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The rainbow is due to extrema of the angular deflection function of light impinging on water drops.

Generically, extrema of suitably defined deflection functions lead to rainbows. These include angular and

rotational rainbows in surface scattering and more. Here we introduce the concept of an ‘‘energy-loss

deflection function’’ for scattering of particles from a periodic surface whose extrema lead to a new

form—the ‘‘energy-loss rainbow’’ which appears as multiple maxima in the final energy distribution of

the scattered particle. Energy-loss rainbows are caused by frictional phonon effects which induce structure

in the energy-loss distribution instead of ‘‘washing it out.’’ We provide evidence that they have been

observed in Ne scattering on self-assembled monolayers.
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One of the fascinating scenes provided by nature is the
rainbow, whose rich history is summarized in Wikipedia
[1]. A parallel ray of light hitting a spherical water droplet
is refracted upon penetration of the droplet, then specularly
reflected from the ‘‘back’’ of the droplet and then refracted
upon exiting the droplet. The exit angle is a function of the
impact parameter of the incident light and has an extre-
mum at an angle of �42�, leading to the bright colors of
the rainbow.

This effect also occurs when light is reflected from a
periodically corrugated surface [2]. The specular reflection
angle changes due to the corrugation. The exit angle as a
function of the horizontal coordinate x will have at least
two extrema leading to maxima in the angular distribution.
Their separation increases with the corrugation amplitude
[3]. The same happens when heavy atoms scatter from a
periodically corrugated surface [2,4]. Experiments show
(for a detailed list see Ref. [4]) that the angular distribution
is at least doubly peaked [5,6]. Interaction of the scattered
particle with the surface phonons causes the peaks to
broaden and even merge into a single peak. Very recently,
supernumerary rainbows have been measured in grazing
collisions of fast atoms with a LiF(001) surface [7].

The term ‘‘rainbow scattering’’ has been generalized to
include any scattering phenomenon in which the measured
final property has an extremum with respect to an initial
variable, leading to divergences in the distribution of the
measured property. A well-known example is rotational
rainbows. The final rotational angular momentum of a
molecule colliding with a surface is a function of the initial
orientation. Extrema of the ‘‘rotational deflection func-
tion’’ show up as experimentally measured maxima in
the final rotational distribution [8,9]. The same phenome-
non exists in principle for vibrations [10]. Rainbows are
also well known in nuclear physics, where one considers

Coulomb and nuclear rainbows for the scattering of nuclei
[11]. The rainbow effect occurs in ion channeling through
thin crystals [12] and nanotubes [13] and in convoy elec-
tron scattering near surfaces [14].
In this Letter we report a new kind of rainbow, which we

term the ‘‘energy-loss rainbow.’’ Consider the scattering of
an atom from a periodic surface with incident energy Ei

and incident angle �i with respect to the surface normal. It
is scattered with final energy Ef which typically will be

lower than Ei due to energy loss to the surface via inter-
action with surface phonons. If the surface is corrugated,
the final energy will be a function of the impact parameter.
One may expect that the ‘‘energy deflection function’’ will
have extrema which show up as divergences in the final
energy distribution. These peaks would be the experi-
mental manifestation of energy-loss rainbows. The mecha-
nism is based on the general observation that the energy
loss must be periodic due to the periodicity of the sur-
face. In this context it is interesting to note that bimodal
energy-loss distributions have been measured for a Ne
atom colliding with a Self Assembled Monolayer (SAM)
of 1-decanethiol on Au(111) [15,16].
It is also of special interest to note the multiple peak

structure observed in energy and angle resolved alkali ion
scattering from surfaces at a fixed final azimuthal angle
[17]. Tenner et al. found [17] that maxima in the differen-
tial cross sections could be due to zeroes of the Jacobian
determinant relating the final energy and scattering angles
to the initial energy and horizontal position of the incident
ion. These measurements perhaps are also an example of
energy-loss rainbows although there is not enough experi-
mental data available for determining the integral energy-
loss cross section.
Energy-loss rainbows are due to the frictional effect of

the surface. One normally thinks of friction as leading to
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the ‘‘washing out’’ of rainbow structures. Here we find that
it induces structure in the energy-loss distribution. Just like
angular rainbows, as the surface temperature increases, the
fluctuations become strong and the multiple peak structure
is washed out. Energy-loss rainbows are not due to mul-
tiple scattering events. They exist even when all trajecto-
ries have a single collision with the surface. They are due to
the surface corrugation dependent energy loss of the scat-
tered atom.

To derive a theory for energy-loss rainbows we assume
for simplicity in-plane scattering. The vertical and hori-
zontal coordinates of the incident atom (with mass M) are
denoted as z and x, with conjugate momenta pz and px.
Our model Hamiltonian is taken to have the generic form
[18]:

H ¼ p2
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The vertical potential �VðzÞ is taken to be a Morse potential
�VðzÞ ¼ V0ð1� e��zÞ2 � V0 with V0 the physisorbed well
depth and � the stiffness parameter. We assume a sinusoi-
dal surface corrugation with period l (the lattice length)
and amplitude h. The corrugation is weak (h=l � 1),
allowing for expansion of the vertical potential in terms
of a fluctuation along the horizontal coordinate. This then
leads to the coupling �V 0ðzÞ between the vertical and hori-
zontal modes of the incident atom. The phonon baths are
independent, characterized by mass weighted momenta,
coordinates, frequencies and coupling coefficients pji ,

xji , !ji , cji , j ¼ 1; . . . ; N; i ¼ x, z. The baths are coupled

to the vertical motion through the coupling function gðzÞ ¼
expð�3�zÞ. The coupling of the horizontal motion is
periodic with respect to the horizontal coordinate and
reflects the translational invariance of the Hamiltonian. It
is this periodicity which underlies the energy-loss rainbow
effect.

The equations of motion for linearly coupled harmonic
baths are generalized Langevin equations (GLE’s) [19]. In
the continuum limit one introduces the spectral densities

Jið!Þ ¼ �
2

P
N
j¼1

c2ji
!ji

�ð!�!jiÞ, i ¼ x, z, and associated

friction functions �iðtÞ ¼ 2
�

R1
0 d! Jið!Þ

! cosð!tÞ, i ¼ x, z.

We chose the friction to be Ohmic: �iðtÞ ¼ 2�i�ðtÞ, i ¼ x,
z where �ðtÞ is the Dirac ‘‘delta’’ function. The resulting
Langevin equations of motion, which are given explicitly
in Ref. [18] were solved numerically.

For the generic Hamiltonian of Eq. (1) we have shown in
Ref. [18] that in the limit of weak corrugation and weak
friction, the energy-loss distribution has the form

PðEfÞ ¼ 1

l

Z l
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dx
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where h�EðxÞi is the energy-loss deflection function—it is
the average energy lost to the surface at impact parameter
x, kB is Boltzmann’s constant and T is the surface tem-
perature. This result generalizes Brako’s result [20] for the
energy loss, which was derived without considering sur-
face corrugation. Its validity is rather general, the phonons
must be considered as a linearly coupled harmonic bath
and the energy loss must be translationally invariant. The
energy deflection function depends linearly on the friction
coefficient (in the weak damping limit) but is temperature
independent since it gives the average change in the energy
loss; the Gaussian fluctuations at any energy average out to
zero. The effect of the fluctuations, and thus the tempera-
ture, is then to broaden the energy-loss distribution, as is
also evident from Eq. (2).
As a predictive example we consider the scattering of Ar

on LiF(100), studied recently by Kondo et al. [6], who
measured the in-plane angular distribution as a function of
incidence energy which varied from 315 to 705 meV at
T ¼ 300 K. We fit their experimental data by numerically
solving the Langevin equations of motion. The measured
experimental angular distributions were fit quantitatively
by adjusting the free parameters of the model. The result-
ing values were �l ¼ 5, �h ¼ 0:05, �x=!0 ¼
1:41� 10�4, and �z�=!0 ¼ 1:13� 10�3, where !0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0�

2=M
p

is the harmonic frequency of the Morse poten-
tial. The physisorbed well depth V0 was taken to be
150 meV (somewhat larger than the 88 meV of

Ref. [21]). The lattice length is [22] l ¼ 4 �A.
At the low energies of the incident beam the analytic

energy distribution calculated from Eq. (2) is in quantita-
tive agreement with the numerical simulations. However,
in this regime the energy-loss rainbows can be observed
only at very low temperatures, so below we present results
at a higher energy of 3000 meV which is well within the
range of typical experimental capabilities. At this energy,
the perturbative treatment used in deriving Eq. (2) begins
to fail and a broader energy distribution is always predicted
compared to the numerical results. We found that a simple
scaling of the variance in Eq. (2) by the factor 1� a cosð�iÞ
with a ¼ 0:825, brings the analytical and numerical results
into agreement for all angles and temperatures studied.
Using the parameters specified above, results for the

energy-loss deflection function are shown in Fig. 1 at an
incident energy of 3000 meV, T ¼ 0 K and for the angles
of incidence of 0�, 15�, 45�, and 60�. Within the Langevin
equation formalism, and weak coupling to the baths, the
energy-loss deflection function is independent of tempera-
ture, since the Gaussian fluctuations induced by finite
temperature average out to zero. This prediction was veri-
fied in our simulations. The energy loss to the bath can lead
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to a rich structure in the corresponding energy distribution.
As can be seen from the extrema of the deflection func-
tions, four peaks are expected at a scattering angle of 15�,
and two rainbow energies are anticipated at 60� as borne
out in the low temperature energy distributions presented
below.

We computed the resulting energy-loss distributions in
two different ways. The solid lines in Fig. 2 are obtained by
inserting the numerically determined energy-loss deflec-
tion functions into the modified form of Eq. (2). The
symbols show the distributions obtained directly from the
simulations. Panels (a)–(d) show the integral energy-loss
distributions (integrated over all final scattering angles) for
the scattering of Ar on the LiF(100) surface calculated at
the incidence angles 0�, 15�, 45�, and 60�, respectively,
and at T ¼ 0:5, 30, and 90 K. As the surface temperature
and incident angle increase, the rainbow structure is broad-

ened and eventually disappears, as seen particularly in the
case of 60�. It is notable that at the lowest temperature the
energy rainbows show the divergence which is character-
istic of angular rainbows.
Since it is easier to measure the energy loss at a fixed

final scattering angle we consider in Fig. 3 the joint distri-
bution for the T ¼ 30 K results shown in panel (b) of
Fig. 2. These typical results show that one should expect
a double peak energy-loss distribution for most angles.
They also show that the energy-loss rainbows are not
necessarily related to the angular rainbows. They can
come from a different region of the surface.
We have thus demonstrated through numerical simula-

tion that there exist in principle energy-loss rainbows. The
condition for their observation is that the distance between
the energy-loss rainbows�ER is larger than the variance of

the energy distribution � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTh�Ei

p
(where h�Ei is the

overall average energy loss). This condition implies three
ways for increasing the chance for observation of the
energy-loss rainbows. They are (a) lowering the surface
temperature and (b) increasing the incidence energy. The
distance between the energy-loss rainbows increases line-
arly with increasing incidence energy while the width
increases only as the square root of the energy loss.
(c) Changing the angle of incidence which may also lead
to an increase in the spacing between energy-loss peaks.
Have energy-loss rainbows actually been observed ex-

perimentally? Sibener and co-workers measured the
energy-loss distribution of Ne scattered from a SAM of
1-decanethiol on Au(111) [15,16]. They observed a bimo-
dal distribution for a 45� angle of incidence and Ne inci-
dent energies of 250 and 550 meV which disappeared
when the angle of incidence was increased to 60� and the
energy lowered to 65.3 meV. At 250 (550) meV the dis-
tance between the peaks is�120 ð�270Þ meV. In contrast
to atom scattering off liquids (where bimodal distributions
have been observed [23]), the low energy peak observed in
Ref. [16] is not a thermal trapping-desorption peak [16,24].
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FIG. 2 (color online). Theoretical final energy distributions of
Ar scattered on a LiF(100) surface at incidence angles of 0�,
15�, 45�, and 60� displayed in panels (a)–(d). The (green) dots,
(red) circles, and (blue) squares correspond to the numerical
distributions calculated at T ¼ 0:5, 30, and 90 K, respectively.
The solid lines show the analytic distributions calculated from
Eq. (2) using the modified form of the variance.

FIG. 3 (color online). Theoretical joint energy loss and angular
distribution for Ar scattered from LiF at T ¼ 30 K and incident
energy of 3 eV. Also shown are the integrated angular and
energy-loss distributions. Note the relation between the angular
rainbows and the energy-loss rainbows.
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FIG. 1 (color online). T ¼ 0 K theoretical computation of the
energy loss to the bath as a function of the impact parameter for
the scattering of Ar from a LiF(100) surface. The solid (black),
dashed (red), dotted (green) and dot-dashed (blue) lines corre-
spond to incident angles of 0�, 15�, 45�, and 60�, respectively.
Note the multiple extrema of the ‘‘energy-loss deflection func-
tions’’.
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Isa et al. [16] attribute the bimodal peak to Ne col-
liding with different parts of the adsorbed molecule at
different lateral distances. It is precisely the different
lateral distances which give rise to the energy-loss rain-
bows in our theory. Using the theoretical expression
for the energy loss [Eq. (2)] with the same functional
form used to fit the numerical data in Fig. 1:
�EðxÞ¼ 0:0147�0:0065cosð2�xÞ�0:00175cosð4�xÞþ
0:0009cosð6�xÞ a:u: for E ¼ 550 meV and
�EðxÞ ¼ ð0:01475� 0:0065cosð2�xÞ� 0:002cosð4�xÞþ
0:00055cosð6�xÞÞ250=550 a:u: for E ¼ 250 meV, we
show in Fig. 4 a comparison between the fitted theoretical
energy-loss distribution for directly scattered particles with
the measured experimental energy-loss distributions. The
good agreement (better than obtained in the numerical
simulations of Ref. [16]) indicates that the peaks reflect
the energy-loss rainbows. Our theory also predicts that
increasing the angle of incidence and lowering the energy
will wash out the rainbow features, as observed in Fig. 8 of
Ref. [16].

In summary, we presented a general theory for energy-
loss rainbows which are due to phonon induced friction.
They have been confirmed through our numerical simula-
tions and perhaps also experimentally in measurements of
Ne scattering from a SAM and Kþ ions scattering from
W(110) [17]. The present theory predicts that the energy-
loss rainbows will be observed for the scattering of Ar from
the LiF(100) surface. Lowering the temperature, changing
the angle of incidence and raising the incident energy
should ultimately lead to at least a bimodal energy-loss
distribution also for this system.
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FIG. 4 (color online). Comparison of theoretical (crossed
lines) and experimental [16] (solid lines) energy-loss distribu-
tions for the scattering of Ne from a SAM of 1-decanethiol on
Au(111).
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