py

a D G
1V2 cosS 2px

a D cosS 2py

a D . ~3.45!

ChoosingV0 , V1 , andV2 such thatV(0,0)50, V(0,6a/2)
5V‡ ~barrier energy at the saddle point! and V(6a/2,
6a/2)5Vm ~energy barrier at the maxima! results in V0

5Vm/41V‡/2, V15Vm/4 and V25Vm/42V‡/2. With this
choice for the adiabatic PES,K452v0

4/12V‡ is the same as
for the one-dimensional case, and

K4
qz5

v0
4

12V‡ S Vm

2V‡21D . ~3.46!

Note that forVm52V‡ the potential is separable and identi-
cal to the 1D case. In generaluK4

qzu,uK4u ~for instance, in
Ref. 31 a fitting to the QHAS experiments gave the value
Vm /V‡55/4) and thus the coupling between the surface co-
ordinates has only a small effect on theT-mode peak. We
have seen from the analytical estimate using Eq.~3.44! and
from numerical simulations that the line shape does not
change significantly for this particular model and coupling.
This does not mean that, experimentally, one cannot distin-
guish between a separable and nonseparable adiabatic sur-
face: the quasielastic peak is sensitive to the multidimen-
sional features of the surface. The nonseparability can have a
large effect on the curvature close to the barrier, which enters
in the multidimensional Kramers prefactor, and this does af-
fect the diffusion significantly.9

IV. TEMPERATURE-DEPENDENT SHIFT
AND BROADENING

Frequency shifts can be obtained directly with the pre-
ceding formalism without calculating the dynamic structure
factor. From Eq.~3.11! one notes that the anharmonicity will
cause a shift of both the minimum and the frequency of the
system normal mode. Specifically, the instantaneous fre-
quency, to leading order in the anharmonicity parameterK4

is

l0~ t ![S ]2H

]r2 D 1/2

5Fl0
2112K4u00

2 S (
j 50

N

uj 0yj D 2G1/2

;l01
6K4u00

2

l0
S (

j 50

N

uj 0yj D 2

1o~K4
2!. ~4.1!

The frequency shift is obtained from the thermal average
^l0(t)&. Introducing the harmonic oscillator solution, Eq.
~3.4!, for the normal-mode coordinateyj in the last term in
Eq. ~4.1!, and performing the averages~ignoring the anhar-
monicity in the partition function! we find a temperature-
dependent contribution to the frequency shift

Dl̄0[^l0~ t !&2l05
6K4

bv0
2v1

. ~4.2!

This is the result given in Eq.~1.2! keeping only the first-
order correction. As already noted above, for the cosine po-
tential K4 is negative, so that the anharmonicity produces a
redshiftwith a linear temperature dependence.

In Fig. 7 we compared the shift obtained from the
normal-mode frequency average, Eq.~4.2!, with numerical
~solid lines! and experimental results obtained for the Na/
Cu~001! system~taken from Ref. 3!. The value of the barrier
and friction coefficient estimated from experimental mea-
surements areV‡;75 meV andg/v050.1. The agreement is
fairly good for temperatures belowT;150 K. We will show
below that, due to the low friction of the system and the
relatively small barrier, second-order corrections in the an-
harmonicity are necessary for higher temperatures.

In the analytical estimation of the lineshape given in Sec.
III B, a shift was indeed observed but there was no broaden-
ing. This can be understood by calculating the variance in the
system frequency,̂@l0(t)2^l0(t)&#2&, which is expected to
be proportional to the broadening of the peak. One immedi-
ately sees that, to first order inK4 , the variancevanishes.
Therefore second-order corrections in the anharmonicity are
necessary for obtaining the temperature-dependent broaden-
ing. A direct calculation of the dynamic structure factor
along the lines discussed in Sec. III B, using second-order
perturbation theory, is rather involved. Instead we resort to a
simpler model which, however, retains the basic dynamical
ingredients: the Kubo oscillator.14,32 First, we expand the in-
termediate scattering function~2.2! in moments, instead of
cumulants. If we remain to order 2, this is equivalent to a
second-order Taylor expansion of Eq.~3.22! aroundK50.
Since theT-mode peak shape is independent ofK the mo-
ment expansion is at least in principle, convergent. Then the
intermediate scattering function will be essentially propor-
tional to the position autocorrelation function, as in the
theory for Raman scattering,33 and we can use the Kubo
oscillator model.

We assume that the normal-mode oscillator with fre-
quencyl0 has a random frequency component due to the
anharmonicity, and define

FIG. 7. T-mode peak position as a function of temperature for the Na/
Cu~001! system. Circles: experimental results, Ref. 3. Solid line: numerical
results obtained by solving the Langevin equation with the 1D cosine po-
tential ~3.1!. The parameters used,g50.1v0 and V‡575 meV, have been
estimated from experiment~Ref. 3!. Dashed line: theoretical prediction, Eq.
~4.2!, using first-order anharmonic corrections.
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l0~ t !5l01l1~ t !. ~4.3!

Then, using the equations of motion of an oscillator with
frequencyl0(t) and a cumulant expansion to second order
we find

^q~ t !q~0!&}Rê ei *0
t l1~ t8!dt8&eil0t

;Reeil0tei *0
t ^l1~ t8!&dt8e2*0

t
~ t2t8!^l1~ t8!l1~0!&dt8.

~4.4!

Note that ^l1(t8)& is the shift Dl̄0 , Eq. ~4.2!. Using Eq.
~2.20! for l0 we can express the intermediate scattering
function as

I ~K,t !}Reei ~v11Dl̄0!te2gt/2e2*0
t
~ t2t8!^l1~ t8!l1~0!&dt8. ~4.5!

To first order inK4 one sees that̂l1(t8)l1(0)&50 and the
dynamic structure factor is a Lorentzian centered at the fre-
quency v11Dl̄0 ~and thus there is a linear temperature-
dependent shift!, with a FWHM equal to the harmonic oscil-
lator width g ~and thus no temperature-dependent
broadening!. Second-order corrections inl0(t) will produce
a temperature-dependent broadening due to the last exponen-
tial factor in Eq.~4.5! above. To second order, the instanta-
neous frequency is given by

l0~ t !;l01
6K4u00

2

l0
F S (

j 50

N

uj 0yj
~0!D 2

18K4S (
j 50

N

uj 0yj
~0!D S (

j 50

N

uj 0yj
~1!D G

2
18K4

2u00
4

l0
3 S (

j 50

N

uj 0yj
~0!D 4

1o~K4
3!, ~4.6!

where we have now introduced the first-order perturbative
solution yj

(1) , Eq. ~3.12!. For the correlation function
^l1(t8)l1(0)& terms depending onyj

(1) cancel out and we
obtain terms depending only on averages over the harmonic
oscillator position process. Since this is a Gaussian process
~for analytic simplicity we ignore the anharmonicity in the
partition function!, we use the well-known identities

^qosc
2 ~ t !&5^qosc

2 ~0!&5
1

bv0
2 , ~4.7!

^qosc
2 ~ t !qosc

2 ~0!&52^qosc~ t !qosc~0!&21^qosc
2 ~0!&2 ~4.8!

so that everything can be cast in terms of the average
^qosc

2 (0)& and the position correlation function
^qosc(t)qosc(0)& which are known. We then find that

^l1~ t8!l1~0!&536K4
2

u00
4

l0
2 ^qosc

2 ~0!&2

172K4
2

u00
4

l0
2 ^qosc~ t !qosc~0!&2. ~4.9!

Substituting Eq.~4.9! and @see Eq.~3.24!#

^qosc~ t !qosc&5
e2gt/2

bv0
2 Fcos~v1t !1

g

2v1
sin~v1t !G ~4.10!

one can readily calculate the integrals in the last exponent in
Eq. ~4.5!.

We note that, for long times, the first term in Eq.~4.9! is
dominant and gives a Gaussian intermediate scattering func-
tion of the form

I ~K,t !}Reei ~v11Dl̄0!te2gt/2e2s2~ t2/2!, ~4.11!

where

s5
6uK4u

bv1v0
2 5

v0
2

2bV‡v1
. ~4.12!

The dynamic structure factor is the time Fourier transform of
Eq. ~4.11!. The imaginary exponential gives the peak posi-
tion, already discussed above. The width of the peak is de-
termined by the real exponentials. At short times, or ifbV‡

@1 @see Eq.~4.12!#, the first exponent dominates, the peak
has a Lorentzian shape with the FWHM given mainly byg,
as in the harmonic oscillator case. At long times, or ifbV‡ is
small, the Gaussian contribution dominates and the peak has
a Gaussian shape with a FWHM mainly given bys. In in-
termediate situations both contributions have to be taken into
account, the central part of theT-mode peak being closer to
a Gaussian while the wings are better approximated with a
Lorentzian shape. This is analogous to themotional narrow-
ing effect,14,34first discussed in the context of magnetic reso-
nance absorption. It is important to note that this simple
model gives a width proportional tos, and therefore a linear
temperature-dependent broadening.

In Fig. 2 we compared the experimental broadening with
the numerical one, and the full width at half maximum ob-
tained from the Fourier transform of the Kubo intermediate
scattering function, Eq.~4.5!. This simple model is able to
account for the linear increase of the broadening with tem-
perature as observed experimentally.

Second-order corrections can also be calculated for the
shift using Eq.~4.6!, with the result

Dl̄05
6K4

bv0
2v1

2
54K4

2

b2v0
6v1

, ~4.13!

which gives Eq.~1.2!. For the Na/Cu~001! system, these cor-
rections are important forT.100 K and now the agreement
with numerical and experimental results is better for the
high-temperature range, see Fig. 1. In this figure we also plot
with dotted lines the quantum-mechanical shift obtained
along the lines sketched in Sec. III C. The shift depends fi-
nally on averages of the type^qosc

2 (0)&[Cq(0) so these may
be readily calculated from Eq.~3.25! with t50. For this
particular system quantum effects are experimentally unob-
servable for the temperature range spanned. We do note that
at low temperatures the quantum-mechanical blueshift com-
pensates for the redshift induced by the anharmonicity.

V. CONCLUSIONS

In this work we presented an analytical theory for the
line shape, shift, and broadening of theT-mode peak based
on two assumptions: the first one is that the dynamics of
isolated adsorbates is well reproduced by a generalized
Langevin equation, and the second assumption is that the
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first anharmonic correction of the interaction potential suf-
fices to account for the temperature dependence. The validity
of the first assumption has been demonstrated for several
atom-surface systems at low coverages, where numerical
simulations have been contrasted to results of QHAS
experiments.3,9,29 In this paper we have demonstrated that
also the second assumption is correct for systems even in the
low friction regime if bV‡@1. The theory is based on a
normal-mode transformation of the Hamiltonian equivalent
of the Langevin equation.

For the line shape we used a first-order perturbative so-
lution of the normal-mode coordinates. The line shape is
Lorentzian only in the harmonic approximation, first-order
anharmonic corrections produce a temperature-dependent
shift and asymmetry of the peak. The agreement with nu-
merical simulations is good forbV‡;30 in the low friction
range (g50.1v0), andbV‡;8 in the intermediate friction
regime (g50.5v0). For the shift and broadening, we have
employed a perturbative expansion in the instantaneous sys-
tem frequency. First-order corrections suffice to account for a
linear temperature-dependent shift. To obtain the temperature
dependence of the broadening, we had to include second-
order corrections. Simple analytic expressions for the shift
and width were derived using the Kubo oscillator model.
These reproduce quantitatively~without any fitting of the
parameters! the numerical and experimental shift and broad-
ening of theT-mode peak, and show also a motional narrow-
ing effect between Lorentzian and Gaussian shapes as the
reduced barrier height (bV‡) is decreased.

Quantum corrections may play a role for damped adsor-
bates at low temperatures~or for adsorbates with small
mass!. For a symmetric surface the quantum shift isopposite
in sign to the shift induced by the anharmonicity. We have
also extended the theory to the case of an adsorbate on a
two-dimensional surface with coupled degrees of freedom,
but the effect of the coupling is typically small in theT-mode
shape and position.

One of the useful consequences, for experiments, of the
theory presented here is that one could estimate the anhar-
monicity parameter from theT-mode shift, using Eqs.~4.2!
and~4.13!. Among the systems studied so far by QHAS tech-
niques, the Na/Cu~001! is an ideal candidate to test our pre-
dictions, since many experimental results and accurate esti-
mations of barrier heights and frequencies are available at
low coverages. From the comparison with experiment we
indeed show that the theory correctly predicts the tempera-
ture dependence of theT-mode position. From the anharmo-
nicity parameter one can also estimate the barrier height,
providing additional information which can be contrasted to
that obtained by the analysis of the quasielastic peak. Other
adsorbate-surface systems whoseT-mode features have been
studied by QHAS techniques are the Xe/Pt~111! and Na/
Pt~111! systems, and especially the CO molecule adsorbed
on different substrates, such as Ni~110!, Cu~001!, and
Pt~111! ~for a compilation of QHAS data see Ref. 8 and
references therein!. Most of these systems have small friction
values and barriers below 70 meV.

Of special interest to our discussion is the CO/Pt~111!
system, which has an estimated friction valueg;0.1v0 and

a diffusion barrier whose height isV‡;130 meV.4 Experi-
mental measurements on this system show a smallT-mode
frequency shift with temperature, but to within experimental
accuracy, the width of the peak is temperature independent.
This is not very surprising in view of the high barrier for this
particular system and our previous conclusions from the an-
harmonic theory. However, in contrast to the Na/Cu~001!
system, here one finds that theT-mode frequency shifts to
the blue with increasing temperature. There is, however, evi-
dence of a strong coupling between theT mode and the CO
rotation, as in the CO/Cu~001! case5 which changes the sym-
metry of the PES and could be responsible for the opposite
shift. It is worth mentioning that another source of difficulty
is present when analyzing experiments, especially at high
temperatures, since vibrational and diffusional motions can
not be always well separated.

To conclude, we remark that the Hamiltonian formalism
has been successfully employed for the analysis ofboth the
quasielastic9 and theT-mode peaks in QHAS experiments. In
the first case, one has to consider the dynamics at energies
close to the diffusion barrier. The relevant physical quantity
is the normal-mode system frequencyat the barrier, which is
imaginary and gives the Kramers prefactor,20 therefore play-
ing the role of an attempt frequency for escaping the poten-
tial well. For the analysis of theT-mode peak we are inter-
ested in the dynamicsat the well, and the normal-mode
system frequency is complex. The real part gives the peak
position at zero temperature, including the shift in the oscil-
lator frequency due to the coupling to the bath. The imagi-
nary part gives the width at zero temperature, which is the
friction coefficient measuring the rate of energy transfer of
the oscillator to the bath.

Finally, we note that the results presented here can be
improved in several aspects. One is the calculation of the
second-order corrections in the line shape as obtained from
Eq. ~2.3!, for a direct comparison to the experimental line
shape at higher temperatures. The other aspect is the more
accurate evaluation of the normal-mode averages, which we
obtained by steepest descent. This is analogous to the inclu-
sion of finite barrier corrections in the Kramers problem.25
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